
ORIGINAL ARTICLE

In-process endpoint detection of weld seam removal
in robotic abrasive belt grinding process

Vigneashwara Pandiyan1
& Tegoeh Tjahjowidodo1

Received: 5 September 2016 /Accepted: 5 June 2017 /Published online: 21 June 2017
# Springer-Verlag London Ltd. 2017

Abstract This paper proposes a novel approach for in-
process endpoint detection of weld seam removal during ro-
botic abrasive belt grinding process using discrete wavelet
transform (DWT) and support vector machine (SVM). A vir-
tual sensing system is developed consisting of a force sensor,
accelerometer sensor and machine learning algorithm. This
work also presents the trend of the sensor signature at each
stage of weld seam evolution during its removal process. The
wavelet decomposition coefficient is used to represent all pos-
sible types of transients in vibration and force signals gener-
ated during grinding over weld seam. “Daubechies-4”wavelet
function was used to extract features from the sensors. An
experimental investigation using three different weld profile
conditions resulting from the weld seam removal process
using abrasive belt grinding was identified. The SVM-based
classifier was employed to predict the weld state. The results
demonstrate that the developed diagnostic methodology can
reliably predict endpoint at which weld seam is removed in
real time during compliant abrasive belt grinding.
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1 Introduction

Welding is an inevitable process duringmanufacturing of aero-
space components such as turbine blade [1, 2]. Weld seam that

is produced during the manufacturing cycle of these compo-
nents needs to be removed. Aerospace components operating
in harsh environments, with high temperature, high pressure
and at high speed must have high surface integrity and profile
precision. Abrasive belt grinding has been a potential choice in
removing weld seam in industries. Axinte et al. [3] have
established that belt grinding process has the ability to elimi-
nate the machining marks and to establish a required surface
quality. High material removal rate with acceptable surface
quality can be achieved through belt grinding processes. It is
acknowledged by the workforce as a tertiary finishing process
and does not necessitate extra corrective work before and after
[4]. Current industrial practice in removingweld seam involves
a manual belt grinder, either pneumatic or electric, where flat
spots are created in and around neighbouring surfaces of the
weld and finally removed by the operator. Such a process is
laborious as the operator has to appropriately define the grind-
ing paths for free-form workpieces during the weld seam re-
moval process. A manual belt grinding process is also time
consumptive as the part has to be taken from robot cell to the
manual machining station and vice versa. An automated
tracked weld shaving system has been commercially available,
but the problem with such a system is that it requires rather
extensive time for assembling and dis-assembling [5]. Though
finishing is done using belt grinders with robot manipulators in
a highly sophisticatedmachining cell, the industry still depends
primarily on skilled operators in removing weld seam using
belt sanders manually. For ensuring a fully automated time-
intensive weld seam removal work, it is necessary to build a
predictive system that can monitor the weld seam removal in
real time. This approach will also improve the production pro-
cess quality by reducing unnecessary costs and increasing the
level of safety. A reliable in-process monitoring system will
transform thee manufacturing environment from manually op-
erated productionmachines to unsupervised robotic machining
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centres, which is significant in a manufacturing domain. To
realise real-time monitoring of a manufacturing process, sen-
sors are required that can serve as a feedback to the process.
The sensitivity of the measurement depends on the selection of
sensors and their placement at the suitable location [6, 7]. A
vision sensor has been extensively used in sensing the initial
weld point, thus providing weld seam information for assis-
tance to the welding robot [8, 9]. The way by which various
sensors are incorporated into the operation of the system is
usually a major factor in the overall design of an intelligent
system [10, 11]. Pandiyan et al. [12] have developed a real-
time multi-sensor integration system to predict surface rough-
ness of the work coupon in the belt grinding process based on
contact conditions using an SVM-based classification algo-
rithm, while Kanish et al. [13] utilised a fuzzy inference system
(FIS) to respond to the same problem. Wavelet transform has a
superior resolution in the time–frequency domain so that it can
find more evidence in the time domain at various frequency
bands [14–16]. Wavelet transform utilises an evaluating wave-
let function that is localised in both frequency and time to
identify transient changes in the sensor signals in the time
domain [17]. Nurprasetio et al. [18] developed a novel method
for machinery fault identification based on the combination of
minimum distance pattern recognition technique and feature
vectors based on the DWT decomposition. Wavelet transfor-
mation is an excellent tool to characterise dynamic signals as it
analyses signals into different packages of energy. From the
classification point of view, wavelet transformation is a good
contender for organising a very characteristic data set for cut-
ting force signatures [19]. Saravanan and Ramachandran [20]

developed a pattern classification algorithm for fault diagnos-
tics of a spur bevel gear box using discrete wavelet transform
based on vibration signal. Theoretical models are very compli-
cated to develop because of the inadequate understanding of
machining processes [21]. The decision-making process used
signal features to accomplish the pattern association assign-
ment by bracketing the signal feature to the appropriate class.
SVM has the capability to deal with large feature space be-
cause the training of SVM is carried out so that the dimension
of classified vectors does not have an individual effect on the
functioning of SVM as it has on the performance of standard
classifiers. That is why it is proficient in the classification of
large feature space [22]. Caldas and Ekici [23] have stated that
the ANN model has smaller prediction accuracy and also in-
volves more computational time than SVM. The support vec-
tor machine fabricates a separating hyperplane amplifying the
margin between two data sets according to their classes which
have been formerly mapped to a high-dimensional space by
using a kernel function [24, 25].

In this research, we have developed a real-time endpoint
prediction system for weld seam removal during the abrasive
belt grinding process with the help of accelerometer sensor,
force sensor, and SVM-based machine learning classification
algorithm. The paper is organised as follows: the problem
statement is presented in Sect. 1, followed by a brief overview
of abrasive belt grinding process, DWT, and SVM in Sect. 2.
The proposedmethodology, machining conditions, weld seam
geomentry evolution, implementation of multi-sensor integra-
tion, and sensor signature analysis are outlined in Sect. 3.
Wavelet decomposition-based feature extraction and SVM-
based endpoint detection are elaborated in Sect. 4. Validation
of the proposedmethodology is detailed in Sect. 5. Finally, the
conclusions of this research work are summarised in Sect. 6.

2 Theoretical basis

2.1 Abrasive belt grinding

Abrasive belt grinding is a modification of the traditional
grinding processes where the outer layer of the contact wheel
is made of soft materials. The grinding belt is made up of
coated abrasives and is fastened around at least two rotating

Fig. 1 Principle of belt grinding process

Fig. 2 Mapping the input space
to feature space using kernel trick

1700 Int J Adv Manuf Technol (2017) 93:1699–1714



rubber contact wheels which makes it a compliant tool. The
soft contact rubber wheel enables this machining process to
appropriately manufacture free-form surfaces due to its capa-
bility to adapt to the workpiece surface [26]. Themajor benefit
of this process is the use of a compliant wheel body and an
abrasive film which can be regenerated automatically [27] as
shown in Fig. 1. The non-linear behaviour of the belt grinding
tool is predominantly dependent on the contacts between the
workpiece and the abrasive belt. Similar to other abrasive
machining processes, many machining parameters are
impacting the final ground surface quality, including the
grinding belt topography features and cutting parameters.
The cutting parameters include belt speed, feed rate, work-
piece geometry and belt preloaded tension, while belt topog-
raphy features include the information such as grit size, grain
distance and wear rate [4]. Understanding of such a process is
one of the challenging problems in the industry due to the high

complexity and non-linearity. Although super finishing by
belt grinding is straightforward and inexpensive, important
aspects of the belt grinding process are not well grasped, and
hence used in industries based on empirical rules. Cutting
force and tool vibration signals change when the pressure
distribution of the polymer backing varies based on the inter-
action with the workpiece geometry which can be suitably
exploited to predict the contact conditions.

2.2 Discrete wavelet transform

The wavelet transform is specially adapted for the detection of
transient signals, i.e. signal components that last a short period

Fig. 3 General description of the
proposed methodology

Fig. 4 Weld seam of the mild steel coupon

Table 1 Parameters used in the belt grinding experimental trials

Parameter Value

Belt grinding speed 18 m/s

Contact wheel diameter 16 mm

Hardness of contact wheel (polyurethane) 80 Duro

Lubrication Dry

Feed 30 mm/s

Belt finishing duration Variable

Operational mode Position control
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and span a wide frequency range [28]. The main advantage of
the wavelet transform is that it allows outstanding localisation

in both the frequency and time domain via dilations and trans-
lations of the mother wavelet. Continuous wavelet transform

Fig. 6 a 3D and 2D profile extracted from the weld seam before belt grinding process. b 3D and 2D non-symmetrical profile extracted from the weld
seam after consecutive passes of belt grinding process (state 1). c 3D and 2D profile extracted when the weld seam is distinctively removed (state 2)

Fig. 5 Stage-wise weld seam removal from workpiece surface in dry conditions
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(CWT) of f(t) can be defined mathematically in a time-scale
approach of signal processing as

CWT i; jð Þ ¼ 1

√ ij j ∫
∞
−∞ f tð ÞΨ* t− j

i

� �
dt ð1Þ

where Ψ(t) denotes the mother wavelet, parameter i denotes the
reciprocal of frequency and parameter j directs the translation.
Discrete wavelet transform is a type of the wavelet transform
operation using a distinct set of the wavelet scales (frequency)
and translations. It conforms some distinct guidelines that de-
compose the signal into a mutually orthogonal set of wavelets.
The translation and dilation operations applied to the mother
wavelet are implemented to determine the wavelet coefficients,
which corresponds to the relationship between the wavelet and
a localised section of the signal. Discrete wavelet transform is
derived from the discretisation of CWT(i, j) as given by

DWT x; yð Þ ¼ 1

√2x
∫∞−∞ f tð ÞΨ* t−2xy

2x

� �
dt ð2Þ

where i and j are replaced by 2x and 2xy. Discrete wavelet
transform analysis breaks the signal into several components
covering the complete frequency spectrum with various band-
widths. Discrete wavelet transform coefficients can be obtain-
ed by filter-bank structure using the Mallat (pyramidal) algo-
rithm [29]. The approximation coefficients at subsequent lower
levels are passed through a high-pass and a low-pass filter. The
frequency bands of the filters are based on the sampling fre-
quency (fs) and the upmost band, which relates to a level-one
decomposition, covering between fs/2 to fs/4. This is followed

by a downsampling by 2 to calculate both the detail coeffi-
cients (of the high-pass filter) and the approximation coeffi-
cients (of the low-pass filter) at a next decomposition level.

2.3 Support vector machines

The support vector machine constructs a separating hyper-
plane increasing the margin between distinct data sets accord-
ing to their classes which have been formerly mapped to a
high-dimensional space [30]. For linearly distinguishable da-
ta, a hyperplane f (x) = 0 which separates the feature space can
be determined as

f xð Þ ¼ wTxþ b ¼ ∑
n

i¼1
αixi

Txþ b ð3Þ

where w ¼ ∑
n

i¼1
αixi is an n-dimensional vector and b is a sca-

lar; the vector w and the scalar b determine the optimal sepa-
rating hyper-plane that creates the utmost distance amid the
plane and the nearest data. The non-linear classification prob-
lems can also be resolved by using SVM applying a kernel
trick [24]. Linear classification can be derived from the non-
linear SVM by implicitly mapping the input space X to a
feature space ℱ as shown in the Fig. 2 using a non-linear
function ϕ : X→ℱ and training the SVM for the mapped
features ϕ(x). In the space ℱ, the discriminant function is

f xð Þ ¼ wTϕ xð Þ þ b ¼ ∑
n

i¼1
αiϕ xið ÞTϕ xj

� �þ b ð4Þ

f xð Þ ¼ ∑
n

i¼1
αiK xi;xj

� �þ b ð5Þ

Non-linear SVMs can then be trained by replacing the in-
ner products in (4) with the corresponding kernel
function Κ(xi, xj) = ϕ(xi)

Tϕ(xj). The resulting non-linear
SVM-kernelised function can be represented as in (5). Based
on the authors’ knowledge, the application of a wavelet trans-
form for real-time weld seam endpoint detection using multi-
ple sensor signatures in the belt grinding process has never
been addressed in the literature. Later, the experimental results
show that the proposed system possesses reliability for detec-
tion of the weld seam states by employing a machine learning
algorithm based on SVM.

3 Proposed methodology and experimental setup

3.1 Methodology

Weld seam of three different removal states is machined with
an abrasive belt with the same grinding condition. The signa-
tures during machining of different weld seam states are

Fig. 7 Multi-sensor belt grinding setup
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captured using an appropriate force and an accelerometer with
a sampling rate of 2 kHz. The wavelet transform is used to
represent all possible types ofmomentary variation in vibration
and force signals generated during grinding of three weld seam
states. The Daubechies-4 (Db4) wavelet function was used to
extract features from vibration signal with a window size of 20
and spacing of the window of 5. The eight-level wavelet de-
composition features based onDWTcoefficients such asmean,
variance, standard deviation, waveform length, entropy,
peak2peak, root mean square (RMS), root sum of squares
(RSSQ), band power, kurtosis, and skewness is extracted from
the force and vibration signal. Once the features are extracted,
the supervised learning technique based on SVM using qua-
dratic kernel function is used to create a classification model.

Three weld seam conditions were used as the data input for
SVM training and testing process. The SVM classification was
performed in MATLAB classification learner toolbox. After
the model is trained, a new feature set of signatures is extracted
from the weld seam states 1, 2, and 3 with the same machining
condition. These wavelet decomposition features are passed
into the classification model developed and trained using
SVM to check the accuracy of the model. Schematic represen-
tation of the methodology is described in Fig. 3.

3.2 Experimental setup and grinding conditions

The belt grinder used in the experimental trials is an elec-
trically powered abrasive belt tool that runs at 11,000 rpm

Fig. 8 a Accelerometer
signatures obtained on contact of
the belt grinding arm over non-
symmetrical weld seam profile
state 1. b Force signatures
obtained on contact of the belt
grinding arm over non-
symmetrical weld seam profile
state 1
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at unloading condition and can drive belts with dimen-
sions about 3/4″ wide × 18″ long. The electric belt grinder
is integrated with a multi-degree industrial ABB 6660-
205-193 robot as a manipulator such that a manufacturing
cell is established for the weld seam removal process. The
robot manipulator arm is primarily used for toolpath plan-
ning and control. The contact wheel of the belt grinder
head is kept at a normal angle to the machined surface to
maintain steady contact throughout grinding. Belt wear
effect was ignored during the experimental trials as the
trials were conducted in the useful lifetime of the belt tool.
Machining was performed with abrasive belts of grit size
60 made up of silicon carbide abrasive and the contact
wheel rubber backing material having a hardness of 80

Duro. Closed-loop control was accomplished by giving
feedback to the robot controller relating to the position
of the grinding point. Weld seam specimens were grinded
with the process parameters as shown in Table 1 for all the
experimental trials.

3.3 Weld seam removal

Weld seams are made up of stainless steel (SUS308) filler
rod on mild steel work coupons using tungsten inert gas
welding with argon as the inert gas. To ensure the repro-
ducibility of the removal process, weld seams of dimen-
sion 25 mm × 5 mm × 1.2 mm (L × B × H) are prepared
on a flat mild steel work coupons as shown in Fig. 4.

Fig. 9 a Accelerometer
signatures obtained on contact of
the belt grinding arm over weld
seam profile state 2. b Force
signatures obtained on contact of
the belt grinding arm over weld
seam profile state 2
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Since the weld seam is of length 25 mm and the contact
width of the belt cross section is 9 mm, tool path plan-
ning is divided into three stages for complete weld re-
moval from the surface of the work coupon with each
stage removing one third of the weld seam length as
shown in Fig. 5. For each and every pass on the weld

seam, the weld seam profile height depletes, and the weld
seam is completely removed. Tooling passes are done
perpendicular to the length of the weld seam which helps
to remove the weld seam and secure the surface integrity
of the adjacent area near the weld seam as shown in
Fig. 5 below.

Fig. 10 Comparison of the
convolution error during
machining weld seam in states 1
and 2 with the contact wheel

Fig. 11 a Accelerometer
signatures obtained on contact of
the belt grinding arm over
completely removed weld state 3.
b Sensor signatures obtained on
contact of the belt grinding arm
over completely removed weld
state 3
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3.4 Evolution of weld seam geometry during belt grinding

Evolution of weld seam can be categorised as three dis-
tinct states and is completely dependant on the geometry
of the contact wheel of the belt grinder. The three states of
weld seams are categorised by their geometry of the
scanned profile using a Taly-scan profilometer. The shape
of the weld seam profile before machining is symmetrical
on either side as shown in Fig. 6a.

The weld profile looks hemispherical with its peak at
the centre. State 1 includes a weld profile evolved as a
result of grinding which is not symmetrical in shape with
an apparent reduction in height compared to the weld
profile obtained at the initial state as shown in Fig. 6b.
Such a weld profile evolution can be attributed to the
convolution error caused by the contact wheel diameter
and inclination between the weld seam and the contact
wheel of the grinder. The highest point of the profile is
skewed towards the direction where the initial contact is
made by the grinding wheel on the weld seam on each
and every pass. State 2 is where the weld seam is distinc-
tively removed, and there is also a reduction in the
breadth of the weld seam as a result of continuous grind-
ing as shown in Fig. 6c. The contact wheel of the belt

does not have convolution problem during the grinding
process as it was subjected to in state 2. State 3 is the
final state where the weld seam is completely removed.
This research tries to predict state 3 of the weld seam
virtually based on sensor signatures.

3.5 Complementary basedmulti-sensor integration system

A complementary multi-sensor integration system com-
prising an accelerometer and force sensor was developed
and proposed as a strategy to estimate the state of the
weld seam removal. A Kistler 8763A500 triaxial acceler-
ometer is placed near the tension arm of the electric belt
grinder to obtain data on tool vibration during machining.
The accelerometer is placed on the tool in such a way that
it does not interrupt the belt transmission. Kistler 9254, a
three-component dynamometer, is positioned below the
work coupon to measure the forces generated during
grinding. Figure 7 shows the overall experimental setup
and sensor placement. The sensor position and data sam-
pling rate of 2 kHz were kept constant throughout the
experiment for both accelerometer and force sensor. A
data acquisition device supported by DEWESoft platform
is used to acquire and post-process the measured signal
from both sensors.

3.6 Sensor signature analysis for different weld seam
profile states

A successful weld seam endpoint detecting method must
be responsive to the change in contact condition, i.e.
change in profile geometry of the weld seam on each
and every pass. Based on visual observation, the signa-
tures from the multi-component dynamometer on each
pass suggest that forces along X (along with the direc-
tion of the pass), Z (normal to the work coupon surface)
and Y (perpendicular to the pass) show evident

Fig. 12 Wavelet tree
decomposition with eight detail
levels of time signal

Table 2 Wavelet
frequency bands for
experimental trials

Decomposition
level

Frequency band
(Hz)

Level 1 1000–500

Level 2 500–250

Level 3 250–125

Level 4 125–62.5

Level 5 62.5–31.25

Level 6 31.25–15.625

Level 7 15.625–7.825

Level 8 7.825–3.90
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significance. The same finding is also observed from the
accelerometer sensor signatures in all the three axes. An
accelerometer sensor is subjected to noise during data
acquisition as it is mounted on the grinding arm.
Dominant frequency noise components acquired are

eliminated using Butterworth bandstop filter after data
acquisition.

For detecting the weld seam states efficiently in the belt
grinding process, monitoring signatures from the force and
accelerometer signal is essential. Analysing sensor

Fig. 14 Wavelet decompositions for time signal obtained from accelerometer during grinding of weld state 2

Fig. 13 Wavelet decompositions for time signal obtained from accelerometer during grinding of weld state 1
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readings during the grinding process of the weld seam at
state 1, it was evident that there is a reduction in the mag-
nitude of the signatures for both the sensor in all the axes
when the gr inde r encoun te r s the we ld pro f i l e .
Accelerometer and force sensor signatures on all three ax-
es, when the contact wheel of the belt grinder encounters
with the weld seam in state 1, are shown in Fig. 8. Figure 9
shows the sensor signatures acquired during the grinding
process of the weld seam in state 2. As the contact wheel of
the belt grinder encounters the weld profiles at state 2,
where the height of the seam has been reduced, there is
an increase in the magnitude of the signatures. The increase
in the magnitude of the signatures is attributed to the fact
that the grinding contact wheel made complete contact over
the weld seam and did not encounter any convolution error
(see Fig. 10 for illustration). However, in weld state 3, the
signatures appear to be constant throughout the belt grind-
ing process as the weld seam is completely removed as
shown in Fig. 11. Vibration and force sensor signals, unlike
weld seam states 1 and 2, do not show any signal transi-
tions throughout in state 3.

4 Endpoint detection of weld seam removal

4.1 Wavelet decomposition

This work employs the orthogonal Daubechies filters of
length 4 and is applied to extract the wavelet coefficients

of discrete time signals. Table 2 shows the frequency
bands covered by the eight decomposition levels in the
performed experiments. The sensor signals from 60 exper-
imental trials conducted using the same belt grinding con-
dition are then decomposed up to eight levels taking
Daubechies-4 mother wavelet for extraction of features.
The frequency bandwidths of approximation and detail
coefficients of wavelet decompositions are shown in
Fig. 12.

Figure 13 shows the acceleration response in state 1
when the weld seam has an asymmetrical profile and the
corresponding approximation and detail coefficients

Fig. 15 Wavelet decompositions for time signal obtained from accelerometer during grinding of weld state 3

Table 3 Features extracted based on wavelet decomposition
coefficients

Feature number Feature name

Feature 1 Mean

Feature 2 Variance

Feature 3 Standard deviation

Feature 4 Waveform length

Feature 5 Entropy

Feature 6 Peak2peak

Feature 7 Root mean square (RMS)

Feature 8 Root sum of squares (RSSQ)

Feature 9 Band power

Feature 10 Kurtosis

Feature 11 Skewness
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obtained by DWT up to four levels. The acceleration time
signals of weld seam profile in state 2 and state 3 and
their four-level decomposition into approximation and de-
tail coefficients are shown in Figs. 14 and 15. The sensor
signals obtained during grinding different states of weld
seam profile geometry are distinct in wavelet decomposi-
tions when they are compared with each other. The above
finding reveals DWT can be used as an effective tool for
detecting weld seam removal during the compliant belt
grinding process.

4.2 Wavelet-based feature extraction

Fundamental to the success of classification and endpoint
detection of the weld seam removal problem is the extrac-
tion of a set of informative features that provides the best
descriptive information about the content of the input sig-
nals. Features providing more details about the signal are
generated based on wavelet coefficients in the frequency
sub-band when DWT is applied as discussed in Sect. 4.1.

The features should preserve the weld seam state distin-
guishable as much as possible. The 11 features which are
computed using all the coefficients of the details and the
final approximation from sensor signatures obtained during
grinding of a different weld seam profile that maximises
weld state separability used in this research is listed in
Table 3.

A full tree at eight decomposition levels yields 88 fea-
tures, as 11 types of feature are extracted at each level.
Features extracted from force and accelerometer along the
three-axis channel is concatenated to form one large vector
space of 528 features that will be used for endpoint predic-
tion i.e. weld state 3. Figure 16 reveals that the correlation
between energy and kurtosis features varies depending on
the weld seam states i.e. weld profile shape. Such interpre-
tation of the feature space hints us with the possibility of
classifying the weld seam states and predict the endpoint of
weld seam removal.

Fig. 16 Relationship and
distribution between kurtosis and
energy feature acquired from
accelerometer signal for level 1
decomposition for three different
weld seam states

Table 4 Support vector machine training parameters

SVM parameters Values

Type of analysis Classification

Validation method Hold-out validation

SVM kernel function Quadratic

Kernel scale Automatic

Features 528

Classifiers 3 (weld states 1, 2 and 3)

Multiclass method One-vs-one

Standardised data True

Training set 70%

Testing set 30% Fig. 17 Support vectormachine-based hyperplane for classification from
the training set
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4.3 Support vector machine-based endpoint detection

In this paper, the weld seam profile geometry evolved at dif-
ferent states 1, 2 and 3 of the belt grinding process which are
assigned as discrete classifiers. The proposed SVM training
parameters are given in Table 4. Well-chosen kernel function
and finest value of parameters for the specific kernel are crit-
ical for the performance of the predictive model.

The quadratic kernel function is used for implementations
of the classification model, and 30% hold-out validation was
performed using MATLAB classification learner Toolbox.
Figure 17 exhibits that there is a clear separation drawn by
the hyperplane in the feature space between different weld
state classifiers.

Performance measure experiment with 30% hold-out and
528-wavelet decomposition features on the quadratic SVM
model had an accuracy of prediction of 95.3%. Figure 18 shows
a three-by-three confusion matrix for the classification of three
different weld states with 95.3% accuracy obtained using the
quadratic SVM model with a small fraction of samples
misclassified. The proposed approach is composed primarily
of three steps. In the first step, discrete classifiers are identified,
and the corresponding sensor signatures are preprocessed. In
the second step, features are extracted using wavelet decompo-
sition based on Daubechies-4 mother wavelet discussed in Sect.
4.2. In the final step training and classification, exercises are
performed on a quadratic kernel-based SVM.

5 Validation of proposed methodology

In industries, weld seam comes in different shape, size, ge-
ometry, material filler rod and even locations that are hard to

access. To validate the robustness of the proposed method-
ology, an experimental trial to predict weld seam removal
using different weld seam shape, size and geometry profile
as shown in Fig. 19a is introduced. The new weld seams are
made up of stainless steel (SUS308) filler rod on mild steel
work coupons using tungsten inert gas welding similar to
that in Sect. 3.3. The dimension of the new weld seam is
20 mm × 12 mm × 0.6 mm (L × B × H) on a flat mild steel
work coupon, and a DWT, SVM and multi-sensor integra-
tion system is employed. On the proposed methodology, the
new weld seam profile specimens were grinded with the
same process parameters as discussed in Table 1. The pre-
viously developed complementary multi-sensor integration
system comprising force and accelerometer was exercised
to assess the state of the weld seam removal. Weld seams of
three different removal states as illustrated in Fig. 19a, b
were grinded with an abrasive belt under the same grinding
condition. The signatures during machining of different
weld seam states are captured using appropriate force and
accelerometer with a sampling rate of 2 kHz as discussed in
Sect. 3.1. Based on the sensor readings that were recorded
during the grinding process of the newweld seam at states 1,
2 and 3, it is evident that there is a reduction in the magni-
tude of the signatures for both accelerometer and force sen-
sor, respectively. The orthogonal Daubechies filters of
length 4 are applied to extract the wavelet coefficients of
discrete time signals as elaborated in Sect. 4.1. The sensor
signals obtained during grinding different states of the new
weld seam profile geometry are also distinct in wavelet de-
compositions when they are compared with each other. The
Daubechies-4 wavelet function was used to extract features
from the sensors with a window size of 20 and spacing of the
window of 5. Features discussed in Table 3 are computed
using all the coefficients of the details and the final approx-
imation from sensor signatures obtained during grinding of
a different weld seam profile.

Features extracted from force and accelerometer is
concatenated to form one large vector space of 528 fea-
tures that is used for endpoint prediction. The new weld
seam profile geometry evolved at different states 1, 2 and
3 of the belt grinding process which are assigned as dis-
crete classifiers. Performance measure experiment with
30% hold-out and 528-wavelet decomposition features
on the quadratic SVM model had an accuracy of predic-
tion of 93.8%. Figure 20 shows a three-by-three confusion
matrix for classification of three different weld states with
93.8% accuracy obtained using the quadratic SVM model
with a minimum fraction of samples misclassified. The
accuracy of the results from the new weld geometry re-
moval suggests that the proposed methodology using a
DWT, SVM and multi-sensor integration system is robust
enough to predict complete removal of weld seam from a
surface.

Fig. 18 Confusion matrix depicting classifier performance in weld states
1, 2 and 3
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6 Conclusion

In this study, the evolution of the weld seam geomentry at
different stages of removal in belt grinding process time is
identified, analysed and presented. The paper introduces the
use of the wavelet decomposition to predict removal and evo-
lution of weld seams. Based on the experimental results and
summarising the research, the following generalised conclu-
sions are drawn:

1 A complementary-based sensor integration approach has
been successfully developed to predict weld seam states,
and sensor positioning has been accomplished.

2 Transitions in vibration and force signals generated during
belt grinding of three different weld seam states are
identified.

3 The wavelet features that can possibly correlate weld seam
removal status has been identified and deployed along
with the machine learning model based on SVM.

4 The study indicated that SVM could classify the estimated
parameters of wavelet decomposition accurately. The re-
sults demonstrate that the developed diagnostic method is
a potential tool to predict endpoint of weld seam removal
reliably.

5 The proposed methodology has also been validated with
weld seam of different shape, size and geometry to gain
confidence in the robustness.

However, this is still a preliminary study, as in industries
weld seam comes in complicated geometries, material and
even locations that are hard to access. A more robust tech-
nique has to be developed to create a model which employs

Fig. 19 a 3D and 2D profile extracted from the weld seam before belt grinding process. b 3D and 2D non-symmetrical profile extracted from the weld
seam after consecutive passes of belt grinding process (state 1). c 3D and 2D profile extracted when the weld seam is distinctively removed (state 2)
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optimised feature space, sensor selection, sensor placement
and process parameters that would suitably solve a range of
problems and is in progress for further research.
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