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Abstract The full-discretization method (FDM) has been
proven effective for prediction on the regenerative chatter in
many papers. However, the previous studies towards FDM
just focused on high-order Lagrange interpolation for state
term of time-delayed differential equations (DDEs), which
formulates the dynamics model in milling process. It is well
known that the discretization error caused by the delay term of
DDEs would transmit to the state term inevitably; higher-
order Lagrange interpolation for delay term is thus vital. In
this paper, second-order, third-order, and fourth-order full-
discretization methods using Lagrange interpolation for the
delay term of DDEs (DFDMs) were firstly proposed. Then,
influence on the accuracy, computational efficiency, and con-
vergence rate of the proposed DFDMs was discussed in detail
as the change of interpolation order. It was found that rise in
accuracy and convergence rate of the proposed DFDM nearly
stopped when the interpolation order for delay term was up to
fourth order. Next, some researches on 2-degree-of-freedom
(2-DOF) of dynamic system was studied and the results show
that the proposed method using fourth-order Lagrange inter-
polation for the delay term of DDEs (4th DFDM) was

effective. Finally, this paper verified the 4th DFDM by exper-
iment and analyzed the prediction error of 4th DFDM, which
may be caused by the modeling process of cutting force. The
proposed DFDMs are developed to find a better method,
which can update the existing FDM and make regenerative
chatter’s prediction more efficient and precise.

Keywords Milling .Machine tool dynamics . Chatter
prediction . Full-discretizationmethod

1 Introduction

Chatter is a common phenomenon that can influence machin-
ing accuracy and efficiency of the machine tool in the milling,
turning, and boring process. Therefore, chatter prediction is
important to ensure the stability of machining process and to
improve production efficiency by choosing optimal cutting
parameter. In general, chatter phenomenon includes regenera-
tive chatter, frictional chatter, and model coupling chatter.
Among them, regenerative chatter is the most common form
which has more effects on milling process. The prediction
methods of regenerative chatter mainly include experimental
method [1], analytical method and numerical method. The
cost of experimental method is very high, and when condi-
tions like material of workpiece and type of tool change, the
previous stability lobe diagram will be no longer applicable,
which is obtained by numerous cutting experiments. In sum-
mary, experimental method has disadvantages in the economy
and adaptability. On the contrary, the analytical and numerical
methods of regenerative chatter excel in the aspects of econ-
omy and adaptability. It can obtain the stability lobe diagram
with high accuracy, only on the premise of acquiring modal
parameters of milling spindle. The literature review of
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analytical and numerical methods concerning regenerative
chatter’s prediction is given as follows.

Sridhar et al. [2] used linear differential equations to de-
scribe the dynamics model of milling and proposed a milling
stability algorithm to predict the occurrence of milling chatter.
Altinas et al. [3] proposed the zero-order analytical method
(ZOA method), which analyzed the transfer function of the
milling dynamics equation in the frequency domain and ob-
tained the stability lobe diagram based on the mean of dynam-
icmilling coefficients. This is the fastest method for predicting
the occurrence of regenerative chatter, which is widely uti-
lized. For example, Tang et al. [4] predicted regenerative chat-
ter by using the ZOAmethod, considering the effects of multi-
mode dynamics of the system at the same time. However, the
ZOAmethod cannot predict the additional stability region that
occurs when the radial depth of cut is small. Gradisek et al. [5]
confirmed the above disadvantage of ZOA method by com-
paring ZOA method’s prediction result with experimental re-
sults when the radial depth of cut was gradually decreased. In
order to solve this problem and improve the accuracy of pre-
diction, Budak et al. [6] improved the ZOA method and pro-
posed a multi-frequency solution method which had good
prediction accuracy in small radial cutting depth.

Many numerical methods for chatter’s prediction has been
put forward in recent years, including semi-discretization
method (SDM) [7–10], numerical integration method [11,
12], full-discretization method (FDM) [13–18], Runge-
Kutta-based discretization method [19], Euler-based
discretization method [20], and so on. In summary, the differ-
ence between various existing numerical methods is mainly
reflected in the mathematic method to deal with the dynamic
model formulated by delayed differential equations (DDEs) in
the process of numerical computation. Among the above nu-
merical methods, SDM and FDM are more concerned and
used by researchers.

The semi-discretization method is a numerical method and
was proposed by Insperger et al. [7, 8]. Its main steps were to
deform the milling dynamics equation into DDEs firstly.
Then, the periodic and delay terms of DDEs is discretized
by dividing the delay time into several parts; a series of ordi-
nary differential equations (ODEs) are thus obtained. Next,
the interpolation methods to periodic and delay terms, such
as Lagrange interpolation, are used in the integral computation
of ODEs. Finally, the transfer function of ODEs was obtained
in the time domain and the stability of the transfer function
was evaluated by Floquet theory to obtain the stability lobe
diagram. Insperger et al. [7, 8] interpolated the period term of
DDEs with piecewise function and interpolated the delay term
withweight function based on the two ends of the interval; this
method was called the 0th SDM. In order to make the SDM
more efficient and accurate in the same divided parts of delay
time, Insperger et al. [9] interpolated the delay term of DDEs
with higher-order Lagrange interpolation. Gradisek et al. [5]

found that the SDM can predict additional regenerative chatter
that cannot be predicted by the ZOA method which occurs
when the radial cutting depth is small. Ahmadi et al. [10] used
the SDM to predict the regenerative chatter of the circular
milling process. The prediction results are in good agreement
with experimental results under different radial cutting depth.

Full-discretization method was proposed by Ding et al.
[13]. This numerical method was in fact an extension of the
SDM: it also discretized the state term of DDEs, together with
the periodic and delay terms at the beginning, and thus realiz-
ing the complete discretization of DDEs. Accuracy of FDM
was almost the same as that of SDM, but the computational
efficiencywas obviously improved. Ding et al. [13] performed
a linear interpolation on the state term, periodic term, and
delay term of DDEs, which was called 1st FDM. Just as men-
tioned above, different interpolation methods are used as fol-
lows tomake the FDMmore efficient and accurate in the same
divided parts of delay time.

After putting forward the 1st FDM, Ding et al. [14] then
performed second-order Lagrange interpolation on the state
term of DDEs, which was called 2nd FDM. The 2nd FDM
is found to have an obvious advantage over the 1st FDM in the
aspects of convergence rate and prediction accuracy, but the
computing time was only increased a little. Next, Quo et al.
[15] approximated the state term of DDEs using third-order
Lagrange interpolation. It was found that the convergence rate
and prediction accuracy of 3rd FDM was higher than those of
1st FDM, 2nd FDM, and SDM. Ozoegwu et al. [16] studied
the influence of the fourth- and fifth-order Lagrange interpo-
lation for the state term on the accuracy and convergence rate
of the FDM method, which was called 4th FDM and 5th
FDM. They found that the accuracy of 4th FDM was the
highest, and precision of the FDMwas reduced when interpo-
lating to fifth order for DDEs’ state term. Ding et al. [13, 14],
Guo et al. [15], and Ozoegwu et al. [16] studied the influence
of Lagrange interpolation for DDEs’ state term on the accura-
cy, computational efficiency, and convergence rate of FDM
while the delay term was only approximated by using linear
interpolation. Since the discrete error of the delay term can
pass to the state term, higher-order interpolation for the delay
term may be more efficient and accurate than that for state
term. Therefore, some researchers approximated the delay
term of DDEs, too. Liu et al. [17] performed second-order
Lagrange interpolation for the delay term of the FDM and
third-order Hermit interpolation for the state term at the same
time. Tang et al. [18] performed second-order Lagrange inter-
polation on both the delay term and the state term of the FDM.
It can be concluded that Liu et al. [17] and Tang et al. [18] only
performed second-order interpolation on the delay term, and
neither separately studied the effect of the interpolation order
for the delay term on the prediction accuracy of the FDM.

Thus, this paper focuses on the effect of the delay term’s
interpolation order of the DDEs on the accuracy, convergence,
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and computational efficiency of the proposed FDMs and
makes detailed comparisons with the existing FDM and
SDM to study the characteristics and advantages of develop-
ing the proposed FDMs.

To distinguish with the existing FDM interpolating for state
term of DDEs, the proposed FDM using Lagrange interpola-
tion for delay term is called DFDM. The proposed FDM with
second-order, third-order, and fourth-order Lagrange interpo-
lation for delay term are called 2nd DFDM, 3rd DFDM, and
4th DFDM respectively.

The rest of this paper is organized as follows. In Sect. 2, the
mathematical model of DFDMs will be proposed with sec-
ond-order, third-order, and fourth-order interpolation for delay
term of DDEs respectively. In Sect. 3, the accuracy and com-
putational efficiency of stability lobe diagrams obtained by
DFDMs will be discussed, by comparing with the existing
FDMs and the updated SDM. The discretization error of the
proposed DFDMs is discussed in detail, and the change of 2-
degree-of-freedom (2-DOF) stability lobe diagram using 4th
DFDMwhen the radial immersion ratio a/D changes from 1 to
0.05 is analyzed. The difference of stability lobe diagrams
between down-milling and up-milling is analyzed as well. In
Sect. 4, experimental verification is presented to prove the
accuracy of the proposed DFDMs, by using 4th DFDM.
Section 5 concludes this paper.

2 The mathematical model of the proposed DFDM

2.1 The 1-DOF milling process

The dynamics equation of a 1-degree-of-freedom (1-DOF)
milling tool with regenerative chatter can be expressed as
literatures [8, 21]:

€x tð Þ þ 2ξωn
:x tð Þ þ ωn

2x tð Þ ¼ −
wh tð Þ
mt

x tð Þ−x t−Tð Þð Þ; ð1Þ

where ξ is the relative damping, ωn is natural angular frequen-
cy, mt is the modal mass of the tool, w is axial cutting depth,
and the delay time T is equal to the tool passing period which
is 60/(NΩ) where N is the number of the cutter teeth and Ω is
the spindle speed. h(t) is the cutting force coefficient which is
defined as

h tð Þ ¼ ∑
N

j¼1
g ϕ j tð Þ
� �

sin ϕ j tð Þ
� �

Ktcos ϕ j tð Þ
� �þ Knsin ϕ j tð Þ

� �� �
;

ð2Þ
where Kt is the tangential cutting force coefficient and Kn the
normal cutting force coefficient; ϕj(t) is the angular position of
the jth tooth defined by

ϕ j tð Þ ¼ 2π Ω=60ð Þt þ j−1ð Þ2π=N : ð3Þ

g(ϕj(t)) is defined as

g ϕ j tð Þ
� � ¼ 1 if ϕst < ϕ j tð Þ < ϕex

0 others

�
: ð4Þ

where ϕst,ϕex are the start and exit angles of the jth cutter
tooth, respectively. For down-milling,ϕst = arccos (2a/D −
1),ϕex = π. For up-milling, ϕst = 0,ϕex = arccos (1 − 2a/D),
where a/D is the radial immersion ratio. The milling dynamics
equation can be transformed into

:z tð Þ ¼ A0z tð Þ þ A tð Þz tð Þ þ B tð Þz t−Tð Þ: ð5Þ

The terms in Eq. (5) are given in Eq. (32), which can be
found in Appendix.

2.2 The 2-DOF milling process

For systems without coordinate coupling, the dynamics equa-
tion of a 2-DOF milling tool with regenerative chatter can be
expressed as follows [8]:

mt 0
0 mt

� �
€x tð Þ
€y tð Þ

� �
þ 2mtξωn 0

0 2mtξωn

� �
x˙ tð Þ
y˙ tð Þ

� �

þ mtωn
2 0

0 mtωn
2

� �
x tð Þ
y tð Þ

� �
¼ −whxx tð Þ −whxy tð Þ

−whyx tð Þ −whyy tð Þ
� �

x tð Þ
y tð Þ

� �

þ whxx tð Þ whxy tð Þ
whyx tð Þ whyy tð Þ

� �
x t−Tð Þ
y t−Tð Þ

� �
;

ð6Þ
where

hxx tð Þ ¼ ∑
N

j¼1
g ϕ j tð Þ
� �

sin ϕ j tð Þ
� �

Ktcos ϕ j tð Þ
� �þ Knsin ϕ j tð Þ

� �� �
;

hxy tð Þ ¼ ∑
N

j¼1
g ϕ j tð Þ
� �

cos ϕ j tð Þ
� �

Ktcos ϕ j tð Þ
� �þ Knsin ϕ j tð Þ

� �� �
;

hyx tð Þ ¼ ∑
N

j¼1
g ϕ j tð Þ
� �

sin ϕ j tð Þ
� �

−Ktsin ϕ j tð Þ
� �þ Kncos ϕ j tð Þ

� �� �
;

hyy tð Þ ¼ ∑
N

j¼1
g ϕ j tð Þ
� �

cos ϕ j tð Þ
� �

−Ktsin ϕ j tð Þ
� �þ Kncos ϕ j tð Þ

� �� �
:

ð7Þ

The milling dynamics equation can be transformed into

:z tð Þ ¼ A0z tð Þ þ A tð Þz tð Þ þ B tð Þz t−Tð Þ: ð8Þ

The terms in Eq. (8) are given in Eq. (34) in Appendix.

2.3 The proposed mathematical model based on DDEs

As is seen from the above expressions, the dynamics equation
of both 1-DOF milling process and 2-DOF milling process
can be described by DDEs, which can be expressed as
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:z tð Þ ¼ A0z tð Þ þ A tð Þz tð Þ þ B tð Þz t−Tð Þ: ð9Þ

where A0 is a constant matrix which is decided by the milling
system parameters, andA(t) andB(t) are two periodicmatrices
satisfying A(t) = A(t + T) and B(t) =B(t + T) where T is the
delay time. The delay time T of the above equation is
equidistantly divided into m parts, which is T =mτ; the
above equation can be deformed into the following
equation in [kτ, kτ + τ]:

z tð Þ ¼ eA0 t−kτð Þz kτð Þ þ ∫
t

kτ
eA0 t−ξð Þ A ξð Þz ξð Þ þ B ξð Þz ξ−Tð Þ½ �

n o
dξ:

ð10Þ

where t ∈ [kτ, kτ + τ].
Eq. (10) can be equivalently expressed as

zkþ1 ¼ eA0τzk þ ∫
τ

0
feA0ξ½A kτ þ τ−ξð Þz kτ þ τ−ξð Þ

þB kτ þ τ−ξð Þz kτ þ τ−ξ−Tð Þ�gdξ

ð11Þ

where z(kτ) is expressed by zk.
In order to facilitate the integral calculation, periodic term,

delay term, and state term of Eq. (11) are discretized and
interpolated as follows:

z kτ þ τ−ξð Þ ¼ zkþ1 þ ξ zk−zkþ1ð Þ=τ

A kτ þ τ−ξð Þ ¼ Akþ1 þ ξ Ak−Akþ1ð Þ=τ

B kτ þ τ−ξð Þ ¼ Bkþ1 þ ξ Bk−Bkþ1ð Þ=τ

ð12Þ

The purpose of this paper is to perform higher-order
Lagrange interpolation on the delay terms, so the state and
period terms of the DDEs above are simply performed with
linear Lagrange interpolation.

The description of the periodic term is simplified as

A kτ þ τ−ξð Þ ¼ A0
kð Þ þ A1

kð Þξ;

B kτ þ τ−ξð Þ ¼ B0
kð Þ þ B1

kð Þξ;
ð13Þ

where

A0
kð Þ ¼ Akþ1;

A1
kð Þ ¼ Ak−Akþ1ð Þ=τ ;

B0
kð Þ ¼ Bkþ1;

B1
kð Þ ¼ Bk−Bkþ1ð Þ=τ

ð14Þ

Pth-order Lagrange interpolation for delay term of DDEs
uses the following elements:

zk−m; zk−mþ1; zk−mþ2⋯zk−mþp:

The expression is

z k−mþ 1ð Þτ‐ξð Þ

¼ ∑
p

l¼0
l≠λ

k−mþ lð Þτ−ξ− k−mð Þτð Þ k−mþ lð Þτ−ξ− k−mþ 1ð Þτð Þ⋯
k−mþ lð Þτ− k−mð Þτð Þ k−mþ lð Þτ− k−mþ 1ð Þτð Þ⋯

⋯ k−mþ lð Þτ−ξ− k−mþ λð Þτð Þ⋯ k−mþ lð Þτ−ξ− k−mþ pð Þτð Þ
⋯ k−mþ lð Þτ− k−mþ λð Þτð Þ⋯ k−mþ lð Þτ− k−mþ pð Þτð Þ zk−mþl

ð15Þ

In order to study the influence of the delay term’s order on
the prediction’s accuracy, computational efficiency, and con-
vergence rate, second-order, third-order, and fourth-order
Lagrange interpolation for delay term are done as follows.
Sections 2.3.1, 2.3.2, and 2.3.3 are the primary mathematical
derivation processes of 2nd DFDM, 3rd DFDM, and 4th
DFDM respectively.

2.3.1 When the order of Lagrange interpolation is p = 2

The delay term z(kτ + τ − ξ − T) is approximated by second-
order Lagrange interpolation, which is as follows

z kτ þ τ−ξ−Tð Þ ¼ ξ2 þ τξ

2τ2
zk−m þ −ξ2þτ2

τ2
zk−mþ1 þ ξ2−τξ

2τ2
zk−mþ2:

ð16Þ

Substituting Eqs. (16) and (12) into Eq. (11), Eq. (17) can
be obtained as follows:

zkþ1 ¼ F0 þ Fkð Þzk þ Fkþ1zkþ1 þ Fmzk−m

þ Fmþ1zk−mþ1 þ Fmþ2zk−mþ2⋅ ð17Þ

The terms in Eq. (17) are given in Eq. (36) in Appendix.
Ding et al. [13] has proved that (I ‐Fk + 1) is non-singular.

Hence, zk + 1 can be expressed in the following explicit equation:

zkþ1 ¼ I−Fkþ1ð Þ−1 F0 þ Fkð Þzk þ I−Fkþ1ð Þ−1Fmzk‐m

þ I−Fkþ1ð Þ−1Fmþ1zk−mþ1 þ I−Fkþ1ð Þ−1Fmþ2zk−mþ2⋅
ð18Þ

The submatrix Dk is defined as

Vkþ1 ¼ DkVk; ð19Þ
where

Vk ¼ zk ; zk‐1; zk‐2;⋯; zk‐mð ÞT⋅ ð20Þ
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Eq. (21) can be obtained according to Eqs. (19) and (20):

Dk ¼

I−Fkþ1ð Þ−1 F0 þ Fkð Þ⋯ I−Fkþ1ð Þ−1Fmþ2 I−Fkþ1ð Þ−1Fmþ1 I−Fkþ1ð Þ−1Fm

I
I

I
I

I
I

I

2
66666666664

3
77777777775

ð21Þ

The transition matrix Φ is defined as

Vm ¼ ΦV0; ð22Þ
where

Φ ¼ Dm−1Dm‐2⋯D1D0⋅ ð23Þ

According to the Floquet theory [7, 22], if all the eigen-
values of the transition matrix Φ are in modulus less than 1,
the system can be considered to be stable and no regenerative
chatter will occur. Otherwise, it is unstable.

2.3.2 When the order of Lagrange interpolation is p = 3

The delay term z(kτ + τ − ξ − T) is approximated by third-
order Lagrange interpolation, which is as follows:

z kτ þ τ−ξ−Tð Þ ¼ ξ3 þ 3τξ2 þ 2τ2ξ
6τ3

zk−m þ −ξ3−2τξ2 þ τ2ξ þ 2τ3

2τ3
zk−mþ1

þ ξ3 þ τξ2−2τ2ξ
2τ3

zk−mþ2 þ −ξ3 þ τ2ξ
6τ3

zk−mþ3 ð24Þ

Substituting Eqs. (24) and (12) into Eq. (11), Eq. (25) can
be obtained as follows:

zkþ1 ¼ F0 þ Fkð Þzk þ Fkþ1zkþ1 þ Fmzk−m

þ Fmþ1zk−mþ1 þ Fmþ2zk−mþ2 þ Fmþ3zk−mþ3

ð25Þ

The terms in Eq. (25) are given in Eq. (38) in Appendix.
zk + 1 can be expressed in the following explicit form:

zkþ1 ¼ I−Fkþ1ð Þ−1 F0 þ Fkð Þzk þ I−Fkþ1ð Þ−1Fmzk−m

þ I−Fkþ1ð Þ−1Fmþ1zk−mþ1 þ I−Fkþ1ð Þ−1Fmþ2zk−mþ2

þ I−Fkþ1ð Þ−1Fmþ3zk−mþ3

ð26Þ

The submatrix Dk can be obtained using the same method
mentioned in Sect. 2.3.1:

Dk ¼

I−Fkþ1ð Þ−1 F0 þ Fkð Þ⋯ I−Fkþ1ð Þ−1Fmþ3 I−Fkþ1ð Þ−1Fmþ2 I−Fkþ1ð Þ−1Fmþ1 I−Fkþ1ð Þ−1Fm

I
I

I
I

I
I

I

2
66666666664

3
77777777775

ð27Þ

The transition matrix Φ can also be obtained in the same
way mentioned in Sect. 2.3.1.

2.3.3 When the order of Lagrange interpolation is p = 4

The delay term z(kτ + τ − ξ − T) is approximated by fourth-
order Lagrange interpolation, which is as follows:

z kτ þ τ−ξ−Tð Þ ¼ ξ4 þ 6τξ3 þ 11τ2ξ2 þ 6τ3ξ
24τ4

zk−m

þ −ξ4 þ 5τξ3−5τ2ξ2 þ 5τ3ξ þ 6τ4

6τ4
zk−mþ1 þ ξ4 þ 4τξ3 þ τ2ξ2−6τ3ξ

4τ4
zk−mþ2

þ −ξ4−3τξ3 þ τ2ξ2 þ 3τ3ξ
6τ4

zk−mþ3 þ ξ4 þ 2τξ3−τ2ξ2−2τ3ξ
24τ4

zk−mþ4:

ð28Þ
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Substituting Eqs. (28) and (12) into Eq. (11), Eq. (29) can
be obtained as follows:

zkþ1 ¼ F0 þ Fkð Þzk þ Fkþ1zkþ1 þ Fmzk−m þ Fmþ1zk−mþ1

þFmþ2zk−mþ2 þ Fmþ3zk−mþ3 þ Fmþ4zk−mþ4

ð29Þ

The terms in Eq. (29) are given in Eq. (40) in Appendix.

zk + 1 can be expressed in the following explicit form:

zkþ1 ¼ I−Fkþ1ð Þ−1 F0 þ Fkð Þzk þ I−Fkþ1ð Þ−1Fmzk−m
þ I−Fkþ1ð Þ−1Fmþ1zk−mþ1 þ I−Fkþ1ð Þ−1Fmþ2zk−mþ2

þ I−Fkþ1ð Þ−1Fmþ3zk−mþ3 þ I−Fkþ1ð Þ−1Fmþ4zk−mþ4

ð30Þ

The submatrix Dk can be obtained using the same method
mentioned in Sect. 2.3.1

Dk ¼

I‐Fkþ1ð Þ‐1 F0 þ Fkð Þ⋯ I−Fkþ1ð Þ−1Fmþ4 I−Fkþ1ð Þ−1Fmþ3 I−Fkþ1ð Þ−1Fmþ2 I−Fkþ1ð Þ−1Fmþ1 I−Fkþ1ð Þ−1Fm

I
I

I
I

I
I

I

2
66666666664

3
77777777775

ð31Þ

The transition matrix Φ can also be obtained in the same
way mentioned in Sect. 2.3.1.

3 Numerical stability computation results
and discretization error analysis

In order to verify the proposed DFDMs and discover the char-
acteristics and advantages of developing DFDMs, benchmark
examples [8, 14, 15] are utilized in this section. The accuracy,
computational efficiency, and convergence rate of DFDMs,
corresponding to model of 1-DOF down-milling system, are
illustrated and compared with the existing FDM and the SDM.
In addition, the change of 2-DOF stability lobe diagram is
discussed by using 4th DFDM, when the radial immersion
ratio a/D changes from 1 to 0.05. The difference of stability
lobe diagrams between down-milling and up-milling is
discussed, as well. All the computer programs are written in
MATLAB 2015b, and the programs’ running environment is

Inter(R) Core(TM) i3-4170CPU @3.70GHz 3.70 GHz RAM
8GB.

3.1 Stability lobe diagrams

In order to illustrate the accuracy of DFDMs, including 2nd
DFDM, 3rd DFDM, and 4th DFDM, the stability lobe dia-
grams are shown in Table 2.

To make comparisons, Table 2 also lists the 1st FDMmeth-
od proposed by Ding et al. [13], the 2nd FDM method pro-
posed by Ding et al. [14], the 3rd FDM method proposed by
Quo et al. [15], the 4th FDM method proposed by Ozoegwu
et al. [16], and the SDM method proposed by Insperger et al.
[8], recorded as updated SDM. The stability lobe diagrams are
calculated over 200 × 100-sized grid of parameters with the
boundaries of the rotational speed Ω ∈ [5.0 × 103, 1.0 ×
104] rpm and axial cutting depth w ∈ [0, 4 × 10‐3] m. Table 1
is the milling system’s parameters. Because of the instability
of programs’ running time using MATLAB, every program is
run for three times to acquire the average running time. The
average time-consuming value of the corresponding method is
recorded in Table 2.

Table 2 lists the stability lobe diagrams and corresponding
calculation time of MATLAB programs. The expression of
each row in Table 2 was labeled, corresponding to eight kinds
of methods. In addition, there are three columns in Table 2,
corresponding to different discrete points of delay time T.
Since the discretization error decreases by the discrete points
m-value, the red line in Table 2 which is derived from the 1st

Table 1 Milling system parameters

The number of cutter teeth N 2

The natural frequency ωn 5793 rad/s

Relative damping ξ 0.011

Modal mass mt 0.03993 kg

The tangential cutting force coefficient Kt 6 × 108 N/m2

The normal cutting force coefficient Kn 2 × 108 N/m2
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FDM method with m = 200 can be used as the ideal stability
lobe diagrams to evaluate the accuracy of various methods.

Firstly, from the stability lobe diagrams of first, third, and
fifth rows, we can make the following three conclusions:

1. The higher the order of delay term’s Lagrange interpola-
tion is, the more rapidly close the proposed method is to
the ideal stability lobe diagram, with the increase of num-
ber of time interval m-value.

2. There is no apparent improvement in time cost when the
order of delay term’s Lagrange interpolation is higher.

3. The 4th DFDM has already good prediction accuracy
when the m-value is up to 40; hence, it can be predicted
reasonably that hyper-fourth-order DFDM cannot im-
prove the accuracy of stability lobe diagram apparently
compared with the fourth-order DFDMwhen the m-value
is 40.

The above conclusions indicate that high-order DFDM
can be taken as an alternative for precisely predicting sta-
bility lobe diagram with a small number of time interval
m-value.

Table 2 Stability lobe diagrams obtained with different methods and different number of time intervals

m=20 m=30 m=40

1

20.51s 36.64s 61.89s

2

20.81s 37.37s 63.22s

3

22.80s 40.82s 67.65s

4

23.31s 40.88s 67.39s
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Then, compared with the updated SDM in the eighth
row, the 2nd DFDM, 3rd DFDM, and 4th DFDM can
obviously improve the accuracy and computational effi-
ciency of the regenerative chatter prediction at the same
m-value. DFDMs’ prediction accuracy rises but computa-
tional efficiency declines, comparing with 1st FDM in the
seventh row.

The above conclusion indicates that DFDMs are feasible
and can be taken as an alternative for precisely predicting

stability lobe diagrams with a small number of time interval
m-value.

Finally, we can conclude from the comparison between the
fifth and sixth rows that 4th DFDM is more rapidly close to
the ideal stability lobe diagrams than 4th FDM, and the com-
putation time of 4th DFDM is as a whole decreased in the
meantime. From the comparison between the third and fourth
rows in Table 2, we can draw conclusions that the computa-
tional efficiency of 3rd DFDM is slightly improved, on the

Table 2 (continued)

5

25.92s 44.96s 73.63s

6

26.17s 44.16s 75.88s

7

16.2s 30.46s 55.57s

8

79.51s 117.80s 189.43s
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whole, with the increase of number of time interval m-value,
though 3rd FDM needs less computational time for m = 40.
However, it is not apparent which is more rapidly close to the
ideal stability lobe diagrams between 3rd FDM and 3rd
DFDM.

Comparing the first with the second rows in Table 2, it is
also not apparent which is more rapidly close to the ideal
stability lobe diagrams between 2nd FDM and 2nd DFDM;
however, the computation time of 2nd DFDM is slightly de-
creased. Hence, computational efficiency of 2nd DFDM is
slightly improved.

The above conclusions indicate that Lagrange interpolation
for delay term of DDEs is more efficient and precise than that
for state term.

3.2 Convergence rate

Insperger et al. [9, 23] proposed a method of approximating
discretization error, which involves comparing Taylor series
solution and convolution integral over a discrete interval, to
demonstrate that the local error of 0th SDM is E0th ‐ SDM =
O(Δt2) and first-order FDM is E1st ‐ FDM =O(Δt2). Through
the use of the same method, the following conclusions were
obtained: 2nd FDM’s discrete error is E2nd ‐ FDM = O(Δt3)
[14], 3rd FDM’s discrete error is E3rd ‐ FDM = O(Δt4) [15],
and 4th FDM’s discrete error is E4th ‐ FDM = O(Δt5) [16].
Using the same method, the 2nd, 3rd, and 4th DFDM’s dis-
crete error can be obtained as E2nd ‐ DFDM = O(Δt3),E3rd ‐

DFDM =O(Δt4), and E4th ‐DFDM =O(Δt5).

Fig. 1 Convergence of the
eigenvalues for different number
of time-intervals m for different
methods. a The axial depth of cut
w = 0.2 mm. b The axial depth of
cut w = 0.6 mm. c The axial depth
of cut w = 1.0 mm

Fig. 2 Comparisons of
eigenvalues’ convergence of the
DFDM and the existing FDM
with different axial depths of cut
w. a 2nd DFDM and 2nd FDM. b
3rd DFDM and 3rd FDM
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In order to better illustrate the convergence of DFDMs, the
absolute value of critical eigenvalue |μ| and the exact one |μ0|
are presented as the function of the computational parameter
m, in Fig. 1, where |μ0| is determined by using the method of
updated SDM with m = 400. The spindle speed is 6000 rpm
and the axial depth of cut is w = 0.2, 0.6, and 1.0 mm,
respectively.

As shown in Fig. 1, with the increase of interpolation order
of delay term, the difference decreases gradually in the same
m-value. When the interpolation order of DFDM reaches
fourth order, the influence of interpolation order on conver-
gence rate can be neglected. Fourth DFDM can be regarded as
the method with the fastest convergence rate in this case. In
addition, compared with the updated SDM and 1st FDM, the
proposed DFDMs have an obvious advantage in terms of the
convergence rate.

As is show in Fig. 2, there are two comparisons concerning
the convergence rate of ||μ| − |μ0||. It is concluded from Fig. 2a
that 2nd DFDM’s convergence rate is slightly faster than that
of 2nd FDM. As can be seen from Fig. 2b, 3rd DFDM’s
convergence rate is faster than that of 3rd FDM obviously.
According to the above comparisons, conclusions can be
made that the DFDM has an advantage over the existing
FDM in terms of the convergence rate.

3.3 2-DOF stability lobe diagram

From the analysis above, we can conclude that only the char-
acteristics of 1-DOF milling system are studied. Nevertheless,

from Sect. 2, the proposed DFDMs can be extended to a 2-
DOF system. To analyze the proposed DFDMs better and
more comprehensive, some researches on 2-DOF milling pro-
cess are also made in the following.

Since 4th DFDM gives a stability diagram withm = 40 that
coincides with the ideal stability lobe diagram better, 4th
DFDM is used in this part for 2-DOF milling system. It can
be observed from Fig. 3 that the stability limit gradually in-
creases with the decrease of the radial immersion ratio a/D. At
the same time, the additional stability region is gradually
emerging, which has been circled. Quo et al. [15] and
Ozoegwu et al. [16] have the similar conclusion. The exis-
tence of this region has been proved by experiments [5].
This is the advantage of SDM, existing FDM, and DFDM. It
can predict the additional form of regenerative chatter which
traditional prediction methods, such as ZOA method, cannot
predict.

Figure 4 shows the comparison between down-milling and
up-milling with 4th DFDM method when a/D = 0.5 and
m = 40. As shown in Fig. 4, some conclusions can be made:
(1) the stability limit of down-milling is slightly lower com-
paring with up-milling. This conclusion is based on the hy-
pothesis that the workpiece is rigid. (2) The additional stability
lobe diagrams of up-milling and down-milling appear almost
at the same speed range and nearly have the same shape,
which are affected slightly by the milling method.

Remark The difference of stability lobe diagrams between
up-milling and down-milling should result from the loss-of-

Fig. 3 The stability lobe
diagrams of 2-DOF milling
process with different radial
immersion ratio a/D. a a/D = 1. b
a/D = 0.5. c a/D = 0.1. d
a/D = 0.05
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contact effect, which has been confirmed by Zhao et al. [24]
and Long et al. [25]. In addition, the difference between up-
milling and down-milling will be more prominent when the
radial immersion ratio is reduced [24].

4 Experimental verification

Gradišek et al. [5] and Ahmadi et al. [10] proved the superi-
ority of SDM through experiments, indirectly verifying the
FDM. Yue et al. [26] verified 1st FDM with an improved
cutting force model, by experiments. As a whole, experimen-
tal verification to FDM (including the proposed method:
DFDM) is lacking. In this paper, the above-mentioned 4th

DFDM corresponding to 2-DOF milling system with m = 40
is used, for example, to predict the regenerative chatter.
System parameters and cutting experiment data come from
Gradišek et al. [5]. Prediction result and experimental results
are shown in Fig. 5.

It can be seen from Fig. 5 that 4th DFDM can approx-
imately predict the occurrence of the regenerative chatter
when the radial immersion ratio a/D is 0.5. But in some
speed range, for example, in the range of about
16,000 rpm and about 20,000 rpm, the error of prediction
is relatively large.

Remark Some papers have mentioned that non-linearities
of cutting force have an influence on the chatter’s predic-
tion and the study on the nature of chatter. These non-
linearities include multiple regenerative effects, loss-of-
contact effect, feed rate effect, and so on [27–29]. In ad-
dition, the process damping also has a depressant effect
on the chatter’s prediction and study on the nature of
chatter. In recent years, many researchers have studied
the process damping when modeling the cutting force
[30–35]. What is more, the stiffness of the workpiece
may have an impact on the chatter’s prediction and study
on the nature of chatter, which has been studied by many
researchers [36, 37].

The nature of chatter can be analyzed by methods such
as time-history diagram, power spectra, and Poincare sec-
tions. Studying on it is a meaningful work. Someone in-
terested in the study can read relevant papers such as
literatures [27–29]. Improvement of efficiency and accu-
racy on chatter’s prediction by using the different interpo-
lation method in the process of numerical computation is
the aim of the paper. So, the prediction error in Fig. 5 is
analyzed as follows.

The model of cutting force used in this paper is intro-
duced by Insperger et al. [8] and Bayly et al. [21], and it
is a linear model. The above factors such as loss-of-
contact effect and process damping are not considered in
the cutting force model. As optimization on the process of
numerical computation is the aim of the paper, the defect
of cutting force model is neglected. Thus, the prediction
error in Fig. 5 may be caused by the simplification to the
cutting force model. The deficiency of the cutting force
model in this paper is the direction for further optimiza-
tion on the DFDMs proposed above.

5 Conclusions

In this work, the influence of Lagrange interpolation order for
the delay term on the regenerative chatter prediction has been
studied for the first time, and the 2nd DFDM, 3rd DFDM, 4th

Fig. 5 Experimental and predicted stability boundaries for up-milling
with a/D = 0.5, m = 40. Circles-stable cutting, crosses-chatter; blue
line—4th DFDM’s prediction

Fig. 4 Comparison of down-milling and up-milling with 4th DFDM
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DFDM are proposed. From the research work, the following
conclusions are obtained:

1. The higher the order of delay term’s Lagrange interpola-
tion is, the more rapidly close the proposed method is to
the ideal stability lobe diagram, with the increase of num-
ber of time interval m-value, while there is no apparent
improvement in time cost;

2. The 4th DFDM has already good prediction accuracy
when the m-value is up to 40. Hence, it can be reasonably
predicted that hyper-fourth-order DFDM no longer im-
prove the accuracy of stability lobe diagrams apparently.

3. Compared with the updated SDM and 1st FDM, the pro-
posed 2nd DFDM, 3rd DFDM, and 4th DFDM can obvi-
ously improve the accuracy and computational efficiency
of the regenerative chatter prediction at the same m-value.

4. Compared with 4th FDM at the same m-value, the preci-
sion of 4th DFDM is slightly higher. Although it is not
apparent which is more rapidly close to the ideal stability
lobe diagram between 3rd FDM and 3rd DFDM, the com-
putation time of 3rd DFDM is slightly decreased. It indi-
cates that Lagrange interpolation for delay term of DDEs
is more efficient and precise than that for state term.
Comparison between 2nd FDM and 2nd DFDM has the
same conclusion as comparison between 3rd FDM and
3rd DFDM.

5. When the interpolation order of DFDM rises, the conver-
gence rate of DFDM becomes faster. The influence of
interpolation order on the convergence rate can be
neglected when the interpolation order reaches to fourth
order. Fourth DFDM can be considered as the fastest con-
vergence method in this case. Second DFDM conver-
gence rate is slightly faster than 2nd FDM. Third
DFDM’s convergence rate is obviously faster than 3rd
FDM’s.

6. The stability limit gradually increases and the additional
form of regenerative chatter is gradually emerging with
the decrease of radial immersion ratio. The stability limit
of down-milling is slightly lower than that of up-milling.
The additional stability lobe diagrams of up-milling and
down-milling appear almost at the same speed range and
nearly have the same shape, which are affected slightly by
the milling method.

7. The results of the theoretical prediction are in good
agreement with experimental results by using 4th
DFDM. However, it will also show a relatively larger
error, in some speed ranges, which may result from
the modeling error caused by simplifying the model of
cutting force.

Acknowledgments We gratefully acknowledge the financial support
for this work from Shenzhen Foundational Research Project (Grant No.
20160427155127098).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Appendix

The elements of Eq. (5):

A0 ¼ −ξωn 1=mt

mt ξωnð Þ2−mtωn
2 −ξωn

� �
;

A tð Þ ¼ 0 0
−wh tð Þ 0

� �

B tð Þ ¼ 0 0
wh tð Þ 0

� �

z tð Þ ¼ x tð Þ y tð Þ½ �T

ð32Þ

where

y tð Þ ¼ mt
:x tð Þ þ mtξωnx tð Þ⋅ ð33Þ

The elements of Eq. (8):

A0 ¼ −M−1C=2 M−1

CM−1C=4−K −CM−1=2

� �
;

A tð Þ ¼
0 0 0 0
0 0 0 0

−whxx tð Þ −whxy tð Þ 0 0
−whyx tð Þ −whyy tð Þ 0 0

2
664

3
775;

B tð Þ ¼
0 0 0 0
0 0 0 0

whxx tð Þ whxy tð Þ 0 0
whyx tð Þ whyy tð Þ 0 0

2
664

3
775;

z tð Þ ¼ q tð Þ p tð Þ½ �T;

ð34Þ

where

p tð Þ ¼ M :q tð Þ þ Cq tð Þ=2;

M ¼ mt 0
0 mt

� �
;

C ¼ 2mtξωn 0
0 2mtξωn

� �

K ¼ mtωn
2 0

0 mtωn
2

� �
;

q tð Þ ¼ x tð Þ
y tð Þ

� �
⋅

ð35Þ
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The elements of Eq. (17):

F0 ¼ Φ0;

Fk ¼ Φ2=τð ÞA0
kð Þ þ Φ3=τð ÞA1

kð Þ;

Fkþ1 ¼ Φ1−Φ2=τð ÞA0
kð Þ þ Φ2−Φ3=τð ÞA1

kð Þ;

Fm ¼ Φ3 þ τΦ2ð Þ= 2τ2
� �� �

B0
kð Þ þ Φ4 þ τΦ3ð Þ= 2τ2

� �� �
B1

kð Þ;

Fmþ1 ¼ τ2Φ1−Φ3

� �
= τ2
� �� �

B0
kð Þ þ τ2Φ2−Φ4

� �
= τ2
� �� �

B1
kð Þ;

Fmþ2 ¼ Φ3−τΦ2ð Þ= 2τ2
� �� �

B0
kð Þ þ Φ4−τΦ3ð Þ= 2τ2

� �� �
B1

kð Þ

ð36Þ
where

Φ0 ¼ eA0τ ;

Φ1 ¼ ∫
τ

0
eA0ξdξ ¼ A0

−1 Φ0−Ið Þ;

Φ2 ¼ ∫
τ

0
ξeA0ξdξ ¼ A0

−1 τΦ0−Φ1ð Þ;

Φ3 ¼ ∫
τ

0
ξ2eA0ξdξ ¼ A0

−1 τ2Φ0−2Φ2

� �
;

Φ4 ¼ ∫
τ

0
ξ3eA0ξdξ ¼ A0

−1 τ3Φ0−3Φ3

� �
⋅

ð37Þ

The elements of Eq. (25):

F0¼Φ0;

Fk ¼ Φ2=τð ÞA0
kð Þ þ Φ3=τð ÞA1

kð Þ;

Fkþ1 ¼ Φ1−Φ2=τð ÞA0
kð Þ þ Φ2‐Φ3=τð ÞA1

kð Þ;

Fm ¼ Φ4 þ 3τΦ3 þ 2τ2Φ2

� �
= 6τ3
� �� �

B0
kð Þ

þ Φ5 þ 3τΦ4 þ 2τ2Φ3
� �

= 6τ3
� �� �

B1
kð Þ;

Fmþ1 ¼ −Φ4−2τΦ3þτ2Φ2 þ 2τ3Φ1

� �
= 2τ3
� �� �

B0
kð Þ

þ −Φ5−2τΦ4þτ2Φ3 þ 2τ3Φ2

� �
= 2τ3
� �� �

B1
kð Þ;

Fmþ2 ¼ Φ4 þ τΦ3−2τ2Φ2

� �
= 2τ3
� �� �

B0
kð Þ

þ Φ5 þ τΦ4−2τ2Φ3

� �
= 2τ3
� �� �

B1
kð Þ;

Fmþ3 ¼ −Φ4þτ2Φ2

� �
= 6τ3
� �� �

B0
kð Þ

þ −Φ5þτ2Φ3

� �
= 6τ3
� �� �

B1
kð Þ;

ð38Þ

where

Φ0 ¼ eA0τ ;

Φ1 ¼ ∫
τ

0
eA0ξdξ ¼ A0

−1 Φ0−Ið Þ;

Φ2 ¼ ∫
τ

0
ξeA0ξdξ ¼ A0

−1 τΦ0−Φ1ð Þ;

Φ3 ¼ ∫
τ

0
ξ2eA0ξdξ ¼ A0

−1 τ2Φ0−2Φ2

� �
;

Φ4 ¼ ∫
τ

0
ξ3eA0ξdξ ¼ A0

−1 τ3Φ0−3Φ3

� �

Φ5 ¼ ∫
τ

0
ξ4eA0ξdξ ¼ A0

−1 τ4Φ0−4Φ4

� �
:

ð39Þ

The elements of Eq. (29):

F0 ¼ Φ0;

Fk ¼ Φ2=τð ÞA0
kð Þ þ Φ3=τð ÞA1

kð Þ;

Fkþ1 ¼ Φ1−Φ2=τð ÞA0
kð Þ þ Φ2‐Φ3=τð ÞA1

kð Þ;

Fm ¼ Φ5 þ 6τΦ4 þ 11τ2Φ3 þ 6τ3Φ2

� �
= 24τ4
� �� �

B0
kð Þ

þ Φ6 þ 6τΦ5 þ 11τ2Φ4 þ 6τ3Φ3

� �
= 24τ4
� �� �

B1
kð Þ

Fmþ1 ¼ −Φ5−5τΦ4−5τ2Φ3 þ 5τ3Φ2 þ 6τ4Φ1

� �
= 6τ4
� �� �

B0
kð Þ

þ −Φ6−5τΦ5−5τ2Φ4 þ 5τ3Φ3 þ 6τ4Φ2

� �
= 6τ4
� �� �

B1
kð Þ

Fmþ2 ¼ Φ5 þ 4τΦ4þτ2Φ3‐6τ
3Φ2

� �
= 4τ4
� �� �

B0
kð Þ

þ Φ6 þ 4τΦ5þτ2Φ4−6τ3Φ3

� �
= 4τ4
� �� �

B1
kð Þ

Fmþ3 ¼ −Φ5−3τΦ4þτ2Φ3 þ 3τ3Φ2

� �
= 6τ4
� �� �

B0
kð Þ

þ ‐Φ6‐3τΦ5þτ2Φ4 þ 3τ3Φ3

� �
= 6τ4
� �� �

B1
kð Þ

Fmþ4 ¼ Φ5 þ 2τΦ4−τ2Φ3−2τ3Φ2

� �
= 24τ4
� �� �

B0
kð Þ

þ Φ6 þ 2τΦ5−τ2Φ4−2τ3Φ3

� �
= 24τ4
� �� �

B1
kð Þ

ð40Þ

where

Φ0 ¼ eA0τ ;

Φ1 ¼ ∫
τ

0
eA0ξdξ ¼ A0

−1 Φ0−Ið Þ;

Φ2 ¼ ∫
τ

0
ξeA0ξdξ ¼ A0

−1 τΦ0−Φ1ð Þ;

Φ3 ¼ ∫
τ

0
ξ2eA0ξdξ ¼ A0

−1 τ2Φ0−2Φ2

� �
;

Φ4 ¼ ∫
τ

0
ξ3eA0ξdξ ¼ A0

−1 τ3Φ0−3Φ3

� �
;

Φ5 ¼ ∫
τ

0
ξ4eA0ξdξ ¼ A0

−1 τ4Φ0−4Φ4

� �
;

Φ6 ¼ ∫
τ

0
ξ5eA0ξdξ ¼ A0

−1 τ5Φ0−5Φ5

� �
⋅

ð41Þ
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