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Abstract Intelligent technology is widely used to optimize
process parameters for injection molding. Traditional process
parameter optimization methods for esthetic defects suffer
from convergence and stability problems. This paper proposes
a novel optimization method, utilizing the fact that the feasible
parameter domain is usually sandwiched between two opposite
defects when a parameter increases from a low level to a high
level. By maximizing the margin between the opposite defects
of the samples, optimized parameters are obtained by choosing
the parameter combination that is furthest away from both
types of defects. Background data is introduced for the initial-
ization of the model. Two practical product experiments are
conducted to verify the proposedmethod, and comparisons are
made with the fuzzy reasoning method. The results show that
the proposed optimization method has more stable conver-
gence performance and does not suffer from the oscillation
problem compared with the fuzzy reasoning method. The in-
jection process under the optimized injection parameters ob-
tained from the proposed method provides a much more stable
product quality than traditional methods, with only half the
standard deviation and a process capability index eight times
higher. This method can also be used for other industry appli-
cations that share similar solution distribution characteristics.
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1 Introduction

Injection molding is one of the most important processing
methods in the plastics industry [1–3]. The quality of plastic
injection-molded parts depends on the material, mold design,
injection molding machine, and process parameters required
to manufacture them [4, 5]. Since the material, the mold, and
the injection molding machine are usually determined in the
initial stage of product development, the most important task
is to systematically determine the optimal process parameters.
Traditionally, the injection-molding process parameters are
determined through trial-and-error [6, 7] approaches by expe-
rienced molding personnel rather than through theoretical and
analytical approaches. First, the personnel find a set of tenta-
tive parameters by recalling similar molded parts in their pre-
vious work. The tentative parameters are used as initial pa-
rameters for a mold trial. Subsequently, the tentative parame-
ters are iteratively adjusted and modified according to the
operator’s intuition and experience until the quality of the part
is found to be satisfactory. The trial-and-error process is time
consuming and costly because the efficiency depends on the
experience of the operator [8, 9].

Over the past decades, experimental design and optimiza-
tion approaches have been widely applied to determine pro-
cess parameters for plastic injection molding [10]. The main
method framework includes two steps: model fitting and
optimization. The model fitting step aims at establishing a
relationship model between the process parameters and the
product quality. The practical approach includes the response
surface method (RSM), artificial neural network (ANN), radi-
al basis function (RBF), Kriging surrogate modeling, etc.
Chuang et al. [11] applied RSM to determine the optimum
process parameters for thin-shell plastic parts. Shi et al. [12]
proposed ANN to optimize the injection molding process of
minimizing the warpage of injection-molded parts. Li et al.
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[13] applied RBF to optimize the packing profile of the injec-
tion molding process. Gao et al. [14–17] developed an adap-
tive optimizationmethod based on the Kriging surrogate mod-
el to minimize the warpage of injection-molded parts. Based
on the well-fitted model, the optimization method is intro-
duced to determine the optimal parameter set to produce the
best-quality product. The practical approach is the optimizing
algorithm, including the genetic algorithm (GA), particle
swarm optimization (PSO), and simulated annealing (SA).
Kim et al. [18] used GA to optimize the molding conditions,
which consist of the mold temperature, the melt temperature,
and the filling time, based on the results from flow simulation.
Guo et al. [19] used GA to optimize the processing parameters
to minimize the sink mark depth. Increasingly, researchers
have combined fitting-based methods with optimization-
based methods to obtain the optimized process parameters.
Kurtaran et al. [20] combined ANN with GA to determine
the best injection-molding process parameters to minimize
the warpage of a bus ceiling lamp base. Tsai and Luo [21]
combined ANN with GA to establish an inverse model of
injection molding for optical lens to achieve improved accu-
racy. Chen et al. [22] adopted hybrid PSO-GA methods to
determine the optimal process parameters for product length
and warpage. Iniesta et al. [23] presented a hybrid of ANN and
the artificial bee colony algorithm to optimize the injection-
molding process parameters to minimize warpage of the plas-
tic products. In short, by estimating the relationship model
between the product qualities and process parameters, the ex-
perimental design and optimization approach has achieved
great success in optimizing the process parameters.

However, the experimental design and optimization ap-
proach requires the product quality to be quantifiable. In
fact, the quality of an injected part is usually defined by both
quantitative features (like dimensional defects, warpage, di-
mensions, weight) and qualitative features (like esthetic de-
fects, short shot, flash, sink marks, burn). Esthetic defects
are determined by visual inspection, usually by the operator
standing in front of the injection machine. The operator
decides at that time whether the part is acceptable or not.
Because esthetic defects can hardly be quantified, the rela-
tionship between the molded part defects and the process
parameters can be hardly modeled using the aforementioned
modeling method. Knowledge-based or expert system ap-
proaches are likely the most promising methods to address
this problem [24]. Pandelidis and Kao [25] presented a
knowledge-based system for the diagnosis of multiple de-
fects in injection molding. Jan and O’Brien [26] developed
an expert system for the injection molding of engineering
thermoplastics, and the system offers corrective action for
part defects. Shelesh-Nezhad and Siores [27] proposed the
idea of using rule-based reasoning to eliminate part defects.
These methods were successful in some circumstances.
However, due to their incomplete integration of qualitative

and quantitative reasoning, a typical symbolic knowledge-
based or expert system can only provide the parameter types
and associated correction direction. No range of correction
or crisp value is given.

To overcome shortcomings of the existing knowledge-
based or expert system approaches, He et al. [24, 28] present-
ed a fuzzy-neural approach to automatically predict the pro-
cess parameter resetting and achieve better product quality.
Zhou et al. [9, 29] proposed a fuzzy reasoning model to pre-
vent esthetic defects. In their study, the seriousness of each
defect is described naturally using a linguistic term set, such as
{slight, medium, serious}, and the process parameter correc-
tion range was determined by the seriousness of the defects.
Fuzzy reasoning can provide not only the correction direction
of process parameters but also the crisp value of process
parameters.

Although the fuzzy reasoning-based method provides
feasible solutions that can automatically set process param-
eters to eliminate esthetic defects, two key issues still need to
be considered. First, there is no discussion on whether the
process parameters are robust enough to ensure stability of
product qualities. Because the process of injection molding
is cyclical and repetitive, the process parameters should be
robust enough to overcome variations inmaterial properties,
variations in the machine, and changes in the manufacturing
circumstances [6]. Consequently, the product quality stabil-
ity is thought to be an important indicator for evaluating pro-
cess parameter settings [30, 31]. The fuzzy reasoning-based
method provides a logical reasoning framework aiming for
the removal of esthetic defects, though there is no guarantee
that the final process parameters are robust enough. Second,
the fuzzy reasoning-based method suffers from the conver-
gence problem, because the input membership functions
used in fuzzy reasoning applications are not fitted to the pro-
cess window [32]. This will lead to unstable production pro-
cesseswhen the process parameters are located at the edge of
the process window. In some circumstances, qualified parts
can hardly be obtained when the process window is small. In
particular, computer, communication, and consumer elec-
tronic (3C) products, such as portable computers and cell
phones, are widely applied throughout the world. The de-
signs of those 3C products have a tendency to be light, thin,
short, and small [33, 34]. Plastic injection molding (PIM) is
frequently applied to produce parts with thin-wall features in
different fields. The process window of such parts is contin-
ually decreasing.

To solve the aforementioned convergence and stability
problem, a novel classification model-based optimization
method is proposed in this study to obtain the optimal process
parameters. After describing in detail the model theory, com-
prehensive injection-molding experiments are conducted to
exhibit the superiority, and comparisons are made with the
fuzzy reasoning-based method.
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2 Optimization model

2.1 Method framework

There is a feasible process zone for injection molding. This
defect-free process zone is always referred to as the process
window [29, 35]. Take the injection pressure and melt tem-
perature as examples, as shown in Fig. 1. If the melt temper-
ature is too low, a higher injection pressure is required to
deliver the melt polymer into the cavities. If the melt temper-
ature is too high, burn may occur. On the other hand, if the
injection pressure is too low, a short shot may occur, while
high injection pressure may cause flash. The proper process
window is important for robust and stable manufacturing as
well as for the optimization of process parameters [36].

The process window is usually a closed area in high dimen-
sional space, because the number of parameters is far more
than three. The process window shown in Fig. 1 is just for
demonstration in the case of two parameters, and it can be
established by finding four corners through dozens of mold
trials. However, detecting a full set of process windows would
be very difficult because of a large number of process param-
eters involved and complicated interactions among them. It is
difficult to exactly describe such an irregular region in a mul-
tidimensional space of process parameters into a mathematical
or a descriptive form. Therefore, construction of the high di-
mensional process window would be a very time-consuming
task, in which, by finding the exact boundaries of the process
window by fitting using hundreds of mold trials. Sometimes,
it is even almost impossible in practice.

Based on the above reasons, the molding personnel usually
seek feasible process parameters based on opposing defects
rather than determining the entire process window. Short shot,
flash, shrinkage, air bubbles, burn, and bump white are the
most frequent esthetic defects in injection molding. Among
these defects, some are caused by small process parameter
values, while others are caused by large process parameter

values. Taking the injection velocity, packing pressure, and
packing time as examples, when the values of the injection
velocity, packing pressure, and packing time are small, the
mold parts will suffer from short shot, shrinkage, air bubbles,
and so on. With an increase in these process parameters, the
defects will disappear. However, if these process parameters
continue to increase, burn, flash, and bump white may appear.
Thus, product defects can be divided into two opposing cate-
gories. Short shot, air bubbles, shrinkage, etc., caused by low
process parameter values can be classified into one category,
labeled “+1.”On the other hand, burn, flash, bump white, etc.,
caused by high process parameter values can be classified into
the opposite category, labeled “−1,” as shown in Fig. 2. The
margin border can be regarded as the process window border,
and the defect-free process zone between the process window
border is the process window. The optimal process parameter
set is more probably located in the center of the process win-
dow.We try to find the center of the process window bymeans
of approximation only using few mold trials, rather than find-
ing the exact boundaries of the process window by fitting
using hundreds of mold trials.

Generally, the whole process can be divided into two steps.
First, the molding personnel set up a series of process param-
eters based on theirr experience or intuition, and then, defec-
tive products are produced. The influence of the process pa-
rameters on the product quality will be reflected in the form of
product defects. Second, by analyzing the internal relationship
between the process parameters and product defects, the
molding personnel constantly adjust the process parameters,
eliminating the product defects and finally obtaining the qual-
ified products.

Corresponding to the previous two steps, the proposed op-
timization model mainly consists of sampling and parameter
correction, as shown in Fig. 3. The process of sampling is to
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Fig. 1 Illustration of the process window with two parameters: injection
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Fig. 2 The process window using opposite defects
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collect sample data during mold trials. Each sample data set
consists of two parts: the process parameters and their corre-
sponding product defect category. The process of parameter
correction is to obtain the optimal process parameters using a
novel classification model based on sample data. The param-
eter correction procedure is repeated until a fully successful
part, without any defects, is obtained.

2.2 Sampling

2.2.1 Sample data

During the mold trials, a series of defective products will be
produced. The product defect category and the corresponding
process parameter set constitute the sample data, defined as

S ¼ S1; S2;⋯; Si;⋯; Slf g
¼ x1; y1ð Þ; x2; y2ð Þ;⋯; xi; yið Þ;⋯; xl; ylð Þf g ð1Þ

xi ¼ a1i ; a
2
i ;⋯; ani

� �
; yi∈ −1;þ1f g ð2Þ

where S represents the sample data set, S1 , S2 , ⋯ , Si , ⋯ ,
Sl are the sample data, xi is the process parameter set, and a1i ;
a2i ;⋯; ani denote the process parameters. yi ∈ {−1, +1} repre-
sents the product defect category. l denotes the number of
sample data points. The sample data is obtained bymold trials.

Considering the fact that varying process parameter ranges
differ greatly from each other due to their diversity, the sample
data is normalized by Eq. (3), and the optimal process param-
eters are un-normalized by Eq. (4)

x
0 ¼ x−xmin

xmax−xmin
ð3Þ

x ¼ x; � xmax−xminð Þ þ xmin ð4Þ
where x is the original data, x' is the normalized data, and xmax

and xmin are the maximum and minimum values of x.
Sample data is obtained by the actual mold trials, which

first requires changing the corresponding process parameters,
followed by a mold trial and finally observing the product
quality. Thus, the acquisition of sample data is a time-
consuming process. In particular, some process parameters,
such as the nozzle temperature and barrel temperature, are
easy to increase but take a long time to decrease.

2.2.2 Background data

In the beginning, there is no sample data, and instead, back-
ground data are applied. Background data is a kind of exag-
gerated data comprised of prior knowledge of defect correc-
tion rules. Background data is equivalent to the implicit rep-
resentation of these rules. Background data has universal ap-
plicability, which is suitable for different materials, molds, and
machines. Background data has two main effects. First, in the
absence of sample data, background data is used as sample
data. Second, background data is used to construct the ex-
treme process parameter adjustment direction. Background
data is determined by the operators. Taking the injection ve-
locity, packing pressure, and packing time as examples, if the
values of the injection velocity, packing pressure, and packing
time are very low, parts with +1 category defects will be pro-
duced. To obtain qualified parts, these process parameters
should be increased. In contrast, high injection velocities,
packing pressures, and packing times will lead to −1 category
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Fig. 3 The framework of the proposed optimization model
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Fig. 4 The schematic diagram of the maximum process window border
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defect parts. These process parameters should be decreased to
obtain qualified parts. When collecting background data, +1
category and −1 category data are both required.

Background data is artificially constructed and thus does
not need actual mold trials and is easily obtained. Background
data is particularly useful when there is no sample data, and
the molding personnel have no experience and do not know
how to obtain sample data. Thus, background data can not
only reduce the number of mold trials but can also reduce
the required molding personnel experience.

2.3 Parameter corrections based on the classification
model

2.3.1 Maximum process window border method

Given a set of l sample data {(x1, y1), (x2, y2), ⋯ , (xl, yl)},
where xi ¼ a1i ; a

2
i ;⋯; ani

� �
and yi ∈ {−1, +1}, the goal is to

find a plane that separates the positive and negative sample
data without error [37]. There are various planes that can sep-
arate the positive and negative sample data. The maximum
process window border method consists of finding the hyper-
plane that correctly separates the sample data and maximizes
the distance between the closest sample data and the hyper-
plane. The distance between the process window borders is
known as the margin, as shown in Fig. 4. The larger the mar-
gin, the wider the process window, and the more robust the
process will be.

The hyperplane equation can be expressed as

w•xþ b ¼ 0 ð5Þ
where w is an n-dimensional row vector and b is a bias.

The decision function is

f xð Þ ¼ sign w•xþ b½ � ð6Þ

Without loss of generality, it is appropriate to consider a
canonical hyperplane, where the parameters w and b are
constrained by

min
i

jw•xi þ bj ¼ 1 ð7Þ

The distance of a sample data point to the hyperplane is

d w; b; xð Þ ¼ jw•xþ bj
jjwjj ð8Þ

The optimal hyperplane is given by maximizing the mar-
gin, subject to the constraints of Eq. (8). The margin is given
by

margin ¼ min
xi:yi¼−1

d w; b; xið Þ þ min
xi:yi¼1

d w; b; xið Þ

¼ min
xi:yi¼−1

jw•xi þ bj
jjwjj þ min

xi:yi¼1

jw•xi þ bj
jjwjj

¼ 1

jjwjj min
xi:yi¼−1

jw•xi þ bj þ min
xi:yi¼1

jw•xi þ bj
� �

¼ 2

jjwjj ð9Þ

Thus, the process window border expressions are w • x +
b = + 1 and w • x + b = − 1. The area between the process
window borders is the molding area. The area outside the

Table 1 The part geometry and experimental setup for the two parts

Property Buckle Mobile phone shell

Parts cavity geometry

Plastic material PS PC/ABS

Molding machine JSW J110ADC-180H

Optimized process parameters

injection velocity
packing pressure

packing time

injection velocity

packing pressure
packing time

back pressure

screw rotation speed

Table 2 Constraints of the process parameters

Process parameter Lower limit Upper limit

Injection velocity (mm/s) 0 350

Packing pressure (MPa) 0 240

Packing time (s) 0.02 2
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process window borders consists of the −1 category defect
area and the +1 category defect area, as shown in Fig. 4.
Formally, the constructed hyperplane must satisfy the follow-
ing constraints:

w•xi þ b≥ þ 1 for yi ¼ þ1
w•xi þ b≤−1 for yi ¼ −1

�
ð10Þ

where xi denotes a vector of the process parameters, yi repre-
sents the product defect category, and l is the number of sam-
ple data points.

Maximizing 2
jjwjj means minimizing 1

2 j wj j2. Thus, the prob-
lem of determining the maximum process window border can
be converted into a convex optimization problem:

min
w;b

1

2
j wj j2

s:t: yi w
T •xi þ b

� �
≥1; i ¼ 1;⋯; l:

8<
: ð11Þ

The Lagrangian is given by

L w; b;λð Þ ¼ 1

2
j wj j2− ∑

l

i¼1
λi yi w

T •xi þ b
� �

−1
	 
 ð12Þ

where λi represents a non-negative Lagrangian multiplier. It is
well known from optimization theory that the solution is char-
acterized by the saddle point of the Lagrangian:

max
λ

min
w;b

L w; b;λð Þ ð13Þ

One obtains

∂L
∂w

¼ 0→w ¼ ∑
l

i¼1
λiyixi

∂L
∂b

¼ 0→ ∑
l

i¼1
λiyi ¼ 0

8>><
>>:

ð14Þ

By replacing w in the Lagrangian, the following dual prob-
lem is obtained:

Table 3 Optimization of the process parameters for the buckle

Trial no. First Second Third

Defects

Short shot Burn Success

Training data Background data Background data,
1S Background data,

1 2S ,S

Process parameter set
1 130.(1 575, ,1.1)x 2 178(240, ,1.38)x 3 150.3(210, ,1.25)x

Feedback
1 +1y 2 1y Success

Fig. 5 The process window of a the first trial run, b the second trial run, and c the third trial run
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min
1

2
∑
l

h¼1
∑
l

i¼1
yhyiλhλi xhxið Þ− ∑

l

h¼1
λh

s:t: ∑
l

i¼1
yiλi ¼ 0

8>><
>>:

ð15Þ

where λi and λh represent non-negative Lagrangian
multipliers.

The optimal value set is

λ* ¼ λ*
1;……;λ*

l
� �T ð16Þ

Thus,

w ¼ ∑
l

i¼1
yiλ

*
ixi ð17Þ

b ¼ yd− ∑
l

i¼1
yiλ

*
i xi � xdð Þ ð18Þ

where λ*
d is a non-zero value of set λ∗, xd represents the pro-

cess parameter combination corresponding to λ*
d , and yd de-

notes the defect category corresponding to λ*
d . Thus, the hy-

perplane equation is obtained.

2.3.2 Parameter correction using the maximum process
window border

Once the hyperplane is determined, the following most impor-
tant task is to determine the sample data closest to the hyper-
plane. The projection point of the sample data on the

hyperplane is the point at which the optimal process parameter
set is located.

The distance si for each sample data set to the hy-
perplane is

si ¼ jw•xi þ bj
jjwjj ; i ¼ 1;⋯; l ð19Þ

Then, the value of ∣si∣ is compared to determine the value
of smin. Next, the process parameter set xmin for the minimum
distance is obtained.

smin ¼ minjjsijj; i ¼ 1;⋯; l ð20Þ
xmin ¼ a1min; a

2
min;⋯; anmin

� � ð21Þ

where a1min; a
2
min;⋯; anmin are the process parameters of the

minimum distance.

T h e o p t i m a l p r o c e s s p a r am e t e r s e t xopt ¼
α1
opt;α

2
opt;⋯;αn

opt

n o
denotes the projection point of xmin on

the hyperplane.

αi
opt ¼ αi

min−
wij j

wi ∑
n

i¼1
jwij

smin; i ¼ 1;…; n ð22Þ

where a1opt; a
2
opt;⋯; anopt are the optimal process parameters.

The recommended optimal process parameter set is located
on the hyperplane. The maximum process window border

Table 4 The main process parameters and their adjustments in the mold trials for the mobile phone shell

Trial no. First Second Third Fourth Fifth Sixth …

Feedback Short shot,
Serious

Short shot,
Serious

Short shot,
Slight

Flash,
Slight

Short shot,
Slight

…

Process parameters Injection velocity (mm/s) 90 +60 +60 +20 −20 +20 …

Packing pressure (MPa) 88.2 +24 +24 +8 −8 +8 …

Packing time (s) 0.1 +0.4 +0.4 +0.13 −0.13 +0.13 …

Screw rotation speed (rpm) 156 +40 +40 +13 −13 +13 …

Back pressure (MPa) 5.6 +6 +6 +2 −2 +2 …

Fig. 6 Molded parts (mobile
phone shell) using a large
adjustment range: a the first trial
run, b the second trial run, c the
third trial run, d the fourth trial
run, and e the fifth trial run
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method ensures the farthest distance between the recommend-
ed process parameters and the defect areas, which guarantees
that the recommended process parameters are optimal.

3 Experimental setup

All experiments were carried out on a JSW J110ADC-180H
electric precision injection-molding machine, which is well
known for its high repeat accuracy and excellent stability.
The main technical details of the machine are listed in
Table 9. The device to measure part weight is METTLER
TOLEDO ME 204 with a precision of 0.0001 g.

Two parts in practical production were used to verify the
feasibility and effectiveness of the proposed method. Part ge-
ometry and experimental setup for the two parts are listed in
Table 1. To reduce the influence of the previous process pa-
rameters on the molding process and to ensure the reliability
of the results, each batch of process parameters was repeated
five times, and the last time was selected as the experimental
results. To obtain qualified parts, the process parameters’ need
to be adjusted were determined according to part characteris-
tics. The esthetic defects of the parts were judged by the mold-
ing personnel and the stability of the part was measured by the
weight deviation.

In the experiment, the buckle was thought to be easily
molded and has a very big process window. A successful part

can be obtained by adjusting a small number of process pa-
rameters. Through experiments and product feature analysis,
qualified parts can be obtained by adjusting the injection ve-
locity, packing pressure, and packing time. Thus, the injection
velocity, packing pressure, and packing time were selected as
the optimized process parameters. Themobile phone shell was
thought to be a thin-wall plastic product and has very high
demand for esthetic. It would be hard to mold and has a very
small process window. For this part, the injection velocity,
packing pressure, packing time, screw rotation speed, and
back pressure were selected as the optimized process
parameters.

4 Results and discussions

4.1 Verification and validation

The optimization of the process parameters by the proposed
method was first verified and validated for the buckle, and the
injection velocity, packing pressure, and packing time were
selected as the optimized process parameters. The constraints
on the process parameter set xi ¼ α1

i ;α
2
i ;α

3
i

� �
are listed in

Table 2, where α1
i represents the injection velocity, α

2
i denotes

the packing pressure, and α3
i is the packing time. Other major

process parameters are listed in Table 10. The background
data is listed in Table 11.

Fig. 7 Molded parts (mobile phone shell) using a small adjustment range: a the first trial run, b the second trial run, c the third trial run, d the fourth trial
run, e the fifth trial run, f the sixth trial run, g the seventh trial run, h the eighth trial run, and i the ninth trial run

Table 5 The main process parameters and their adjustments in the mold trials for the mobile phone shell

Trial no. First Second Third Fourth Fifth Sixth Seventh Eighth Ninth

Feedback Short shot,
serious

Short shot,
serious

Short shot,
serious

Short shot,
serious

Short shot,
serious

Short shot,
serious

Short shot,
serious

Sink,
slight

Process
parameters

Injection velocity (mm/s) 90 +18 +18 +18 +18 +18 +18 +18 +0

Packing pressure (MPa) 88.2 +7.2 +7.2 +7.2 +7.2 +7.2 +7.2 +7.2 +2.4

Packing time (s) 0.1 +0.12 +0.12 +0.12 +0.12 +0.12 +0.12 +0.12 +0.04

Screw rotation speed (rpm) 156 +12 +12 +12 +12 +12 +12 +12 +0

Back pressure (MPa) 5.6 +1.8 +1.8 +1.8 +1.8 +1.8 +1.8 +1.8 +0.6
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The optimization process of the process parameters for the
buckle is listed in Table 3. The first optimized process param-
eter set x1 was obtained by constructing the maximum process
window border based on background data. These process pa-
rameters were then applied to the injection-molding machine
for a mold trial. A part with short shot defects was obtained. At
the same time, a new sample data set S1 = (x1, y1) was formed.
The second optimized process parameter set x2 was obtained
by constructing the maximum process window border based
on the new sample data set S1 and the background data. These
parameters were then applied to the injection-moldingmachine
for the next mold trial. In this case, a part with burn defects was
obtained. Similarly, the third process parameter set x3 was ob-
tained, and the third mold trial was carried out, which produced
a fully successful part without any defects. Thus, the optimized
process parameters were obtained in a very short time.

To provide a more intuitive view of the proposed method,
the process window of the process parameters for each mold
trial is displayed in the form of graphics, as shown in Fig. 5.
The leftmost planes are −1 planes. The upper left area of the
−1 plane is the −1 category defect area. The sample data
located in the upper left of the −1 plane belongs to the −1
category. The rightmost planes are +1 planes. The bottom
right area of the +1 plane is the +1 category defect area. The
sample data located in the bottom right of the +1 plane be-
longs to the +1 category. The area between the +1 plane and
the −1 plane is the molding area. The hyperplane is the gray
plane located in the middle of the molding area. The recom-
mended optimized process parameter set is located on the
hyperplane. From Fig. 5a to c, it can be seen that the optimal
process parameter set was located in the center of the process
window, far from the process window border. Thus, the

Table 6 The main process parameters and their adjustments in the mold trials for the proposed method

Trial no.  First Second Third Fourth 

Defects

Training data Background data 1
Background data 1, 

1S

Background data 1,

1 2,S S
Background data 1,

1 2 3, ,S S S

P
ro

ce
ss

 

p
ar

am
et

er
s Injection velocity (mm/s) 232 -131 +105 +12

Packing pressure (MPa) 149.9 -97.7 +81.3 +6.7

Packing time (s) 1.03 -0.58 +0.46 +0.07

Screw rotation speed (rpm) 237 -58 +46 +6

Back pressure (MPa) 20.2 -12.3 +10.7 +1

Feedback
1 1y 2 1y 3 1y Success

Fig. 8 Adjustment process of the
a injection velocity, b packing
pressure, c packing time, d screw
rotation speed, and e back
pressure
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stability of the product quality is well guaranteed. In addi-
tion, the proposed method is a history-based method, for
which, each mold trial data set was used as the sample data
for thenextmold trial.With an increase in thenumberofmold
trials, the molding area decreases, and the adjustment ranges
of the process parameters constantly converge until qualified
products are produced, which is especially critical for the
parts that are difficult to manufacture and have a narrow pro-
cess window.

4.2 Convergence analysis

The convergence of the proposed method was examined for
the mobile phone shell. For this part, the injection velocity,
packing pressure, packing time, screw rotation speed, and
back pressure were selected as the optimized process param-
eters. A convergence comparison is made with the fuzzy
reasoning-based method of Zhou et al. [9].

In the fuzzy reasoning-basedmethod, themain initial pro-
cess parameters of the mobile phone shell were determined
by the preliminary optimization and simplifiedmodel. These
parameters were then applied to the injection-molding ma-
chine for the next mold trial. The molded part from the first
trial run is shown in Fig. 6a, which had a serious short shot
defect. This defect and its degreewere fed back to the system
by the operator. The process parameters were then adjusted

by the fuzzy system for the first time, and these adjusted
parameters were applied to the injection-molding machine
for the nextmold trial. This time, the degree of short shotwas
reduced, as shown in Fig. 6b. Repeating the process, the
fuzzy reasoning-basedmethod failed to produce a successful
part, as shown in Fig. 6c. The main process parameters and
their adjustments are listed in Table 4.As seen from the table,
the adjustment range of the process parameters is determined
by the defect type and defect degree and no convergence. If
the adjustment range of the process parameters is too large
and the process window is too small, a qualified part cannot
be obtained, as occurred in this experiment. To verify this
phenomenon, the adjustment of the process parameters was
reduced to three tenths of the original. This time, a qualified
part was produced after nine mold trials, as shown in Fig. 7.
Themain process parameters and their adjustments are listed
in Table 5.

For the proposed method, the constraints on these five
process parameters are listed in Table 12. The other major
process parameters were the same as those determined by
the fuzzy reasoning-based method. Background data 1 is
listed in Table 13. The main process parameters and their
adjustments in the mold trials for the proposed method are
listed in Table 6. As seen from Table 6, the adjustment
ranges of the process parameters are determined by the
background data and the historical mold trial data. As the

Table 7 The optimal process
parameters for the confirmation
experiment

Injection
velocity (mm/s)

Packing
pressure (MPa)

Packing
time (s)

Screw rotation
speed (rpm)

Back pressure
(MPa)

Background data 1 218 140.2 0.98 231 19

Background data 2 220 140.4 0.97 228 18.8

Fig. 9 Adjustment process for
different background data for the
a injection velocity, b packing
pressure, c packing time, d screw
rotation speed, and e back
pressure
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mold trial progressed, the adjustment of the process param-
eters continued convergence, and a qualified part was ob-
tained after four mold trials. In addition, in the fuzzy rea-
soning process, the defect type and the seriousness of each
defect are fed back into the system. However, it should be
noted that the seriousness of each defect is evaluated by the
operator without uniform standards, which may lead to bias
for different operators. On the other hand, the proposed
method only focuses on the type of defects and not the se-
riousness of each defect. Thus, there is no operator bias for
the proposed method.

To further illustrate the convergence of the proposed
method, the process window borders of the process param-
eters were determined by experiment, as shown in Fig. 8.
LCL and UCL are the process window borders of the pro-
cess parameters. Taking the packing pressure for example,
the LCL value is 138MPa, the UCL value is 143.1MPa, and
the process window width is 5.1 MPa. In the fuzzy
reasoning-based method, the adjustment ranges of the pro-
cess parameters are determined by the defect type, defect
degree, and adjustment range value setting. If the adjust-
ment range is too large, as listed in Table 4, the minimum
adjustment range of the packing pressure is 8 MPa, which is
larger than the process window width. Thus, qualified parts
cannot be obtained. By reducing the adjustment range to
one third of the original values, as listed in Table 5, the
minimum adjustment range of the packing pressure is
2.4 MPa, which is smaller than the process window width.
This time, a successful part was obtained. However, the
mold trial number was greatly increased, which greatly in-
creased the mold trial time and material consumption. For

the proposed method, with an increase in the number of
mold trials, the molding area decreases, and the adjustment
ranges of the process parameters constantly converge until
qualified products are produced, which is especially critical
for parts that are difficult to manufacture and have a narrow
process window.

4.3 Stability analysis

The purpose of this section is to verify the stability of the
proposed method. The stability verification is divided into
two parts: the stability of the different background data and
the stability of the production process. Both experiments were
carried out on the mobile phone shell.

4.3.1 Stability of different background data

To illustrate the stability of the proposed method for differ-
ent background data, a new background data set, called
background data 2, was used in a comparative experiment,
as listed in Table 14. The final optimized process parameters
for background data 1 and background data 2 are listed in
Table 7. The optimization processes for the different back-
ground data sets are shown in Fig. 9. LCL and UCL are the
process window borders of the process parameters. It can be
seen that the background data has some impact on the cor-
rection history but does not affect the final result. Taking the
packing pressure for example, as shown in Fig. 9b, the pro-
cess window of the packing pressure is very narrow, be-
tween 138 and 143.1MPa. For background data 1, after four
mold trials, the packing pressure converges to 140.2 MPa,
which is located in the middle of the process window. For
background data 2, although six mold trials were needed,
the packing pressure also converged to 140.4 MPa, which is
also located in the middle of the process window. Thus, the
proposed method has very good stability for different back-
ground data.

4.3.2 Stability of the production process

Injection molding is a cyclical and repetitive process. Even if
the process parameters are properly adjusted, the part quality
cannot be consistent due to variabilities in the production pro-
cess. To illustrate the stability of the proposed method for the

Fig. 10 Comparison of the part weights from the proposed method and
the fuzzy reasoning method

Table 8 Comparison of part
weight statistics Average weight (g) Standard deviation Cpk

Proposed method Background data 1 12.2343 0.0102 3.78

Background data 2 12.2253 0.0101 4.12

Fuzzy reasoning method 12.3121 0.0242 0.52
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production process, three confirmation experiments were per-
formed. One experiment utilizes the optimal process parame-
ters obtained from the fuzzy reasoning-based method. The
other two experiments utilize the optimal process parameters
obtained from the proposedmethod for background data 1 and
background data 2.

The part weight was selected as the indicator to evaluate the
process stability for the following reasons. First, this parame-
ter has a close relationship with other quality properties (e.g.,
esthetic properties, dimensional properties, and mechanical
properties). Second, it is a good indicator of process stability.
Furthermore, it can be quantitatively measured easily with
high precision [38, 39]. The target value of the part weight
was 12.20 g.

To demonstrate the stability of the proposed method, 50
product samples were produced and weighed for each exper-
iment. The statistical averages and standard deviations of the
three sets of process parameters are compared to judge the
superiority of the approach for determining the final optimal
process parameters. In addition, the process capability index
was also compared.

The process capability index is a statistical measure of the
process capability and is an important indicator to assess the
process stability.

Cpk ¼ min
UCL−μ

3σ
;
μ−LCL
3σ

� �
ð23Þ

where Cpk is the process capability index, μ represents the
average weight, σ denotes the standard deviation, and UCL
and LCL are the upper limit and lower limit of the part weight,
respectively. Usually, the practical minimum Cpk in many
manufacturing processes is 1.33 [40, 41]. Engineers always
devote great effort to determine a reasonable process parame-
ter design for a product’s production to achieve a superior Cpk

value. Therefore, this research utilized Cpk as the major com-
parison criterion for evaluating the performances of the differ-
ent approaches.

Comparisons of the part weight for the three sets of pro-
cess parameters are shown in Fig. 10. The optimized part
weights of the proposed method using different background
data were closer to the target value, while the part weight
from the fuzzy reasoning-based method was located on the
edge of the acceptable part weight range. According to the
results listed in Table 8, the standard deviation of the pro-
posed method was 0.0102 and 0.0101, which was half of
that of the fuzzy reasoning-based method. TheCpk values of
the proposed method using different background data were
3.78 and 4.12, which are more than seven times that of the
fuzzy reasoning-based method. All of these observations

indicate that the proposed method has better stability than
the fuzzy reasoning-based method. The reason for this situ-
ation is that the proposed method not only takes the process
window into account but also determines the optimized pro-
cess parameters located in the center of the process window.
Thus, the proposed method is an effective method for pro-
cess parameter optimization for injection molding.

5 Conclusions

The process parameters critically influence productivity, qual-
ity, and production costs in the plastic injection-molding in-
dustry. Stability and convergence are two important issues for
determining the proper injection-molding process parameters.
To solve these two issues, a novel classification model-based
optimization method is proposed. The advantage of the pro-
posed method can be concluded as follows:

1) The proposed method shows very good convergence.
With an increase in the number of mold trials, the process
window decreases, and the adjustment ranges of the pro-
cess parameters constantly converge until qualified prod-
ucts are produced, which is especially critical for parts
that are difficult to manufacture and have a narrow pro-
cess window. The fuzzy reasoning-based method cannot
solve this problem.

2) The proposed method has better product quality sta-
bility than the fuzzy reasoning-based method. The
optimal process parameters obtained by the proposed
method are located in the center of the process win-
dow. Thus, the proposed method is more robust and
is able to overcome variabilities in the production
process.

3) The proposed method has better learning and generaliza-
tion capability. It is a history-based method, in which each
mold trial data set is used as the sample data for the fol-
lowing mold trial. The method learns from the sample
data and overcomes the difficulties of rule expression
and organization.

4) There is no operator bias in the proposed method. The
proposed method only considers the type of defects
and does not consider the seriousness of each defect.
Thus, the defect feedback is the same for different
operators.
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