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Abstract High-strength steels are used in various civilian and
military products. The initial cost of the raw materials for these
products is very high. The surface roughness of these products
is extremely important during the finishing pass to be accepted
during the final inspection. The surface roughness should con-
form to the required values stated on the design drawing. The
paper presents the results of experiments in turning of high-
strength steel featuring three factors—cutting speed V, feed rate

f, and depth of cut t—on five levels (125 specimens). These
were divided into 25 groups. Each of the five groups was sub-
jected to one common machining speed. Each group was ma-
chined using five levels of cutting depth. Each depth was proc-
essed using five levels of feed rate. Tessa was used for exam-
ination of surface roughness. There is little modern research on
machining high-strength steel. The high cost of this material
compels us to look for the optimum turning conditions to pro-
vide for the specified roughness of surface Ra and the mini-
mum machining time of unit volume Tm. As a result of our
study, an artificial neural network was designed in Matlab on
the basis of the MLP 3-10-1 multilayer perceptron that allows
us to predict Ra of the workpiece with ±2.14% accuracy within
the range of the experimental cutting speed, depth of cut, and
feed rate values. For the first time, a Pareto frontier was obtain-
ed for Ra and Tm of the finished workpiece from high-strength
steel using the artificial neural network model that was later
used to determine the optimum cutting conditions. It is possible
to integrate the suggested optimization algorithms into
computer-aided manufacturing using Matlab.
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Nomenclature
d Diameter of cut (mm)
l Length of parts (mm)
α Back angle (0)
kr Cutting edge angle (0)
ro Nose radius (mm)
V Cutting speed (m/min)
t Depth of cut (mm)
fz Feed rate (mm/rev)
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DM Decision maker
M A number of criteria
I = {1, 2,…,m} A set of criteria numbers
X A set of possible decisions
f = (f1, f2,…,fm) Vector-valued criterion
Y = f(X) A set of possible vectors (estimates)
Rm Euclidean space of m-dimensional

vectors with real components
≻X Preference relation of DM specified

in the set Х
≻Y Preference relation of DM, induced

on the set with≻X ratio and specified
in the set Y

≻ Relation≻Y continued in the entire
space Rm

≻SelX A set of selected decisions
SelY A set of selected vectors (estimates)
NdomX A set of non-dominated decisions
NdomY A set of non-dominated vectors (estimates)
Pf(X) A set of Pareto optimal decisions
P(Y) A set of Pareto optimal vectors

(Pareto optimal estimates)
f1(Ra) Surface roughness (μm)
f2(Tm) Machining time of unit volume in

one cutting tool pass (min/cm3)
Ra i Surface roughness for current V, t and

fz parameter combinations (μm)
Ra max Maximum surface roughness value of

all the V, t and fz combinations (μm)
Tmi Machining time of unit volume for current

V, t and fz parameter combinations
(min/cm3)

Tmmax Maximum machining time of unit volume
value of all the V, t and fz combinations
(min/cm3)

1 Introduction

Turning is commonly used to produce parts in many
industries, such as machinery, automobiles, and machine
tools. One of the main indicators of the surface quality
of finish turning is surface roughness. High-strength
steels are used in the production of high-pressure vessels
that require ultra-precision turning. Examples of these
high-pressure products include gun barrels, food sterili-
zation equipment, high-precision sintering dies, hyper-
sonic (up to Mach 16) wind tunnels, water jet cutting
nozzles, and turbine casings for efficient power genera-
tion. Due to the limited resources in the modern world,
efficient and rational utilization of resources stands out
as an urgent task. Thus, developing resource-saving

technologies, including for turning operations, is a cru-
cial point of interest. In the case of machining essential
components fabricated from high-strength steel, minimiz-
ing the surface roughness Ra and maximizing the ma-
chining time of unit volume is a very important task to
ensure the production of products with better surface
quality using the minimum resources. In anticipation of
the next sixth technology revolution, it is becoming an
increasingly important technique for processing large da-
ta sets using artificial intelligence and the integration of
artificial intelligence algorithms in automated production.

Many previous investigations have been devoted to-
wards developing prediction models for rough turning
[1–19]. Risbood et al. [1] researched and produced
models for forecasting roughness and dimensional devi-
ation for dry and wet turning of mild steel rods. Bajić
et al. [2] investigated the effect of cutting speed, feed
rate, and depth of cut on the surface roughness and cut-
ting force components in longitudinal turning. For the
model predictions of surface roughness, regression anal-
ysis and neural networks were used. Muthukrishnan and
Davim [3] anayzed the turning of Al/SiC-MMC using
ANOVA and artificial neural networking (ANN) to de-
velop prediction models of surface roughness. In a study
by Ali and Dhar [4] and with the help of artificial neural
networks, a prediction model of surface roughness and
tool wear was derived. Pontes et al. [5] provided an
overview on the use of artificial neural networks to sim-
ulate the surface roughness for various types of machin-
ing. Natarajan et al. [6] reported the turning of brass
C26000 material and the deduced prediction model of
surface roughness using artificial neural network (ANN)
based on Matlab. Svalina et al. [7] analyzed the effect of
the depth of cut, feed rate, and speed on the surface
roughness, which is predicted by using neural networks.
Abdullah et al. [8] reported a model for predicting sur-
face roughness obtained by turning AISI 4140 steel
using ANN and the Taguchi method. Pontes et al. [9]
presented a study on the applicability of the radial basis
function (RBF) neural networks to predict surface
roughness (Ra) in the process of turning SAE 52100
hardened steel, using orthogonal arrays, where Taguchi
was implemented as a tool for the development of the
network parameters. Asiltürk [10] proposed a model
with a standard error of 0.002917120% for predicting
the surface roughness of AISI 1040 steel material using
artificial neural networks (ANN) and multiple regres-
sion model (MRM). Upadhyay et al. [11] used vibration
signals to predict surface roughness during turning of
Ti-6Al-4 V by applying multiple regression and an arti-
ficial neural network model. Ahilan et al. [12] devel-
oped a model predicting power consumption and
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surface roughness when turning workpieces of AISI
304. Azam et al. [13] investigated the relationship of
average surface roughness and processing parameters
(feed, speed and depth of cut) for turning high-
strength low-alloy steel (AISI 4340). Acayaba and
Escalona [14] developed a model for predicting surface
roughness in low speed turning of AISI316 austenitic
stainless steel using multiple linear regression and arti-
ficial neural network techniques. Al Bahkali et al. [15]
studied the effect of feed, cutting depth, radius of cur-
vature of the tool tip and the cutting speed on surface
roughness in turning cast iron. Mia and Dhar [16] de-
veloped an artificial neural network (ANN) model to
predict the average surface roughness in turning hard-
ened steel EN 24 T. Jurkovic et al. [17] compared three
machine learning methods for predicting the high-speed
turning observed parameters (surface roughness (Ra),
cutting force (Fc), and the tool life (T)). Tootooni
et al. [18] reported surface roughness using a non-
contact measurement method during the turning pro-
cess. Abbas [19] analyzed the effect of the feed rate,
depth of cut and cutting speed on the surface roughness
in turning high-strength steel. Though all the previously
mentioned research [1–19] provided prediction models
of surface roughness, they failed to solve the problem of
determining the optimal cutting parameters for the min-
imum surface roughness and maximum production rate.

However, many other previous works have focused on
the determination of the optimal cutting conditions for
different objectives [20–27]. Zuperl and Cus [20] de-
scribed a method for optimizing multi-purpose turning
cutting conditions with the help of neural networks aimed
at increasing productivity and reducing costs, and provid-
ing an acceptable surface roughness. Senthilkumaar et al.
[21] derived a mathematical model and ANN model for
tool wear and surface roughness Ra for turning heat-
resistant super alloy Inconel 718 material. Optimal pro-
cessing parameters were selected using the Pareto chart.
Zinati and Razfar [22] derived prediction models for cut-
ting conditions that ensure minimal surface roughness for
longitudinal turning (turning long parts) of X20Cr13.
Jafarian et al. [23] investigated three separate neural net-
works in order to minimize the surface roughness and
maximize tool life in the turning. Mokhtari Homami
et al. [24] reported optimal values of flank wear and sur-
face roughness with the use of neural networks for turning
Inconel718 superalloy components. Tamang and
Chandrasekaran [25] used artificial neural networks for
optimal cutting conditions, ensuring minimum values of
surface roughness and tool wear on the rear surface for
turning Al/SiCp MMC. Sangwan et al. [26] used artificial
neural networks (ANN) and genetic algorithm (GA) to

obtain the optimum processing parameters leading to min-
imal surface roughness when turning a titanium alloy Ti-
6Al-4 V. Gupta et al. [27] focused on the optimization of
the process parameters of turning operations, namely sur-
face roughness, the back surface of tool wear and power
consumption. However, in the abovementioned research
[20–27] the task of finding the optimum cutting condi-
tions is one-sided, taking into account only the surface
roughness without its relationship to the productivity
and machining time of unit volume, which does not pres-
ent the optimum handling of an expensive material such
as high-strength steel.

Now, we consider the work focused on the determina-
tion of optimal parameters for turning with multi-objective
optimization [28–31]. Basak et al. [28] discussed two
types of Pareto optimization: minimizing the production
time and minimizing the cost of processing, while the
surface roughness was considered as a limiting parameter.
Karpat and Özel [29] used neural networks based on
multi-objective Pareto optimization modes for longitudi-
nal turning of hardened AISI H13 steel. Two optimization
criteria were investigated: the minimization of surface
roughness values and maximization of performance in
terms of longer tool life and material removal rate, while
the second criterion was devoted to minimizing the
processing-induced stress on the surface and minimum
surface roughness. Yue et al. [30], based on multi-
objective Pareto optimization for hard turning of die steel
Cr12MoV, established a relationship between surface
roughness, thickness of the plastic deformation zone, and
cutting modes. Abbas et al. [31] studied the turning pa-
rameters for a heat-treated steel alloy (J-Steel) through
multi-criteria optimization with the help of Pareto
optimization.The work reported the cutting parameters
that provided the minimum surface roughness and machin-
ing time needed to remove a unit volume. It can be con-
cluded that the most effective approach to solving multi-
objective optimization is the Pareto method. However, of
the references mentioned here [28–31], none have consid-
ered multi-criteria optimization for the turning of high-
strength steel, which is a material that is widely used in
critical applications where there are stringent requirements
on surface quality. Besides, due to the high cost of this
material, it should be guaranteed to ensure the desired
machined surface roughness value along with the mini-
mum amount of processing time to promote productivity.

Thus, the aim of this study is to determine the turning
conditions for high-strength steel while providing the
minimum machining time of unit volume Tm and the
required value of surface roughness Ra by using an arti-
ficial neural network-based model for prediction of these
parameters.
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2 Materials and methods

The chemical composition and mechanical properties of high-
strength steel used in the current study are shown in Tables 1 and
2, respectively. This type of steel belongs to British Military of
Defense (defense standard number:10–13/3 (2012)). The heat
treatment for the material involved austenitizing at 900 °C for
5 h, air cooling, heating at 880 °C for 5 h, quenching in oil, and
finally tempering at 590–600 °C for 8 h, followed by air cooling.
The hardness measured was about HV 410 ± 10.

The test specimen had an initial diameter d of 50 mm
and a length of 120 mm. Thirty millimeters was used for
chuck clamping and 10 mm for clearance grooving and
60 mm will be used for applying the test experiment. A
standard conical center was created for supporting the
center of the tail stock.

The EMCO Concept Turn lathe 45 CNC equipped
with Sinumeric 840-D was used to conduct the experi-
mental work (Fig. 1).

The uncoated tungsten carbide insert was clamped with
the tool holder to carry out this experiment. The specifi-
cations for the insert and tool holder are SVJCL2020K16
and VCMT160404 (back angle α = 7°, cutting edge angle
kr = 75°, nose radius ro = 0.4 mm). The surface roughness
was measured and reported for a length of 50 mm, and
evaluated using the surface roughness tester Tessa (Fig. 2).
All the cutting parameters were controlled via the CNC
part program [19].

To ensure a richly dense exploration of the adjustable
space of the cutting parameters, a five-level full factorial
design of experiments (total of 125 test conditions for
three study parameters) was adopted. Listing of the factor
levels for the study parameters is provided in Table 3.

For efficient experimentation, the 125 samples were
divided into five primary groups (with the same cutting
speed for each primary group), each of which was divided
into five sub-groups (each having the same depth of cut).
A full listing of all the resulting measured surface rough-
ness values is provided in the Section 4.

3 The strategy for determining the optimum
conditions

To achieve our objective, it is necessary to build an ar-
tificial neural network-based model of turning based on
experimental data [32–34] and solve the optimization

problem in a multi-criteria environment using the
Edgeworth and Pareto method [28–31, 35–38].

The strategy for determining the optimum conditions is
realized in five steps:

& Step one

Set the optimization criteria, define the limitations and
boundary conditions. Define the vector space of the
problem being solved.

& Step two

Using the data mining approach [39–42], carry out three
variables functions approximation based on experimental data
with the help of the neural network.

& Step three

Determine the Pareto frontier: the set of Pareto optimal
decisions and the set of Pareto optimal estimates.

& Step four

Using the expert assessment method, narrow the scope of
Pareto optimality to Pareto non-dominated decisions.

& Step five

Table 1 Chemical composition of the high-strength steel material

Element C Si Mn Ni Cr Mo V S P

% 0.32 0.23 0.64 3.02 0.96 0.48 0.12 0.002 0.004

Table 2 Mechanical properties of the high-strength steel work piece

Elastic
modulus,
E, GPa

0.2%
yield
strength,
MPa

Ultimate
tensile
strength,
MPa

Area reduction, % Elongation, %

206 1114 1195 59 9.3

Fig. 1 Test rig for machining samples
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Apply the decision-maker’s direct questioning to es-
tablishing a set of selected decisions that may only con-
tain a single optimum decision with a single estimates
vector.

The strategy for decision-making in a multi-criterion
selection problem is presented in Fig. 3 and the correla-
tion of vector estimate sets is presented in Fig. 4. The
nomenclature used in the charts and later on is the same
as in [43]: DM—decision maker; m—the number of
criteria; I = {1, 2, …, m}—a set of criteria numbers; X
– a set of possible decisions; f = (f1, f2, …, fm) – vector-
valued criterion; Y = f(X)—a set of possible vectors
(estimates); Rm—Euclidean space of m-dimensional vec-
tors with real components; ≻X—preference relation of
DM specified in the set Х; ≻Y—preference relation of
DM, induced on the set with ≻X ratio and specified in
the set Y; ≻—relation≻Y continued in the entire space
Rm; Sel X—a set of selected decisions; Sel Y—a set of
selected vectors (estimates); Ndom X—a set of non-
dominated decisions; Ndom Y—a set of non-dominated
vectors (estimates); Pf (X)—a set of Pareto optimal deci-
sions; P(Y)—a set of Pareto optimal vectors (Pareto op-
timal estimates).

4 Results and discussion

Besides surface quality, the problem of minimizing re-
source consumption becomes very important in finish
turning of expensive high-strength steel. It is crucial to
provide the minimum machining time of unit volume Tm
and minimum surface roughness Ra at the same time.
That is why these two criteria are the most important
for finding the optimum machining parameters.

The results of experiments are presented in Tables 4,
5, 6, 7, and 8. Surface roughness (Ra, μm) was
established experimentally, and the second criterion (ma-
chining time of unit volume, Tm, min/cm3) was calculat-
ed with the following formula:

Tm ¼ 1000

V ⋅t⋅ f z
⋅ ð1Þ

Thus, on the researcher level, the first three steps were
implemented.

The optimization problem was solved using the five-step
strategy presented earlier.

4.1 Formulation of the optimization problem—step 1

Based on the research objective, the following criteria in
turning of the cylindrical workpiece were established:
f1—surface roughness, Ra, μm; f2—machining time of
unit volume in one cutting tool pass, Tm, min/cm3, that
is, m = 2. Relatively, a set of possible Y estimates in the
two-dimensional space R2 forms the vectors f = (f1, f2).
The search is performed for a set of estimates having the
minimum sum of vector lengths throughout the entire
range of the criteria values changes. For this purpose, it
makes sense to present them in a dimensionless form
with the index “1” assigned to the maximum actual
numbers.

Variable parameters and limitations of the optimization
problem were set in accordance with the table of exper-
imental data (see Table 3): х1 = [75–175]—cutting speed,
V, m/min; х2 = [0.1–0.5]—depth of cut, t , mm;
х3 = [0.025–0.20]—feed per revolution, fz, mm per rev.

For the optimization procedure, dimensionless surface
roughness f1 (Ra*) and machining time of unit volume f2
(Tm*) (Tables 4, 5, 6, 7, and 8) were calculated using the
following formulae:

Ra* ¼ Rai
Ramax

; ð2Þ

Fig. 2 Test rig measuring surface roughness

Table 3 Factor levels of the full factorial experimentation

Factor/factor
level

Cutting speed, V
(m/min)

Depth of cut, t
(mm)

Feed rate, fz
(mm/rev)

1 75 0.1 0.025

2 100 0.2 0.050

3 125 0.3 0.100

4 150 0.4 0.150

5 175 0.5 0.200

Int J Adv Manuf Technol (2017) 93:2375–2392 2379



T*
m ¼ Tmi

Tmmax
; ð3Þ

where Rai—surface roughness for current V, t and fz parameter
combinations; Ramax—maximum surface roughness value of
all the V, t and fz combinations; TmiTmi—machining time of
unit volume for current V, t and fz parameter combinations;
Tmmax—maximum machining time of unit volume value of
all the V, t and fz combinations. The length of estimates vector
f was established with the Pythagorean theorem using dimen-
sionless criteria f1 and f2.

The problem boundary condition was that all vari-
ables can take any non-negative values.

Since the criterion of the machining time of unit volume
Tm* was calculated, in the second stage of our strategy, the
function of surface roughness Ra* = f (x1, x2, x3) needed
approximation.

Figure 5 shows a three-dimensional surface built on
the basis of the experimental points (see Table 8) that
reflects the non-linear changes in surface roughness giv-
en the changing cutting speed V and feed rate fr with
fixed depth of cut t = 0.5 mm.

At the stage of performing a regression analysis of the exper-
imental data, a non-linear association has been established repre-
sented by a four-dimensional paraboloid with determination co-
efficient R2 = 0.957 (with ±4.21% accuracy):

Ra ¼ −0:15þ 0:09V þ 0:12t þ 0:17 f r þ 0:25V2

þ 0:29t2 þ 0:17 f 2r ⋅ ð4Þ

Using this non-linear function helped us establish that in-
creasing the coded value of V by 0.1 points leads to an 0.036-
point increase of surface roughness (0.137 μm); increasing the
coded value of t leads to a 0.047-point increase in surface
roughness (0.177 μm), and increasing the coded value of fr
by 0.1 points leads to a 0.037-point (0.140 μm) increase in
surface roughness. So, as compared with the influence of Von
surface roughness, depth of cut t has a 25.9% greater effect on
it, and feed rate fr has a 1.9% greater effect.

Considering the complicated and non-linear nature of the
emergence of this parameter, we had to employ the capacities
of the SKIFAurora-SUSU supercomputer cluster (South Ural
State University, Chelyabinsk, Russia) [44].

4.2 Creation of a surface roughness prediction model
using an artificial neural network—step 2

Among the most popular packages—Maple, Mathematica,
Mathcad, andMatlab—only Matlab today is intended for funda-
mental, high quality and versatile numeric calculations. The tool-
box for creating, training and modeling of neural networks (the
Neural Network Toolbox) in Matlab makes it much simpler to

Fig. 3 The decision tree in the
multi-criterion selection problem

Fig. 4 The relations of sets of
vector estimates: the largest set is
the set of possible estimates Y,
and the smallest—a set of selected
vectors Sel Y
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create neural networks. An undeniable advantage ofMatlab is its
language, which allows users to create their own algorithms and
applications. The multi-purpose nature of the language provides
opportunities for accomplishing a number of tasks such as
collecting, analyzing and structuring data, developing algorithms,
modeling systems, object-oriented programming, development
of a graphical user interface, debugging and converting Matlab
applications to C or C++ codes. That is why a parallel version of

Matlab R2010b was chosen as the programming environment
for this study.

The controlled feedforward neural network was trained
based on a multilayer perceptron (MLP) using the
Levenberg–Marquardt algorithm. The network structure in-
cluded a hidden layer of sigmoid neurons and a linear layer
of output neurons, because this is the best structure for multi-
dimensional mapping problems.

The preliminary processing of data, which consisted in
normalization of the values similar to the normalization of
dimensionless criteria (see formulae 2 and 3), provided for
compliance of the input values with the [0,1] range and was
carried out with the aim of improving the efficiency of the
network training process.

The overfitting problem was solved by improving the gen-
eralization performance of the network. To do that, two data
sets were used: the training set for updating weights and off-
sets; and the validation set for stopping the training if an un-
desirable event occurs.

The final configuration (the number of neurons in the hid-
den layer) of the network was established based on the lowest
mean squared error in the validation set.

To begin with, the multilayer perceptrons were trained with
nine, ten, and 11 neurons in the hidden layer, with 15% of the
tabular data allocated to the validation set. The lowest error
values for MLP 3-9-1, MLP 3-10-1, and MLP 3-11-1 are
presented in Figs. 6, 7, and 8 respectively.

Analysis of the graphical functions presented in Figs. 6, 7
and 8 showed that the lowest error of 0.61% in the validation
set was provided by the MLP 3-10-1 network structure. The
coefficient of determination of the obtained model was 0.978,

Fig. 6 The lowest mean squared
error for the validation set in MLP
3-9-1configuration (calculated in
Matlab)

Fig. 5 Three-dimensional surface built on the basis of the experimental
points reflecting the non-linear changes in surface roughness given the
changing cutting speed V and feed rate fr with fixed depth of cut
t = 0.5 mm
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which reflects its high accuracy in predicting surface rough-
ness (±2.14%). The same structure appeared to give the best
generalization performance in the cases of allocating 10 or
20% in the validation set of tabular data (Fig. 9). In the first
training variant, the error was 0.86% (see Fig. 9b) and in the
second variant, it was 1.00% (see Fig. 9c).

4.3 Establishing a Pareto frontier—step 3

The third step of the strategy involved calculating the values
of Ra* for the experimental values x1, x2, x3 (see Tables 4, 5,

6, 7, and 8) with the help of the network and plotting сharts of
dimensionless criteria relations taking into account the Tm*
values (Fig. 10).

Intercept АВ for cutting depth t = 0.5 mm with varying
V = 150…175 m/min and fz = 0.025…0.085 mm/rev was
plotted between the tangency points of the line and the lowest
curves (Fig. 11). The coordinates of the intercept ends were А
(0,113; 0,034) and B (0,204; 0,022).

Considering the downward trend of the target function f, there
are six reference points of the Pareto frontier (Fig. 12). In the new
numbering, point А is given number 4 and point В—number 5.

Fig. 8 The lowest mean squared
error for the validation set in MLP
3-11-1configuration (calculated
in Matlab)

Fig. 7 The lowest mean squared
error for the validation set in MLP
3–10-1 configuration (calculated
in Matlab)
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Analysis of the Pareto curve allowed us to establish five
sections. Section I between points 1 and 2 corresponds to
t = 0.4 mm and V = 70 m/min. Section II between points 2
and 3 corresponds to t = 0.5 mm and V = 100 m/min.
Section III between points 3 and 4 corresponds to
t = 0.5 mm and V = 150 m/min. Section IV between points
4 and 5 has been presented before (see Fig. 11). Section V
between points 5 and 6 corresponds to t = 0.5 mm and
V = 175 m/min. Points 1 and 6 are the end points of relations
t = 0.4 mm at V = 75 m/min and t = 0.5 mm at V = 175 m/min,
respectively.

4.4 Establishment of Pareto non-dominated
decisions—step 4

In accordance with the strategy, step four involved
narrowing the set of Pareto optimal decisions to a set
of Pareto non-dominated decisions. For this purpose,
the method of expert assessments was used to establish
greater importance of the dimensionless criterion of the
mach i n i ng t ime o f un i t vo lume Tm* ove r t h e

Fig. 9 The lowest mean squared error in generalizing experimental data inMLP 3–10-1(а) with various validation sets: b −10%, c−20% (calculated inMatlab)

Fig. 10 Graphs showing the relation of dimensionless machining time of
unit volume Tm*with dimensionless surface roughness Ra* for fixed
depth of cut t and cutting speed V with varying feeds per revolution
(with increasing feed, Ra* increases and Tm* decreases)
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dimensionless criterion of surface roughness Ra*. As a
result, Pareto non-dominated estimates are presented by
all vectors located below the blue one, taking into ac-
count the equivalence of f1 and f2 and plotted at 45°
angle to the reference axes (Fig. 13). The end point of
this vector with the coordinates (0.054, 0.054) (point 7
in the Pareto frontier) became the global minimum in
the case of unconditional optimization with equivalent
criteria f1 and f2. In the actual coordinates, the global
minimum in the case of equivalent criteria of the ma-
chining time of unit volume Tm* and roughness Ra*
corresponds to the following values: Tm = 0.287 min/
cm3, Ra = 0.203 μm, V = 150 m/min, t = 0.5 mm and
fz = 0.043 mm/rev.

4.5 Establishment of the optimum cutting conditions—step
5

In the fifth and final step of the implemented optimization
strategy, direct questioning of the decision-maker (chief de-
signer) set the maximum allowable roughness value. It is
Ra = 0.8 μm or the eighth point on the Pareto frontier curve,
with the coordinates (0.212, 0.021), as shown in Fig. 14. In
this case (the green estimates vector in Fig. 12), the valid
relation of the importance of the optimization criteria was
estimated at Tm*/Ra* = 1/9, i.e. Tm* has a ninefold differential

Fig. 11 Coordinates of points А
and В of the tangent to the curve
showing the relation between
dimensionless criteria for depth of
cut t = 0.5 mm with varying
cutting speed V and feed per
revolution fz in the ranges of 150
through 175 m/min and 0.025 to
0.085 mm/rev, respectively.

Fig. 13 The global minimum vector of the Pareto optimality function in
the case of equivalent machining time of unit volume Tm* and surface
roughnessRa* (the actual parameters of the global minimum are reflected
by the blue vector: Tm = 0.287 min/cm3, Ra = 0.203 μm, V = 150 m/min,
t = 0.5 mm and fz = 0.043 mm/rev)Fig. 12 Six reference points of the Pareto frontier
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over R7 and 8 and a valid preference is y8 ≻ Y y7 and induced
х8 ≻ X х7.

As a result, the set of selected estimates Sel Y became
limited to the green vector with the end actual coordinates
(0.212, 0.021) and the set of selected decisions Sel X to the
three-dimensional vector of the optimum cutting conditions
(fz = 0.112, t = 0.5, V = 150).

To sum up, it should be noted that accurate values of the
points on the Pareto curve and the coordinates of the presented
vectors have been obtained automatically in Matlab using a
neural network model as a custom function. In particular, es-
timates vector f has been chosen as the optimization criteria,
the limitation is the ratio of Tm*: Ra* = 9: 1, and the boundary
conditions are positive values of cutting speed V, cutting depth
t and feed rate fz. The non-linear constrained optimization
problem was solved using the Newton method with quadratic
convergence. The program implementation of the presented
strategy in Matlab allows the quick calculation of the local
optimum parameters of cutting conditions with various
computer-aidedmanufacturing complexes for the whole range
of cutting speeds and depths.

5 Conclusions

(1) A five-step methodology for optimizing multifactorial
systems has been presented to find the best solution for
the set of experimental data.

(2) For the first time for turning of high-strength steel, the
Edgeworth-Pareto methodology of searching for the

optimum in a multi-criterion environment was used and
made it possible to find the best conditions in the n-
dimensional decision space clearly and promptly using
a neural network-based model.

(3) An artificial neural network was created in the Matlab
programming environment based on the MLP 3-10-1
multilayer perceptron, which predicts the surface rough-
ness of a cylindrical workpiece with a diameter of Ø 50
and length of 120 mm manufactured from high-strength
steel after finish turning in the following ranges of pa-
rameters: cutting speed from 75 through 175 m/min,
depth of cut from 0.1 to 0.5 mm and feed per revolution
of 0.025 to 0.20 mm with the accuracy of ±2.14%.

(4) The global optimum for turning high-strength steel with the
required surface roughness of the end workpiece was
established: the required value of surface roughness
Ra = 0.8 μm and the minimum machining time of unit
volume Tm = 0.111 min/cm3 correspond to the optimum
conditions of finish turning: cutting speed V = 174 m/min,
cutting depth t = 0.55 mm and feed fz = 0.112 mm/rev.

(5) Using Matlab, conditions were created for automating
the design of the optimum turning conditions in the turn-
ing of high-strength steel and for integrating artificial
intelligence into the CNC machine management system.
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