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Abstract High-performance position control in machine
tools can only be achieved modeling the dynamic behavior
of the mechatronic system composed by the motor, transmis-
sion and control during the design stage. In this work, a com-
plex analytical model of a ball screw drive is presented and
integrated in a mechatronic model of the actuator to predict the
dynamic behavior and analyze the impact of each component
of the transmission. First, a simple 2-dof model is presented,
and its analysis sets the basis for the development of a more
complex model of several degrees of freedom, whose
resulting fundamental transfer functions are represented using
natural and modal coordinates. The modeling in modal coor-
dinates carries a reduction of the transfer function that reduces
computational work. The two models are compared and ex-
perimentally validated in time and frequency domains by
means of experimental tests carried out on a specifically de-
veloped ball screw drive test bench.

Keywords Ball screw drive .Machine tool dynamics .

Mechatronics

Nomenclature
m, J Mass, inertia moment
c Viscous damping
k Stiffness
ωi i-th modal frequency
∅ij i-th dof component of the j-th eigenvector
x, θ Linear, angular position in natural coordinates
δ Position in modal coordinates
ξi Damping coefficient of the i-th mode
f, τ Force, torque in natural coordinates
g Force in modal coordinates
Kv Proportional gain of the position loop
Kp Proportional gain of the velocity loop
Ti Integral time of the velocity loop

1 Introduction

In order to optimize the performance of machine tool drives, a
huge effort has been made in recent decades to investigate the
global mechatronic behavior through modeling [1]. The more
complex or detailed the model is, the more realistic will be the
simulation, if the dynamic parameters are well known and a
better design will be done. The specifications that must be
guaranteed in the design stage are generally accuracy, that is,
precision following the programmed tool path, robustness
against perturbations as the cutting forces and acceleration
and jerk to perform intricate motions. In the end, those re-
quirements are fulfilled if a certain bandwidth is achieved in
the drive. The bandwidth will depend on the mechanical prop-
erties of the drive and transmission chain but also on the con-
trol performance, so it is necessary to have a good modeling
tool of both systems to assess the design stage.

However, not only a good selection of components must be
made during the design. Some authors actuate on the
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mechanical system or control system modifying preloads or
adding filtering techniques [2, 3], developing intelligent algo-
rithms [4] or applied reinforcement learning methods [5].
Some authors even add piezoelectric actuators to complement
the action of the drives [6]. All these to improve the dynamic
behavior of the actuation system, that is, to improve the drive
bandwidth while avoiding resonances.

In order to get a model that describes accurately the
dynamic behavior of the drive test bench and for finding
the optimal formulation, several options have been posed
in the literature of the Academy. Some works focus on
lumped parameters modeling with Newton [1, 7] and
Lagrange [8–10] forms. Other techniques to model dy-
namical systems are by numerical models of finite ele-
ments [8, 11, 12] or multibody models. As the screw shaft
body stiffness is variable along its axis, some authors
have formulated Lagrange equations by integral functions
[9, 13]. From the equations of motion, after passing them
to the frequency domain, the dynamics of the drive can be
modeled by transfer functions or use the state-space ap-
proximation as [8].

A drive modeled by lumped parameters can be devel-
oped by inertial models such as [5, 12, 13] and 2-dof
models such as [14, 15]. So far, several authors have
developed lumped parameter models in ball screw drives,
generally using 2-dof models. There are authors that have
even developed a 4-dof model [4, 16] using a lumped
parameter system, then analyzed in more detail the differ-
ent modes of vibration.

In the literature, in the case of N-dof models, systems
have been developed using a space-state approximation
such as [8, 17]. Zulaika and Altamira [18] developed a
model of lumped parameters of 2 dof of a ball screw drive
in modal coordinates.

In this paper, the Newton formulation has been chosen,
using a lumped parameters model. In this paper, a model of
2 dof and another of N dof in natural and modal coordinates
are developed. The model in modal coordinates will pres-
ent equations for transfer functions in a more explicit way,
and isolating the drive with as many lumped parameters
as possible will interpret the dynamic behavior of the
system in a more realistic and precise way. A comparison
between 2-dof and N-dof models is made, and especially
the advantages of the modal coordinates for the N-dof
models will be explained.

This paper is organized as follows. “Section 2” develops
the mechatronic model of the drive using both 2-dof and 7-dof
dynamic models in natural and modal coordinates. In
“Section 3,” the modeling is applied to a ball screw drive. In
“Section 3.3,” an experimental validation with a test bench is
presented comparing the model and the experimental data in
time and frequency domain. The paper will end with some
conclusions in “Section 4.”

2 Mechatronic model of a ball screw drive

In Fig. 1, the ball screw test bench that has been modeled
and tested is shown. It has a Fagor FKM 42.30A servo-
motor with a rated torque of 6.3 Nm, a Korta KBS-3210
ball screw with a single nut and flange with an outer
diameter of 32 mm and a pitch of 10 mm and a
Heidenhain Ls186 MI640 optical linear encoder with a
resolution of 0.5 μm. A pneumatic cylinder can impose
a force on the table, simulating a feed disturbance. The
drive is controlled by a CNC Fagor 8035, with an oscil-
loscope function that allows measuring internal signals, as
the position at the motor encoder and linear encoder, the
following error or the motor torque and intensity.

To analyze the dynamic behavior of the drive, a
mechatronic model has been developed in MATLAB/
Simulink; see Fig. 2. Regarding the modeling of the drive
control, it is based on cascaded loops for position, veloc-
ity and current control. The position control is based on a
proportional (P) controller with the aid of a feed-forward
(FFV), and the cycle time is 4 ms. The velocity control
has a proportional-integral (PI) controller for the motor
velocity control. Finally, the current loop is modeled with
just the torque constant gain Kt, as it runs with a much
quicker cycle time than the velocity and position control
loops.

From a mechanical point of view, the dynamics of the
drive are modeled after two fundamental transfer func-
tions. The primary transfer function TF1 relates the torque
motor with the angular position of the motor at the encod-
er. The secondary transfer function TF2 relates that angu-
lar position at the motor with the position of the table
measured by the linear encoder. On the other hand, the
torque disturbance due to friction has been experimentally
identified and modeled.

2.1 Fundamental transfer functions on a 2-dof model

The 2-dof model of the ball screw drive testing bench is
based on a system of two masses connected by a spring
and a damper as it is shown in Fig. 3. This is a well-
known approach to the modeling of the dynamics of an
electromechanical drive [19, 20]. Here, this model will be
set out using natural and modal coordinates to provide a
reference for the N-dof model.

2.1.1 In natural coordinates

The 2 dof of Fig. 3 is the linear position equivalent to
the position measurement of the motor encoder and the
table position measured at the linear encoder. The first
mass represents the motor inertia, and the input force f
is equivalent to the motor torque. The second mass

1308 Int J Adv Manuf Technol (2017) 93:1307–1318



represents the inertia of the flexible coupling, screw, nut
and table.

m1 0
0 m2

� �
⋅ €x1

€x2
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⋅ x˙ 1
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There are two modal frequencies where the first one is 0 as
it is a rigid body mode. The second frequency will be:

ω2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k m1 þ m2ð Þ

m1⋅m2

s
ð2Þ

Converting Eq. 1 to the Laplace domain, the primary and
secondary transfer functions have the following shape:

TF1 ¼ x1
f
¼ 1

s2
⋅

m2s2 þ csþ k
m1m2s2 þ m1 þ m2ð Þc⋅sþ m1 þ m2ð Þk

TF2 ¼ x2
x1

¼ csþ k
m2s2 þ csþ k

ð3Þ

2.1.2 Using modal coordinates

The eigenvalue problem of the dynamic matrix of the dynamic
model (see Eq. 4) provides the modal frequencies as well as
the modal matrix [φ].

K½ �−ωi
2 M½ ��� �� ϕif g ¼ 0 1≤ i≤n ð4Þ

Normalizing the modal matrix with respect to the
mass matrix:
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In order to convert the motion equation of Eq. 1 to modal
coordinates, the coordinate and force transformation of Eq. 6
is performed.

xf g ¼ ϕ½ �⋅ δf g ff g ¼ ϕ½ �⋅ gf g ð6Þ

The equation ofmotion inmodal coordinates assuming that
proportional damping is:

€δ1
€δ2
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þ 2⋅ξ1⋅ω1 0

0 2⋅ξ2⋅ω2
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δ˙ 2
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The equations of motion are:

€δ1 ¼ g1 €δ2 þ 2ξ2⋅ω2⋅δ˙ 2 þ ω2
2⋅δ2 ¼ g2 ð8Þ

Therefore, the corresponding transfer functions in modal
coordinates are:

δ1
g1

¼ 1

s2
δ2
g2

¼ 1

s2 þ 2ξ2⋅ω2⋅sþ ω2
2

ð9Þ

Fig. 1 Ball screw drive test
bench

Fig. 2 Mechatronic model of the
ball screw drive in Simulink
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Introducing Eq. 9 in Eq. 6, undoing the conversion
to modal coordinates, the following relation between

the degrees of freedom and the actuating force is
obtained:

x1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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From Eq. 10, the fundamental transfer functions are shown
in Eq. 11 as a function of the total mass of the system mt and
the ratio rm of the second mass m2 to the motor one m1.

TF1 ¼ x1
f
¼ 1

mt
⋅
1

s2
þ rm

mt
⋅

1

s2 þ 2ξ2⋅ω2⋅sþ ω2
2

TF2 ¼ x2
x1

¼ 2ξ2⋅ω2⋅sþ ω2
2

1þ rmð Þ⋅s2 þ 2ξ2⋅ω2⋅sþ ω2
2

ð11Þ

Comparing Eq. 11 and Eq. 3, using the modal coordinates,
the fundamental transfer functions can be obtained in a more
explicit way, isolating also the contribution of each mode to
the transfer function.

2.2 Fundamental transfer functions on an N-dof model

Although the 2-dof model can be enough to predict the global
dynamic behavior of the drive [21], N-dof lumped parameters
models allow analyzing the influence of each component [22].
Here, the following assumptions have been made to develop a
7-dof model of the ball screw drive. The screw shaft is driven
with a servomotor connected to a ball screw and nut system
via a flexible coupling (see Fig. 4). This flexible coupling is
divided into two halves: the ring next to the motor and the ring
attached to the spindle. The spindle is arranged between two
supports with three angular tandem bearings in each one at the
extremes of the shaft. The configuration of the two supports of
the rotating spindle is a fixed one. These bearings provide
radial guiding to the spindle and absorb the forces in the axial
direction. To model that configuration, the spindle has been
modeled with two springs in parallel that represent the stiff-
ness of either side from the nut.

2.2.1 In natural coordinates

In the 7-dof model, six lumped inertias are connected by the
corresponding torsional spring and dampers that represent the
stiffness and the damping of the transmission chain. The mo-
tion is provided by the motor torque τM which has to work
against the disturbance torque due to the friction τd. The
resulting torque provides the motion on the drive table x7,
whose angular equivalent is calculated as a function of the
screw pitch p:

θ7 ¼ x7
2π

p
ð12Þ

Hence, the seven degrees of freedom are as follows: the
angular position at the motor encoder θ1, the angular position
at the first ring of the flexible coupling θ2, the angular position
at the second ring θ3, the angular position of the screw section
at the nut θ4 as well as its axial deformation x5, the angular
equivalent of the linear position of the nut interface with
the table θ6, calculated as in Eq. 12, and the mentioned
angular equivalent of the table linear position at the en-
coder θ7. A conversion from linear positions to their
equivalent angular ones is done to having a coherent mod-
el regarding the units of the degrees of freedom, thus
avoiding possible numerical problems. Hence, x5 is also
converted to θ5 following Eq. 12.

Regarding the stiffness of the elements of the transmission
chain, the following are considered: the torsional stiffness of
the motor shaft kt1; the flexible coupling kt2; the torsional
stiffness of the screw kt3 as well as its axial stiffness ka4 to-
gether with the axial stiffness of the front and rear bearings;
the torsional equivalent of the axial stiffness of the ball screw-
nut interface kt5, due to the ball deformation; and the torsional
equivalent to the nut and table axial stiffness from the nut
interface to the position where the measurement of the linear
encoder takes place kt6. Regarding the inertias, the following
are considered: the motor inertia J1, the inertia of the two rings
of the flexible coupling J2 and J3, the inertia J4 and massm5 of
the screw, the mass of the nut m6 and table m7. Again, to have
a model coherent in units, all the magnitudes have been con-
verted to their equivalent torsional values at the motor shaft as
follows. Also, together with all the springs, several dampers

c

k
f

x1

m2

x2

m1

Fig. 3 Lumped parameters model of a 2-dof mechanical system
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have been introduced to model the structural damping of all
the elements.

kti ¼ kai
p
2π

� 	2
J i ¼ mi

p
2π

� 	2
i ¼ 5; 6; 7 ð13Þ

Thus, the dynamic equations of the drive system can
be described and ordered in matrix form, as seen in
Eq. 14, where [M], [C] and [K] are the matrices of
inertia, damping and stiffness, respectively, and are
shown in Appendix:

J½ � €qf g þ C½ � q˙

 �þ K½ � qf g ¼ τf g ð14Þ

The τ vector includes the forces and q the coordinates of the
degrees of freedom, as in Eq. 15.

τf gT ¼ τ ef 0 0 0 0 0 0

 �

qf gT ¼ θ1 θ2 θ3 θ4 θ5 θ6 θ7f g

ð15Þ

After the conversion to the Laplace domain, all the transfer
functions that relate the motion of the degrees of freedom are
obtained (see Appendix). After several operations, the primary
and secondary transfer functions to introduce in the
mechatronic model of Fig. 2 are represented in Eq. 16. Since
they are too long to be represented here explicitly, they appear

as a function of the transfer functions that relate the other
degrees of freedom.

TF1 ¼ θ1
τ

¼ 1

J 1s2 þ ct1sþ kt1ð Þ− ct1sþ kt1ð Þ⋅TF1−2

TF2 ¼ θ7
θ1

¼ TF1−2⋅TF2−3⋅TF3−4⋅TF4−5⋅TF5−6⋅TF6−7

ð16Þ

2.2.2 Using modal coordinates

The decomposition of the two fundamental transfer functions
of Eq. 16 using modal coordinates significantly reduces the
computational work during simulation and allows an explicit
representation. If the change to modal coordinates of Eq. 6 is
applied to the equations of motion of the N-dof model like of
Eq. 4, operating as in “Section 2.1.2,” the fundamental transfer
functions of a N-dof model can be represented explicitly. For
7 dof, the following primary and secondary transfer functions
are obtained:

TF1 ¼ θ1
τ

¼ ∑
7

i¼1

ϕi1
2

s2 þ 2ξi⋅ωi⋅sþ ωi
2

TF2 ¼ θ7
θ1

¼
∑
7

i¼1

ϕi7⋅ϕi1

s2 þ 2ξi⋅ωi⋅sþ ωi
2

� 

∑
7

i¼1

ϕi1
2

s2 þ 2ξi⋅ωi⋅sþ ωi
2

� 
ð17Þ

Fig. 4 a Decoupled model of lumped parameters of 7 dof of a ball screw drive. b Coupled model
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3 Application to a ball screw drive

3.1 Inertia and stiffness of the transmission chain elements

To model the stiffness of all the components, the theory of elas-
ticity has been used, classified by the standard formulation in
Appendix. The inertia and stiffness of each element are classified
in Table 1, assuming that the nut is placed in the middle of the
spindle shaft. The motor shaft, flexible coupling, ball screw-nut
interface and nut rigidities are provided by the manufacturers.

In Fig. 5, the rigid body diagram that represents the work-
ing mode of the ball screw spindle and the lumped parameters
modeling performed is shown. It is the ball screw section
between the front-end bearing and the nut, the one that works
at torsion, hence, the ball screw torsional stiffness kt3.

On the other hand, to obtain the equivalent axial stiffness of
the spindle shaft, it has been considered that, as the two sup-
ports are fixed, both sides of the ball screw will work at
traction/compression in parallel, hence, kaBS1 and kaBS2.
Each side will also work in series with the front and back-
end bearings’ axial stiffness, kaFB and kaBB, respectively, so
the resultant axial stiffness ka4 is:

ka4 ¼ kaFB⋅kaBS1
kaFB þ kaBS1

þ kaBB⋅kaBS2
kaBB þ kaBS2

ð18Þ

The calculation of the stiffness ka6 is shown in
Eq. 19. It considers in series the axial deformation of
the nut kaN and the nut support kaNS and the bending of
the four screws in parallel that fixes the nut support to
the table kbS.

1

ka6
¼ 1

kaN
þ 1

kaNS
þ 1

4kbS
ð19Þ

3.2 Modes and frequencies

3.2.1 Modes and frequencies in the N-dof model

The modal frequencies obtained from the eigenvalue problem
of the dynamic matrix are in hertz:

f nf gT ¼ 0 144 432 870 2474 2909 3900f g
ð20Þ

The modal matrix, where the eigenvectors are classified by
columns:

ϕ½ � ¼

0:4082 ‐0:1022 0:4350 0:00041 ‐0:0336 ‐0:0854 0:000061
0:4082 ‐0:1006 0:3461 0:000087 0:1986 0:9707 ‐0:000909
0:4082 ‐0:0860 ‐0:4270 ‐0:0025 0:9607 ‐0:2187 0:00287
0:4082 ‐0:0824 ‐0:5909 ‐0:0028 ‐0:1118 0:0133 ‐0:00479
‐5:5⋅10‐16 0:3095 0:2341 ‐0:7230 0:03295 ‐0:0108 ‐0:2284
0:4082 0:2954 ‐0:3205 ‐0:6904 ‐0:1508 0:04681 0:9735
0:4082 0:8843 0:0428 0:02178 0:00052 ‐0:000091 ‐0:0014

2
666666664

3
777777775

ð21Þ

Attending to the eigenvectors amplitudes, as shown
in Eq. 21 and more intuitively in the Fig. 6 for the first
three modes, it is noted that the first mode, as expected,
corresponds to the rigid body mode, so all components
move in phase but the spindle axial deformation which
is near 0. The second mode has mainly an axial behav-
ior, because of the higher value of the last three lines of
the second column. In contrast, the third mode is main-
ly torsional whereas the other modes are due to coupled
torsional and axial vibration.

3.2.2 Modes and frequencies in the 2-dof model

In the 2-dof model, the values of the first- and second-drive
section masses will be calculated as in Eq. 22.

m1 ¼ J 1
2π

p

� 2

¼ 335 kg

m2 ¼ m6 þ m7 þ J 2 þ J 3 þ J 4ð Þ 2π

p

� 2

¼ 384 kg

ð22Þ

Regarding the stiffness, knowing that all rigidities are in
series, except the axial and torsional rigidities of the spindle
which are arranged in parallel, the equivalent stiffness of the
test bench can also be obtained as:

k ¼ 1
1

kt1
þ 1

kt2
þ 1

kt3 þ kt4
þ 1

kt5
þ 1

kt6

¼ 5:64⋅107
N
m

ð23Þ

Torsional rigidities of Eq. 23 have been transformed to their
translational equivalent undoing the conversion in Eq. 13.
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Once the masses and the equivalent stiffness of the system are
defined, the natural frequencies have been determined apply-
ing Eq. 2, being 0 Hz, the rigid body mode, and 87 Hz.

3.2.3 Friction disturbance modeling and identification

A simple friction model with viscous and Coulomb friction
has been considered tomodel the disturbance torque due to the
friction.

τd ¼ c⋅θ˙ 1 þ τ Fc ð24Þ

The viscous friction coefficient c and Coulomb friction
torque τ Fc have been identified experimentally, by measuring
torque values at constant feed [23, 24]. Performing a linear
regression with the measured torque vs. motor speed, the es-
timations are c = 0.0064 Nms/rad and τ Fc = 1.1 Nm.

3.3 Results

The 2- and 7-dof models have been compared with exper-
imental tests performed in the test bench shown in Fig. 1.
In Table 2, the parameters and internal variables allocated
in the position control and velocity and current regulators
are classified. Note that the NC control scheme is repre-
sented in Fig. 2.

3.3.1 Experimental validation in time domain

In the NC of the ball screw test bench, the velocity profile
of the path generator takes a square sine shape. In Fig. 7,
position, velocity, acceleration, jerk and motor torque of a
100-mm stroke with a feed speed of 7 m/min of feed is
shown. The continuous line represents the results from the
7-dof model, the discontinuous line shows the experimen-
tal measurements from the linear encoder and the motor
and the commanded position and velocity are also shown
in a slim continuous line.

In Fig. 8, another test is shown. In this case, the motion
tested has a stroke of 100 mm and a feed speed of 22 m/min. It
can be seen how, for the programmed stroke, the drive spends
very little time at constant feed due to the lack of acceleration.

As can be seen in Figs. 7 and 8, the curves of the models
and the experimental curves agree reasonably in shape and
phase although some deviations are obtained as indicated in
the acceleration, jerk and torque peak values. In position, the
curves of the models are remarkably coincident with the ex-
perimental curves. In velocity, the amplitudes are remarkably
coincident, although, for example, in Fig. 7, there is a differ-
ence in shape probably due to an imprecision in the estimation
of damping and friction.

The thicker solid lines represent the values at the output of
the drive, i.e., on the table of the drive, the reason why its
delay in position and velocity with respect to the commanded
values is logical.

Table 1 Summary of rigidities and inertias of the components

Stiffness Inertias and masses

Motor shaft kt1 = 3.23 ⋅ 104Nm/rad J1 = 8.5 ⋅ 10−4kgm2

Flexible coupling kt2 = 4.01 ⋅ 103Nm/rad J2 = J3 = 8.52 ⋅ 10−5kgm2

Screw Torsion kt3 = 1.72 ⋅ 104Nm/rad J4 = 6.25 ⋅ 10−4kgm2

Axial
ka4 ¼ 1:23⋅108N=m k t4 ¼ 311:56 Nm=rad m5 ¼ 5 kg J 5 ¼ 1:26⋅10−5kgm2

Screw-nut
ka5 ¼ 5:45⋅108N=m k t5 ¼ 1380:5 Nm=rad m6 ¼ 1:23 kg J 6 ¼ 3:11⋅10−6kgm2

Nut-table
ka6 ¼ 6:29⋅107N=m k t6 ¼ 159:33Nm=rad m7 ¼ 68:5 kg J 7 ¼ 1:73⋅10−4kgm2

kt3 m5

J4

x5

kaBS1

Fap/2

Fa

τ

R1 R2

3 4
τ

kaFB kaBS2 kaBBTorsion+Trac�on/Compression Trac�on/Compression

Fap/2

Fa

RIGID BODY DIAGRAM LUMPED PARAMETERS MODELFig. 5 Working mode of the ball
screw spindle and modeling
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The curves and phases of the experimental and model ac-
celerations coincide very precisely with peak amplitudes, es-
pecially in the case of Fig. 8 (Vf = 22 m/min).

The deviations in the jerk peaks as expected are greater
than those in acceleration, but shapes and phases are very
similar. Although there is a 29% deviation in the jerk peak,
the result of Fig. 7 of the 7-dof model is correct. The deviation
of the maximum value of jerk from Fig. 8 is lower (Δj = 8%),
although there is a time delay of the experimental curve, prob-
ably due to the problem of setting the common time t = 0 for
the model and experiment.

Finally, the 7-dof model is well coupled to the experimental
signals, and although there are deviations in peaks, the mag-
nitude of friction is well estimated as shown in Figs. 7 and 8.
The average torque value due to Coulomb friction in the par-
ticular case of 7 m/min (Fig. 7) is 1.59 Nm and at 22 m/min,
1.02 Nm (Fig. 8).

The delays in time can be considered negligible, and the
amplitudes of the kinematic and dynamic variables validate
well the 7-dof model; therefore, this is very close to the ex-
perimental values.

3.3.2 Comparison 2-dof model vs. 7-dof model

The 2- and 7-dof models are here compared in the frequency
and time domains. In the frequency domain, it has been com-
pared the Bode diagrams of the primary and secondary trans-
fer functions and the position closed loop transfer function,
table position vs. position command. Figure 9 represents the
three Bode diagrams with the main frequencies and the band-
width of the position closed curves from the 2- and 7-dof

models. It is noted that the bandwidth of the position closed
loop is the same in the two models, at 2.32 Hz. Furthermore,
the variety of the resonance peaks in the 7-dof model in com-
parison with that of the 2-dof model is observed.

A comparison is also performed in the time domain in
Fig. 10. For a stroke of 100 mm with a feed speed of 30 m/
min, it is observed that in position and torque graphic forms
coincide except for some torque oscillations in the 7-dof mod-
el. This could be expected since the position closed loop trans-
fer functions are very similar and the dynamic parameters used
in both models are the same.

3.3.3 Discussion

Looking at Figs. 7 and 8, it can be said that the 7-dof model
predicts the mechatronic behavior of the ball screw drive ac-
curately. On one hand, attending to the kinematic variables,
position, velocity, acceleration and jerk, the model predicts
with slight variations the amplitude and the delay of the re-
sponse of the drive with respect to the programmed path. This
implies that the position closed loop calculated and shown in
Fig. 10 is in touch with reality, as it conditions the amplitude
and delay of the response of the drive.

On the other hand, the calculated torque motor in Figs. 7
and 8 is again close to that of the experimental one. The shape
and amplitude of the signals are very similar, although in the
experimental signal, there appears some oscillations not iden-
tified in the model. Nevertheless, these results imply that the
mechatronic model of Fig. 2 with the 7-dof dynamic model
used to calculate the primary and secondary transfer functions
represents the main phenomena involved in the drive during
the motion.

Also, it means that in general it has done a satisfactory
estimation of the dynamic parameters, inertias, masses, stiff-
ness, friction and damping. It must be considered, for exam-
ple, that the tests were done on purpose moving the drive from
the 0 position to 100 mm, to check the consistency of the
estimation of the spindle torsional stiffness, which was calcu-
lated assuming that the nut is at 200 mm, in the middle of the
range of the drive. This means that the torsional stiffness dur-
ing the test has been two times or more used for the model.
This fact may be related to the differences in the response
delay between the model and the experiments carried out;
although, on the other hand, in Fig. 6, it has been demonstrat-
ed that the main limitingmode of the transmission is due to the
lack of axial stiffness of the spindle and the nut and table.

Finally, regarding the comparison between the 2-dof model
and the 7-dof model, definitely, in time domain and in fre-
quency domain inside the bandwidth, there is little difference
between both models. Looking at Fig. 6, it is clear that the
second mode, the first mode of vibration, is mainly due to the
poor axial stiffness of the ball screw spindle and the interface
nut-table. That information is of great use to redesign the

Table 2 Control gains and parameters

Featured
parameters

Value of the
assigned parameter

P, proportional controller Kv 36.841/s

PI, proportional-integral controller Kp 20 mA/rpm

Ti 6.2 ms

Motor torque constant Kt 1.4 Nm/A
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Fig. 6 Representation of the first three modes calculated with the 7-dof
model
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Fig. 7 Comparison 7-dof model
vs. experimental measurements:
Vf = 7 m/min and 100-mm stroke

Fig. 8 Comparison 7-dof model
vs. experimental measurements:
Vf = 22 m/min and 100-mm
stroke
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transmission if the bandwidth reached does not meet the re-
quirements, for example, in this case, an axially stiffer spindle
and a more robust attachment of the nut to the table would be
needed.

The methodology used for this paper corresponds to drives
that as a last element in the chain of transmission have a table,
another case is that of the drives that in addition to the table
move a structural element, such as a column. This structural
element adds flexibility to the system, and its influences are
developed in the paper by Ansoategui I et al. “Influence of the

machine tool compliance on the dynamic performance of the
servodrives” (2016) [25].

This paper considers each element of the drive that can
serve for any type of drive ball screw, since the elements are
common. This paper has also considered the contact between
screw-balls-nut. The common elements of the ball screw drive
studied are as follows: (1) servomotor, (2) half flexible cou-
pling in the motor side, (3) half flexible coupling in the screw
side, (4) screw, (5) nut and (6) table. Each element has its own
degree of freedom, but in the case of the axis of the screw have
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Fig. 10 Time domain
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taken into account two displacements: the angular position of
the screw in the place of the nut and the degree of freedom that
corresponds to the axial deformation of the screw in the loca-
tion of the nut, since the screw axis is fixed to the bearings of
the test bench structure. In total, 7 dof is contemplated.

In order to understand how a greater number of degrees of
freedom influence this review, a comparison is made with a
paper by Feng G-H et al. (2012) [2], which also develops a
model of N degrees of freedom. In the paper by Feng G-H
et al. (2012), the developed parameter set system is 4 dof.
There are four axes that determine the angular position of
the motor, angular position of the ball screw, linear position
of the ball screw and the linear position of the table. The 7-dof
model of this paper also contemplates the movement of both
halves of the coupling and the displacement of the nut with
respect to the screw axis (screw-ball-nut interference). The
modal analysis of Fig. 6 helps to understand more precisely
which element of the drive assembly causes greater vibration
change.

4 Conclusions

In the present paper, a method for the mechatronic modeling
and analysis of a ball screw drive has been presented. The
main novelty of the model is in the model of the whole
mechatronic system, control and dynamics, the two main
transfer functions, the primary relating torque and motor ve-
locity and the secondary relating motor and table position,
obtained using a detailed 7-dof lumped parameters dynamic
model. In order to have an efficient computation of such trans-
fer functions, a change to the modal coordinates has been
implemented so a general analytical expression of the transfer
functions for N-dof models has been proposed. The 7-dof
model has been compared with a classical 2-dof dynamic
model, which is an approach frequently found in the bibliog-
raphy. Also, several experimental tests have been done on a
ball screw drive test bench. The experimental results prove
that, after identifying the Coulomb and viscous friction pa-
rameters, the position, tracking error, velocity and derivatives
and motor torque predicted by the mechatronic model are
accurate, both when the 2-dof and 7-dof models are used.
So, it can be concluded that if the objective of the mechatronic
model is to simulate the drive dynamic behavior, a 2-dof mod-
el can be enough. However, to perform a redesign of the drive
or transmission chain, the 7-dof model modal analysis allows
identifying the weaker components of the transmission, so any
error in the design phase can be virtually identified and
corrected before any investment on a first prototype.
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Appendix

Mass, stiffness and damping matrices of the 7-dof model

The [M], [K] and [C] matrices in Eq. 12, reduced to the motor
shaft, take the following symmetrical form:

J½ � ¼

J 1 0 0 0 0 0 0
0 J 2 0 0 0 0 0
0 0 J 3 0 0 0 0
0 0 0 J 4 0 0 0

0 0 0 0 m5
p
2π

� 	2
0 0

0 0 0 0 0 J 6 0
0 0 0 0 0 0 J 7

2
6666666664

3
7777777775

K½ � ¼

kt1 −kt1 0 0 0 0 0
−kt1 kt2 −kt2 0 0 0 0
0 −kt2 kt2 þ kt3 −kt3 0 0 0
0 0 −kt3 kt3 þ kt5 kt5 −kt5 0

0 0 0 kt5 ka4
p
2π

� 	2
þ kt5 −kt5 0

0 0 0 −kt5 −kt5 kt5 þ kt6 −kt6
0 0 0 0 0 −kt6 kt6

2
6666666664

3
7777777775

C½ � ¼

ct1 −ct1 0 0 0 0 0
−ct1 ct2 −ct2 0 0 0 0
0 −ct2 ct2 þ ct3 −ct3 0 0 0
0 0 −ct3 ct3 þ ct5 ct5 −ct5 0

0 0 0 ct5 ca4
p
2π

� 	2
þ ct5 −ct5 0

0 0 0 −ct5 −ct5 ct5 þ ct6 −ct6
0 0 0 0 0 −ct6 ct6

2
6666666664

3
7777777775

Transfer functions of the 7-dof model in natural
coordinates

In the following equations, the individual transfer functions
between the axes of the components of the dof model in nat-
ural coordinates are shown.

TF1 ¼ θ1
τ

¼ 1

J 1s2 þ ct1sþ kt1½ �− ct1sþ kt1½ �TF1−2

TF1−2 ¼ θ2
θ1

¼ ct1sþ kt1
J 2s2 þ ct1 þ ct2ð Þsþ kt1 þ kt2ð Þð Þ− ct2sþ kt2ð ÞTF2−3

TF2−3 ¼ θ3
θ2

¼ ct2sþ kt2
J 3s2 þ ct2 þ ct3ð Þsþ kt2 þ kt3ð Þ½ �− ct3sþ kt3ð ÞTF3−4

TF3−4 ¼ θ4
θ3

¼ ct3sþ kt3
J 4s2 þ ct5sþ kt3 þ kt5ð Þ½ � þ TF4−5 ct5sþ kt5ð Þ 1−TF5−6ð Þ
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TF4−5 ¼ θ5
θ4

¼ ct5sþ kt5

m5
p
2π

� �2s2 þ ca4
p
2π

� �2 þ ct5
� 	

sþ ka4
p
2π

� �2 þ kt5
� 	

− ct5sþ kt5ð ÞTF5−6

TF5−6 ¼ θ6
θ5

¼
ct5sþ kt5ð Þ 1

TF4−5
þ 1

� 

J 6s2 þ ct5 þ ct6ð Þsþ kt5 þ kt6ð Þ− ct6sþ kt6ð ÞTF6−7

TF6−7 ¼ θ7
θ6

¼ ct6sþ kt6ð Þ
J 7s2 þ ct6sþ kt6ð Þ

Equations for stiffness

Then, equations to determine the values of torsional, axial and
bending rigidity are presented. These will be the function of
the shear modulusG, the torsional moment of inertia J, the bar
length L, Young’s modulus E, the area of the cross-section A
and the axial moment of inertia I.

K torsional ¼ G� J
L

Kaxial ¼ E � A
L

K flexure ¼ 3E � I
L3
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