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Abstract In this approach, response surface methodology
(RSM) and artificial neural network (ANN) techniques
were used in order to search for optimal prediction of un-
controllable machining factors that leads to better machin-
ing performance. The experiment has been established
using 3 levels and 4 factors Box-Behnken design (BBD)
for tangential force and surface roughness measurements
according to combinations of cutting speed, feed rate, and
cutting depth using multilayer-coated tungsten carbide in-
sert with various nose radius in turning of X210Cr12 steel
under dry, wet, and MQL machining. Consequently, it
could be possible to investigate the efficiency of MQL
technique for an environment-friendly ecological machin-
ing. Then, a comparative between ANN and RSM models
has been established to determine the best approach

according to model accuracy and capability for predicting
surface roughness and cutting force. The ANN method
provides more accurate results and proved its effectiveness
as soon as its correlation coefficients, mean prediction er-
rors (MPEs), and root mean square errors are rather small
compared to those obtained by the RSM method.

Keywords MQL . ANN . RSM .Optimization . Green
process

Nomenclature
MQL Minimum quantity lubrication
BBD Box-Behnken design
Vc Cutting speed (m/min)
Ap Depth of cut (mm)
F Feed rate (mm/rev)
R Tool nose radius (mm)
Ra Arithmetic mean roughness (μm)
Fz Tangential force (N)
ANN Artificial neural network
RSM Response surface methodology
ANOVA Analysis of variance
DF Degrees of freedom
MS Mean squares
SS Sum of squares
R2 Determination coefficient
P Probability of significance
F Variance ratio
CVD Chemical vapor deposition
AISI American Iron and Steel Institute
MPE Mean predicted error
RSME Root mean square
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1 Introduction

Improving machining processes should take into account dif-
ferent considerations such as economic, ecological, and phys-
ical aspects. The MQL process is considered as economically
and environmentally friendly. Furthermore, reducing the lu-
bricant can improve machining performances and reduce the
machining costs. The liquid used in MQL should be biode-
gradable and also environmentally friendly.

The lubrication during the conventional manufacturing
processes represents up to 20% of machining costs [1, 2].
The complete elimination of the lubricant could be useful in
the first time but if the tool wear and part quality are consid-
ered, it will be difficult. In this case, the minimum quantity of
lubricant could be used to uphold a sensible tool life and part
quality. It has been found that the thermal deformation and the
surface error are seriously affected by the machining lubricant
[3].

The dry machining is gaining more and more ground in the
industrial world to meet the ecological and environmental
aspect, and it offers the opportunity to make important sav-
ings. However, the temperature in the rake face is higher than
conventional coolant process and must be controlled as far as
possible [4]. Furthermore, the high cutting temperature gener-
ates residual stress, dimensional deformation, and a premature
failure of the cutting tools. The solution of using the lubricant
is not always preferred because in some cases, it improves the
chip formation and generates additional costs for degreasing
before recycling operations [5]. The use of cutting fluids also
causes many problems for the human health. Various diseases
related to the use of these cutting fluids are cutaneous and
respiratory, related to handling oils [6, 7]. Therefore, it is
highly recommended to eliminate or reduce the use of these
fluids. This trend has created a need in the industry for a
human and environmental comprehensive preventive ap-
proach while ensuring a better quality of the manufactured
product.

In this way, several research studies have been established
using the MQL technique in order to minimize the lubricant
consumption. An experimental study carried out by Rahim
et al. [8] qualify the minimum quantity lubrication “MQL”
as a sustainable cooling technique using a synthetic lubricant.
The effectiveness of this technique has been justified accord-
ing to the variation of the temperature and the cutting speed in
chip formation during the machining of AISI 1045 steel by an
uncoated carbide tool. A reduction of the cutting temperature
was observed, along with much reduced cutting forces and
improved chip formation under MQL than those of dry ma-
chining. The influence of the cooling condition on the tool
flank wear (VB) and on the surface roughness (Ra) during
the turning of the AISI-4340 steel has been studied experi-
mentally by Dhar et al. [9]. The authors found a significant
reduction in the rate of the tool wear and the surface roughness

under MQL along with a decrease of the temperature in the
cutting zone. It has been also proved by Varadarajan et al. [10]
that theMQL technology should be a good alternative in terms
of the cutting force, the surface roughness, and the tool chip
contact length. Hadad and Sadeghi [11] have studied the ef-
fects of the machining parameters on turning performance
such as machining forces, surface roughness, and temperature.
The results indicate that the surface finishes were improved
due to the reduction of wear and damage when using theMQL
process.

MQL research literature, so far, indicates that the MQL
technique has proved its efficiency, allowing for reduction in
lubricant use (50 to 90%) [12], energy consumption, better
performance, and environment protection.

In order to respond to the requirements of its applications in
manufacturing processes, it is very important to forecast the
surface roughness and cutting force. Consequently, it is nec-
essary to search the best modeling approach of these output
parameters. To obtain this objective, several approaches can
be used as well as surface response methodology (RSM) and
artificial neural network (ANN). RSM is considered a quick
and useful procedure for the investigation and optimization of
complex processes as well as for modeling machining output
parameters. Asiltürk et al. [13] found that response surface
methodology represents a good tool for predicting surface
roughness in machining of Co28Cr6Mo. Elbah et al. [14]
investigated the performance of mixed ceramic tool when
turning AISI 4140 steel using RSM modeling; their results
indicate that the developed mathematical models could ade-
quately describe the performance indicators within the limits
of the factors that are being investigated. RSM was employed
by Kasim et al. [15] in their experiment to determine the
cause-and-effect relationship between the control variables
and the studied response; their results indicate that RSM
modeling can give accurate results. Chabbi et al. [16]
established a predictive modeling and multi-response optimi-
zation of technological parameters in turning of
polyoxymethylene polymer (POM C) using RSM; their re-
sults of the confirmation tests show that the developed models
are effectively able to predict the output responses.

The ANN has come up as one of the most efficient methods
for empirical modeling, especially for non-linear systems, as
well as for modeling of output parameters in machining areas.
Das et al. [17] justified the use of artificial neural network to
develop relationship between cutting process parameters and
surface roughness when machining of Al-4.5Cu-1.5TiC metal
matrix composites, by its capability to detect non-linear rela-
tionships. Moreover, Palavar et al. [18] concluded that the
prediction of aging effects on the wear behavior of Inconel
706 super alloy using ANN can provide effective results and
that the method can be effectively used to determine weight
loss values in the determined parameters with a high coeffi-
cient of determination value. In addition, the ANN approach
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can save time in experimental processes and reduce costs as it
provides quicker results. Kant and Sangwan. [19] develops a
predictive and optimization model by coupling the two artifi-
cial intelligence approaches, “artificial neural network and
genetic algorithm,” as an alternative to conventional ap-
proaches in predicting the optimal value of machining param-
eters leading to minimum surface roughness; their predicted
results by the proposed model indicate a good agreement be-
tween predicted and experimental values. They concluded that
the proposed approach is capable of determining the optimum
machining parameters.

Several researches discuss the accuracy and capability of
surface response methodology and artificial neural network
approaches in the status of comparative study. Venkata and
Murthy [20] developed statistical models to investigate the
effect of cutting parameters on surface roughness and root
mean square of workpiece vibration in boring of stainless
steel, and their results indicate that ANNs were found to be
better than the RSMmodel in the prediction of cutting param-
eters. Ranganathan et al. [21] concluded that the ANN and
RSM models are robust and accurate to estimate the surface
roughness of the workpiece when hot turning of this steel.
Besides, Bingöl et al. [22] agreed root mean square error
(RMSE), coefficient of determination (R2), and absolute aver-
age deviation (AAD) as criteria of comparison between RSM
and ANN for the evaluation of heavy metal biosorption pro-
cess. A batch sorption process was performed using Nigella
sativa seeds (black cumin), a novel and natural biosorbent, to
remove lead ions from aqueous solution with the process var-
iables: pH, biosorbent mass, and temperature. They concluded
that the ANN model was found to have a higher predictive
capability than the RSM model. On the other hand, other
researchers found that RSM is better than the ANN approach
in several investigations and studies. Truly, after predicting the
tensile strength of friction stir-welded AA7039 aluminum al-
loy joints, Lakshminarayanan and Balasubramanian [23], con-
cluded that RSM has a main advantage compared with ANN,
and this advantage consists of its ability to quantify the factor
contributions from the coefficients in the regression model,
identifying the insignificant main factors and interaction fac-
tors or insignificant terms in the model. Moreover, in their
comparison between ANN and RSM approaches for modeling
surface roughness when turning of Al7075/10/SiCp and Al
7075 hybrid composites, Kumarand Chauhan [24] concluded
that the ANN prediction model produced a greater parentage
error than did the RSM prediction model with (R2) values of
0.99571 and 0.9972, respectively.

The current study investigates the dry, wet, and MQL turn-
ing using a comparative assessment between modeling by the
RSM and the ANN using 3 levels and 4 factors Box-Behnken
design (BBD). The developed models were used to predict the
surface roughness and the tangential cutting force according to
the studied cutting parameters (cutting speed, cutting depth,

feed rate, and the tool nose radius) for different cases of lubri-
cation mode. A comparative between ANN and RSM models
has been established to determine the best approach according
to model accuracy and capability for predicting surface rough-
ness and cutting force when turning of X210Cr12 steel using
multilayer-coated tungsten carbide insert (GC-4215) with var-
ious nose radii (r). Similarly, it could be possible to investigate
the efficiency of MQL technique for an environment-friendly
ecological machining.

2 Design of experiment

2.1 Tools

The experimental conditions and cutting parameters are set
according to different aspects such as the material to be ma-
chined, the machine tool, cutting tool, and lubrication mode,
and the tests are carried out using a conventional lathe “TOS
TRENCIN” model SN-40.

The workpiece material is the X210Cr12 steel. The me-
chanical properties of the latter are defined in the Table 1;
the diameter (d) and length (l) of the part machined are respec-
tively 80 and 330 mm.

As regards the cutting tool, the multilayer-coated tungsten
carbide insert was chosen. The coating grade is GC4215 (ISO
P15-CVD-coated carbide) selected with different nose radius.
The ISO tool holder reference is PSBNR 2525 K12. The tool
geometry is characterized by the following angles: χr = +45°,
λ = −6°, γ = −6°, and α = +6°.

The tool holder has been connected on four components of
piezoelectric dynamometer (Kistler 9257B), linked to a mul-
tichannel charge amplifier (type 5011B), data acquisition
hardware, and graphical programming environment
(DynoWare 2825A1–1) for data analysis and visualization.
Regarding the surface roughness of the machined workpiece,
the measurements have been taken directly after each test
using a roughness meter (Mitutoyo Surftest SJ-201) which
consists of a diamond tip (probe), with a radius of 5 μm mov-
ing in a linear manner on the machined surface. The schematic
diagram of the experimental setup and the MQL system are
shown in Fig. 1.

2.2 Procedure

In order to study the lubricating performances and its effect on
the studied outputs, the cooling condition has been taken as an

Table 1 Chemical composition of X210Cr12 steel

Element C Si Cr Mn Ni W V P S Cu

Content % 2.10 0.30 11.50 0.40 0.31 1 1 0.03 0.03 0.25
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output, and the tests have been designed using 3 levels and 4
factors of Box-Behnken design as the cutting speed (Vc; 150,
250, and 350 m/min), the feed rate (f; 0.08, 0.12, and
0.16 mm/rev), the nose radius variation (r; 0.8, 1.2, and
1.6 mm) and the depth of wear (ap; 0.2, 0.4, and 0.6 mm).
For the cooling condition, the 27 turning tests have been per-
formed under traditional lubrication mode, dry machining,
and with the MQL technique using a synthetic oil with a flow
rate of 120 ml/h and an air pressure of pulverization of 6 bar.
The different parameters defined are shown in Table 2.

The combination of the parameters of the BBD with
the measured values of surface roughness and cutting
force are represented in Table 3. The roughness values
represent the mean of three measured values for each test,
and the studied cutting force (Fz) was measured by a
force sensor during the cutting process. The consideration
and the study of uncontrollable factors allow us to extract
optimal scheme for better productivity regarding the high

part quality, low machining cost, and low energy con-
sumption. The studied outputs of the orthogonal plan are
selected in order to analyze and study the influence of the
different cutting parameters on the material’s machinabil-
ity (X210Cr12 steel) and for prediction using the response
surface methodology (RSM) and the artificial neural net-
work (ANN). The RSM and ANN approaches are com-
pared in terms of the predicted data and their coefficient
of determination (R2), model predicted error (MPE), and
root mean square error (RSME). The given terms are cal-
culated through the following formulas:

R2 ¼
∑n

i¼1 yi;pr−yi;ex
� �

yi;pr−yaverage
� �2 ð1Þ

MPE %ð Þ ¼ 100

n
∑
n

i¼1

yi;ex−yi;pr
� �

yi;ex

������

������
ð2Þ

RSME ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 yi;ex−yi;pr
� �2

n

vuut
ð3Þ

where n is the number of experiments, yi,ex is the experimental
value of the ith experiment, yi,pr is the predicted value of the

Table 2 Factors and levels used in the experimental plan

Level Vc (m/min) f (mm/rev) r (mm) ap (mm)

1 150 0.08 0.8 0.2

2 250 0.12 1.2 0.4

3 350 0.16 1.6 0.6

Charge Amplifier
(5011B)

Roughness-Meter
Surftest SJ-201

Kistler 
Dynamometer

Compressed Air
Oïl (Product)

Air CompressorOïl Tank

Control Box

RSM and ANN 
modelingMQL System

O
utputs m

easurem
ents 

Fig. 1 Experimental setup for
outputs measurement and data
analysis
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ith experiment calculated by the model, and yaverage is the
average value of the experimentally determined values.

2.3 Modeling methods

2.3.1 Response surface methodology approach

RSM consists of a mathematical group and statistical tech-
niques used in the development of an adequate functional
relationship between a response of interest; RSM is a process
that includes the following steps:

1. Define the independent input variables and the desired
output responses

2. Adopt an experimental design
3. Perform a regression analysis with the mathematical mod-

el RSM
4. ANOVA analysis for independent input variables to find

the parameters that significantly affect the response

5. Determine the status of the mathematical model of RSM
and decide if this model is in need of screening variables
or not

6. Optimize and conduct a confirmation experiment to verify
the predicted performance characteristics. The relation be-
tween the cutting conditions and the technology machin-
ing factors is given as

Y ¼ F ap;Vc; f ; rð Þ ð4Þ

The second-order model response surface can be fitted into
the following Eq. (5):

ycc ¼ β0 þ β1:x1 þ β2:x2 þ β3:x3 þ β4:x4 þ β5:x1:x2

þ β6:x1:x3 þ β7:x1:x4 þ β8:x2:x3 þ β9:x2:x4

þ β10:x3:x4 þ β11:x
2
1 þ β12:x

2
2 þ β13:x

2
3 þ β14:x

2
4 ð5Þ

Table 3 The experimental results
Vc
(m/min)

f (mm/
rev)

r
(mm)

ap
(mm)

DRY WET MQL

Fz (N) Ra
(μm)

Fz (N) Ra
(μm)

Fz (N) Ra
(μm)

1 250 0.08 0.8 0.4 129.61 0.67 126.11 0.58 125.09 0.38

2 350 0.12 1.2 0.2 116.16 0.67 114.63 0.64 107.54 0.63

3 250 0.08 1.2 0.2 91.54 0.65 84.29 0.49 83.06 0.59

4 250 0.16 1.2 0.6 294.49 0.92 280.45 0.85 280.67 0.82

5 150 0.16 1.2 0.4 231.61 1.01 220.13 0.91 206.62 0.9

6 150 0.08 1.2 0.4 156.1 0.68 137.24 0.5 125.68 0.41

7 150 0.12 0.8 0.4 174.07 0.95 171.22 0.91 163.47 0.6

8 250 0.12 1.6 0.6 265.82 0.64 244.45 0.62 236.8 0.58

9 350 0.16 1.2 0.4 203.25 1.1 198.2 0.88 199.65 0.79

10 350 0.08 1.2 0.4 133.11 0.6 131.89 0.54 118.14 0.45

11 150 0.12 1.2 0.6 261.04 0.65 259.45 0.62 246.79 0.6

12 350 0.12 1.6 0.4 194.26 0.85 189.9 0.71 183.23 0.64

13 250 0.12 1.2 0.4 177.19 0.89 169.07 0.88 166.49 0.88

14 250 0.12 1.6 0.2 103.8 0.67 102.32 0.64 94.01 0.62

15 350 0.12 1.2 0.6 246.04 0.96 232.75 0.83 232.09 0.72

16 150 0.12 1.6 0.4 211.73 0.68 198.03 0.66 194.2 0.58

17 250 0.12 1.2 0.4 169.94 0.99 167.11 0.97 161.61 0.95

18 250 0.12 0.8 0.2 93.45 0.81 91.61 0.76 90.74 0.66

19 250 0.08 1.6 0.4 143.9 0.87 143.49 0.41 138.1 0.53

20 250 0.12 0.8 0.6 230.24 0.81 228.19 0.81 227.89 0.56

21 250 0.12 1.2 0.4 173.63 1.01 168.4 0.98 159.78 0.95

22 350 0.12 0.8 0.4 171.36 0.7 160.44 0.67 160.71 0.45

23 250 0.08 1.2 0.6 204.99 0.9 204.04 0.57 175.29 0.54

24 250 0.16 1.2 0.2 132.02 1.32 125.88 1.08 106.08 0.97

25 250 0.16 0.8 0.4 205.59 1.34 198.61 1.06 188.93 0.87

26 250 0.16 1.6 0.4 235.42 0.92 216.43 0.83 220.86 0.76

27 150 0.12 1.2 0.2 133.52 1.05 120.32 0.97 117.21 0.87
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where ‘y’ is the corresponding response (Ra, Fz); ‘cc’
represents the corresponding cooling condition; and x1,
x2, x3, x4 represent the turning parameters. The term β
is the regression coefficient. From Eq. (5) the relationship
is defined between the studied output and the turning pa-
rameters as given below:

y ¼ β0 þ β1:Vcþ β2: f þ β3:r þ β4:apþ β5:Vc: f

þ β6:Vc:r þ β7:Vc:apþ β8: f :r þ β9: f :ap

þ β10:r:apþ β11:Vc
2 þ β12: f

2 þ β13:r
2 þ β14:ap

2 ð6Þ

2.3.2 Artificial neural networks

An ANN is a data processing and modeling technique that
arose in pursuit of mathematical modeling of the learning
process which was inspired by the human brain. ANN is
especially useful for classification and function approxi-
mation problems usually when rules such as those that
might be used in an expert system cannot easily be ap-
plied [21]. Neural computing requires a number of neu-
rons, to be connected together into a neural network.
Neurons are arranged in layers. Each neuron within the
network is usually a simple processing unit which takes
one or more inputs and produces an output. At each neu-
ron, every input has an associated weight which modifies
the strength of each input as indicated in Fig. 2. The

neuron simply adds together all the inputs and calculates
an output to be passed on [25]. ANNs combine artificial
neurons in order to process information.

In the present study, the artificial neural networks were
built using MATLAB software with the neural network
toolbox. Several ANN models were designed and tested
to explore the optimal architecture, the most suitable ac-
tivation function, and the best training algorithm. The
main criteria used were MPE, the RSME, and the R2

values of all the network models (training, validation,
and test).

3 Results and discussion

3.1 Cooling effect on machining factors

During machining, the obtained tangential force and sur-
face roughness leads to an important improvement under
MQL cooling. Under certain combination of the cutting
parameters, dry machining results a worst surface quality
during turning. Figure 3 illustrates a comparative graphic
for Ra and Fz under different cooling conditions of the
experimental measures. It can be also observed that the
MQL mode provides better surface quality and minimize
cutting force; this technique affects not only product qual-
ity but also respects the ecological aspect and preserves
the environment by reducing the uses of lubricating oils
which implies less machining cost, because some turning
operation requires lubrication.

Figure 4 presents a normal probability plot. This represen-
tation is basically a plot of the ordered observations from a
sample of data against the corresponding percentage points
from the standard normal distribution for the studied factors
Ra and Fz under such cooling condition; this plot indicates if
the data follow a normal distribution, in which case the points
will follow a straight line, since some scattering is expected
even with the normal data. As shown in Fig. 4, it can be
assumed that the data is normally distributed.

Activation 

function

Output

Weights

Iu
tp

u
ts

Fig. 2 An artificial neuron
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Fig. 3 Comparison of dry, wet, and MQL experimental results
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3.2 RSM modeling

3.2.1 Cutting force modeling

ANOVA is a statistical technique used to identify the
significance of the factor(s) or interaction factors on a

particular response predicated on the experimental data.
It regresses the total variability of the response into
individual contributions of each of the factors and the
error. It determines the ratio between the regression
mean square and the mean square error and is termed
as F-ratio or variance ratio. F-ratio is utilized to

Fig. 4 Normal probability plots of Ra and Fz

Table 4 ANOVA analysis for
dry machining results Source SS DF MS F-Value P-value Cont. % Remark

A. Tangential force model
Model 78,361.79 14 5597.27 79.94 < 0.0001 Significant
Vc 899.43 1 899.43 12.85 0.0038 1.14 –
f 16,363.68 1 16,363.68 233.70 < 0.0001 20.66 –
r 1890.28 1 1890.28 27.00 0.0002 2.39 –
ap 57,703.36 1 57,703.36 824.11 < 0.0001 72.86 –
Vc × f 7.21 1 7.21 0.10 0.7538 0.01 Not significant
Vc × r 54.46 1 54.46 0.78 0.3951 0.07 –
Vc × ap 1.39 1 1.39 0.02 0.8902 0.01 –
f × r 60.37 1 60.37 0.86 0.3714 0.08 –
f × ap 600.74 1 600.74 8.58 0.0126 0.76 Significant
r × ap 159.14 1 159.14 2.27 0.1575 0.20 Not significant
Vc2 581.44 1 581.44 8.30 0.0138 0.73 Significant
f2 13.89 1 13.89 0.20 0.6640 0.02 Not significant
r2 9.24 1 9.24 0.13 0.7227 0.01 –
ap2 49.57 1 49.57 0.71 0.4166 0.06 –
Residual 840.23 12 70.02 1.06
Cor. total 79,202.02 26

B. Surface roughness model
Model 0.96 14 0.07 12.85 < 0.0001 Significant
Vc 1.63E-03 1 1.63E-03 0.30 0.592 0.15 Not significant
f 0.42 1 0.42 77.68 < 0.0001 40.46 Significant
r 0.04 1 0.04 6.54 0.025 3.40 –
ap 7.01E-03 1 7.01E-03 1.30 0.276 0.67 Not significant
Vc × f 7.23E-03 1 7.23E-03 1.34 0.269 0.69 –
Vc × r 0.04 1 0.04 8.19 0.014 4.26 Significant
Vc × ap 0.12 1 0.12 22.11 0.001 11.52 –
f × r 0.10 1 0.10 17.85 0.001 9.30 –
f × ap 0.11 1 0.11 19.62 0.001 10.22 –
r × ap 2.25E-04 1 2.25E-04 0.04 0.841 0.02 Not significant
Vc2 0.05 1 0.05 8.94 0.011 4.65 Significant
f2 8.53E-03 1 8.53E-03 1.59 0.232 0.82 Not significant
r2 0.05 1 0.05 8.71 0.012 4.53 Significant
ap2 0.03 1 3.10E-02 5.76 0.034 3.00 –
Residual 0.064 12 5.38E-03 6.25
Cor. total 1.033 26

Int J Adv Manuf Technol (2017) 93:2485–2504 2491



quantify the significance of each of the parameters. In
general, when the F value increases, the consequential-
ity of the concrete parameter also increases. The
ANOVA analysis has been performed using design ex-
pert 9.0 software.

From Table 4a, the ANOVA analysis results show that the
depth of cut is the most affecting parameter on tangential force
with a contribution of 72.86%. It is worth to note that whenwe
increase the cutting depth (ap), the workpiece to be machined
exerts a resistance to the penetration on the tool in the two
tangential and axial directions which contributes in the in-
crease in the tangential force (Fz). The feed rate (f) is also an

important significant parameter that affects the tangential
force with a contribution of 20.66%, followed by the tool nose
radius (r) and the cutting speed (Vc) with a contribution of
2.39 and 1.14%, respectively. The results found are in good
agreement with the previous researcher’s works [26–28].

The collected observations of the first analysis corre-
spondent to dry machining can be integrally granted to
wet and MQL results; from Tables 5a and 6a, it can be
observed that the cutting depth has the strongest influence
on tangential force with a contribution of 75.81% in wet
turning and 72.30% under MQL cooling technique, follow-
ed by feed rate with a contribution of 19.66 and 21.57%

Table 5 ANOVA analysis for
wet machining results Source SS DF MS F-Value P-value Cont. % Remark

(a) Tangential force model

Model 71,530.75 14 5109.34 95.95 < 0.0001 Significant

Vc 514.57 1 514.57 9.66 0.0090 0.71 –

f 14,189.31 1 14,189.31 266.47 < 0.0001 19.66 –

r 1169.00 1 1169.00 21.95 0.0005 1.62 –

ap 54,712.81 1 54,712.81 1027.48 < 0.0001 75.81 –

Vc × f 68.72 1 68.72 1.29 0.2781 0.10 Not significant

Vc × r 1.76 1 1.76 0.03 0.8589 0.00 –

Vc × ap 110.36 1 110.36 2.07 0.1756 0.15 –

f × r 0.05 1 0.05 0.00 0.9764 0.00 –

f × ap 303.11 1 303.11 5.69 0.0344 0.42 Significant

r × ap 7.70 1 7.70 0.14 0.7104 0.01 Not significant

Vc2 386.13 1 386.13 7.25 0.0196 0.54 Significant

f2 0.03 1 0.03 0.00 0.9805 0.00 Not significant

r2 1.82 1 1.82 0.03 0.8565 0.00 –

ap2 41.26 1 41.26 0.77 0.3960 0.06 –

Residual 639.00 12 53.25 0.89

Cor. total 72,169.74 26

(b) Surface roughness model

Model 0.86 14 0.06 23.67 < 0.0001 Significant

Vc 0.01 1 7.50E-03 2.89 0.1148 0.74 Not significant

f 0.53 1 0.53 203.97 0.000 52.40 Significant

r 0.07 1 0.07 27.19 0.0002 6.98 –

ap 0.01 1 6.53E-03 2.52 0.1385 0.65 Not significant

Vc × f 0.00 1 1.22E-03 0.47 0.5051 0.12 –

Vc × r 0.02 1 2.10E-02 8.10 0.0147 2.08 Significant

Vc × ap 0.07 1 0.07 28.10 0.0002 7.22 –

f × r 9.00E-04 1 9.00E-04 0.35 0.5668 0.09 Not significant

f × ap 0.02 1 0.02 9.26 0.0102 2.38 Significant

r × ap 0.00 1 1.22E-03 0.47 0.5051 0.12 Not significant

Vc2 0.05 1 0.05 19.54 0.0008 5.02 Significant

f2 0.07 1 0.07 27.19 0.0002 6.98 –

r2 0.08 1 0.08 29.60 0.0001 7.60 –

ap2 0.05 1 4.56E-02 17.59 0.0012 4.52 –

Residual 0.03 12 2.59E-03 3.08

Cor. total 1.01 26
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and the nose radius (r) by a contribution of 1.62 and 1.37%
(for each cooling technique wet and MQL, respectively).
At large nose radius, the contact surface is more important
than with low nose radius; in this case, the resulting tan-
gential force will be more important and the cutting power
(Pc) required for the machining process increases.

The obtained mathematical quadratic models according to
Eq. (6) are shown in the Eqs. 7, 8, and 9 with an R2 of 98.94,
99.11, and 98.81%, respectively, for tangential force under
dry, wet, and MQL cooling conditions:

Fz Dry ¼ 123:47−0:46� Vc−139:09� f −25:97

� r−0:06� ap−0:33� Vc� f −0:09� Vc� r

þ 0:02� Vc� apþ 242:81� f � r

þ 1531:87� f � apþ 78:84� r � apþ 1:04

� 10−3 � Vc2 þ 1008:59� f 2 þ 8:22� r2

þ 76:21� ap2 ð7Þ

Fz Wet ¼ −3:82−0:28� Vcþ 663:41� f þ 4:01� r

þ 196:26� ap−1:03� Vc� f þ 0:01� Vc

� r−0:26� Vc� apþ 6:87� f � r

þ 1088:12� f � apþ 17:34� r � apþ 8:50

� 10−4 � Vc2 þ 49:21� f 2 þ 3:64� r2

þ 69:53� ap2 ð8Þ

Fz Mql ¼ 120:81−0:36� Vc−45:17� f −67:77� r

þ 2:63� apþ 0:03� Vc� f −0:05� Vc

� r−0:06� Vc� apþ 295:62� f � r

þ 2573:75� f � apþ 17:62� r � apþ 7:98

� 10−4 � Vc2−1819:27� f 2 þ 25:44� r2

þ 20:97� ap2 ð9Þ

Three-dimensional (3D) response surface plots, predi-
cated on the quadratic model, were drawn to study the

Table 6 ANOVA analysis for
MQL machining results Source SS DF MS F-Value P-value Cont. % Remark

(a) Tangential force model
Model 73,044.32 14 5217.45 70.87 < 0.0001 Significant
Vc 230.65 1 230.65 3.13 0.1021 0.31 –
f 15,946.88 1 15,946.88 216.62 < 0.0001 21.57 –
r 1015.13 1 1015.13 13.79 0.0030 1.37 –
ap 53,452.07 1 53,452.07 726.10 < 0.0001 72.30 –
Vc × f 0.08 1 0.08 0.00 0.9740 0.00 Not significant
Vc × r 16.85 1 16.85 0.23 0.6409 0.02 –
Vc × ap 6.33 1 6.33 0.09 0.7744 0.01 –
f × r 89.49 1 89.49 1.22 0.2918 0.12 –
f × ap 1695.79 1 1695.79 23.04 0.0004 2.29 Significant
r × ap 7.95 1 7.95 0.11 0.7481 0.01 Not significant
Vc2 339.98 1 339.98 4.62 0.0500 0.46 Significant
f2 45.19 1 45.19 0.61 0.4485 0.06 Not significant
r2 88.42 1 88.42 1.20 0.2946 0.12 –
ap2 3.76 1 3.76 0.05 0.8251 0.01 –
Residual 883.39 12 73.62 1.19
Cor. total 73,927.71 26

(b) Surface roughness model
Model 0.782 14 0.06 30.42 < 0.0001 Significant
Vc 0.007 1 6.53E-03 3.56 0.084 0.66 Not significant
f 0.407 1 0.41 221.58 < 0.0001 41.04 Significant
r 0.003 1 0.00 1.64 0.225 0.30 Not significant
ap 0.023 1 2.25E-02 12.27 0.004 2.27 Significant
Vc × f 0.006 1 5.63E-03 3.06 0.106 0.57 Not significant
Vc × r 0.011 1 0.01 6.00 0.031 1.11 Significant
Vc × ap 0.032 1 0.03 17.64 0.001 3.27 –
f × r 0.017 1 0.02 9.20 0.010 1.70 –
f × ap 0.003 1 0.00 1.36 0.266 0.25 Not significant
r × ap 0.001 1 9.00E-04 0.49 0.497 0.09 –
Vc2 0.128 1 0.13 69.76 < 0.0001 12.92 Significant
f2 0.063 1 6.31E-02 34.34 0.0001 6.36 –
r2 0.227 1 0.23 123.52 < 0.0001 22.88 –
ap2 0.043 1 4.32E-02 23.52 0.0004 4.36 –
Residual 0.022 12 1.84E-03 2.22
Cor. total 0.992 26
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effect of the input machining parameters on tangential
force and surface roughness. These plots can supplemen-
tary provide further assessment of the relationship be-
tween the process parameters and replication. 3D surface
plots are drawn as two of the factors was maintained

constant at their middle level, while the other two are
varied.

Figure 5 represents the 3D surface plots that illustrate
the cutting force evolution according to cutting speed and
depth of cut, cutting speed and nose radius, and depth of
cut and feed rate. It can be observed that the lubrication
can improve the machinability of this kind of steel; in
addition, MQL cooling provides low cutting force be-
cause it reduces the contact friction. Figure 5a shows that
the tangential force increases with the increase of depth of
cut and feed rate, and from all the results, it can conclud-
ed that the depth of cut exhibits maximum influence on
the cutting force components. Figure 5a–c confirms that
the tangential force increases while the tool nose radius
and the feed rate increase; this can be explained by in-
creasing chip cross-section with increasing feed rate,
depth of cut, and nose radius that increases the friction
in the cutting area.

3.2.2 Surface roughness modeling

The surface roughness is considered as one of the most
critical constraints for the selection of cutting parameters
in the planning of the machining process. From Tables 4b,

(a)
(b)

(c)

Fig. 5 Effect of cutting factors on cutting force for dry, wet, and MQL turning

Table 7 Multi-objective optimization of response parameters

Condition Goal Lower limit Upper limit

Vc (m/min) Is in range 150 350

f (mm/rev) Is in range 0.08 0.16

r (mm) Is in range 0.8 1.6

ap mm) Is in range 0.2 0.6

(a) Dry machining

Fz (N) Minimize 91.54 294.49

Ra (μm) Minimize 0.6 1.34

(b) Wet machining

Fz (N) Minimize 84.29 280.45

Ra (μm) Minimize 0.41 1.08

(c) MQL machining

Fz (N) Minimize 83.06 280.67

Ra (μm) Minimize 0.38 0.97
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5b, and 6b, it can be known that the feed rate ( f ) is the
most affecting parameter on surface roughness with a con-
tribution of 40.46, 52.40, and 41.04% in dry, wet, and
MQL machining, respectively. During the turning process,
the generated surface is a helical furrow resulting from the
tool nose shape and helicoids movement tool–workpiece
generated by the machine tool. In this case, the use of
large feed rate results in a worst surface roughness, be-
cause at large feeds, the distance between peaks and val-
leys is much more important. On the other hand, the use
of large nose radius can improve significantly the surface
quality by crushing of asperities. The ANOVA analysis
shows that the nose radius is a significant parameter on
surface roughness with a contribution of 3.40 and 6.98%
in dry and wet turning. Similar results were found by
Meddour et al. [26] and Bouzid et al. [29].

The obtained quadratic models are shown in Eqs. 10, 11,
and 12 and their determination coefficients (R2) are of 93.75,
96.51, and 97.26%, respectively, for surface roughness under
the different cooling conditions:

Ra Dry ¼ −1:18−3:24� 10−3 � Vcþ 15:76� f þ 1:81

� r þ 1:79� apþ 0:01� Vc� f þ 2:62

� 10−3 � Vc� r þ 8:62� 10−3 � Vc

� ap−9:68� f � r−20:31� f � ap−0:09375

� r � ap−9:5� 10−6 � Vc2 þ 25� f 2−0:58

� r2−1:90625� ap2 ð10Þ

(a) (b)

(c)

Fig. 6 Effect of cutting factors on surface roughness for dry, wet, and MQL turning

Table 8 Obtained optimization
values of RSM Cooling condition Vc (m/min) f (mm/rev) r (mm) ap (mm) Fz (N) Ra (μm) Desirability

DRY 273.073 0.081 1.390 0.204 85.315 0.595 1

WET 296.703 0.081 1.249 0.204 83.861 0.401 1

MQL 247.083 0.084 0.827 0.203 81.155 0.375 1
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Ra Wet ¼ −2:05þ 2:75� 10−4 � Vcþ 28:59� f

þ 1:35� r þ 1:47� ap−4:37� 10−3 � Vc

� f þ 1:81� 10−3 � Vc� r þ 6:75� 10−3

� Vc� ap−0:93� f � r−9:68� f

� ap−0:21� r � ap−9:75� 10−6

� Vc2−71:875� f 2−0:75� r2−2:31� ap2 ð11Þ

Ra Mql ¼ −3:77þ 5:26� 10−3 � Vcþ 29:38� f

þ 3:21� r þ 0:60� ap−9:37� 10−3 � Vc

� f þ 1:31� 10−3 � Vc� r þ 4:5� 10−3

� Vc� ap−4:06� f � r−3:12� f � ap

þ 0:18� r � ap−1:55� 10−5 � Vc2−67:96

� f 2−1:28� r2−2:25� ap2 ð12Þ

Figure 6 shows the evolution of the surface roughness
according to cutting speed and feed rate, cutting speed
and nose radius, and depth of cut and feed rate. As indi-
cated in Fig. 6a, c the feed rate affects largely the surface
quality; Fig. 6c illustrates the qualitative effect of large
tool nose radius, in which the roughness has undergone
an important improvement and a better surface quality
obtained at a high level of cutting speed, and these obser-
vations justify the use of high speeds, low feeds, and
cutting inserts with large nose radius (r = 0.8 to
1.6 mm) in the finishing process where a low roughness
is desired. Furthermore, the MQL cooling contribute in
the improvement of the surface quality.

3.2.3 Optimization process

The desirability function approach of the RSM has been
employed for multi-objective optimization of the studied

Fig. 7 Optimal architecture 4-7-1 for output modeling

(a) (b)
Fig. 8 Correlation between the predicted and the experimental data using the training, validation, and test datasets for a tangential force and b surface
roughness in dry condition
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outputs. This approach searches for a combination of
factor levels that simultaneously provide the minimum
surface roughness with the minimum cutting force for
each cooling condition. The aim here is focused on

finding the optimum cutting parameters in order to ob-
tain the desired tangential force and surface roughness
(Fz and Ra). The optimization was performed using
Design Expert 9.0 software. The application of

(a) (b)
Fig. 9 Correlation between the predicted and the experimental data using the training, validation, and test datasets for a tangential force and b surface
roughness in wet condition

(a) (b)
Fig. 10 Correlation between the predicted and the experimental data using the training, validation, and test data sets for a tangential force and b surface
roughness in MQL condition
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desirability function leads to better solution than most
other techniques for multi-response optimization. The op-
timization conditions are presented in Table 7. The gra-
dient algorithm was used to calculate the desirability
function between 0 and 1. Acceptance of optimization
is estimated with desirability function [21]. If the desir-
ability value closes to 0 the response should be
completely unaccepted, and if its value closes or equal
to 1, the response would be accepted.

In this investigation, the optimal combinations of cut-
ting parameters are presented in Table 8; the optimum
settings were found as 273.073 m/min of cutting speed,
0.081 mm/rev of feed rate, 1.390 mm of nose radius, and
0.204 mm of cutting depth for dry machining optimiza-
t ion; Vc = 296.703 m/min, f = 0.081 mm/rev,
r = 1.249 mm, and ap = 0.204 mm for WET machining;
and Vc = 247.083 m/min , f = 0.084 mm/rev,
r = 0.827 mm, and ap = 0.203 mm for MQL machining.

Desirability values were found to be 1 for surface rough-
ness and tangential in the different cooling conditions.

3.3 ANN modeling

The back-propagation algorithm was used as learning al-
gorithm. The Levenberg-Marquadt (TRAINLM) was se-
lected as training algorithm. LM algorithms are fast and
consume less memory [30]. The hyperbolic tangent sig-
moid transfer function (TANSIG) has been used as acti-
vation function. The optimal network was found to be a
feed forward neural network by a single hidden layer
consisting seven neurons. The structure of the selected
artificial neural network (4-7-1) has been drawn in
Fig. 7. The obtained networks are used for predicting
the studied factors. The total number of the created net-
works is six that have the same architecture (4-7-1). Three
of them are used for prediction of surface roughness under

Table 9 Comparison of
prediction results for RSM and
ANN under dry machining

Number Predicted tangential
force (Fz)

Absolute prediction
error (%)

Predicted surface
roughness (Ra)

Absolute prediction
error (%)

RSM ANN RSM ANN RSM ANN RSM ANN

1 130.92 129.61 1.01 0.00 0.62 0.68 7.15 1.76

2 108.49 113.34 6.61 2.42 0.63 0.67 5.66 0.03

3 84.23 91.54 7.98 0.00 0.60 0.65 7.37 0.61

4 296.78 294.49 0.78 0.00 0.93 0.91 0.77 0.59

5 232.57 231.61 0.41 0.00 1.06 1.01 5.36 0.00

6 156.03 156.79 0.05 0.44 0.78 0.68 14.09 0.23

7 177.76 174.38 2.12 0.18 0.95 0.95 0.48 0.14

8 266.15 265.82 0.13 0.00 0.71 0.64 10.55 0.19

9 212.57 203.25 4.59 0.00 1.13 1.10 2.35 0.25

10 141.40 133.11 6.23 0.00 0.67 0.60 11.25 0.17

11 264.49 261.04 1.32 0.00 0.61 0.64 6.60 1.19

12 185.55 194.26 4.48 0.00 0.81 0.85 4.26 0.19

13 173.59 173.59 2.03 2.03 0.96 0.96 8.24 8.41

14 114.85 114.07 10.65 9.89 0.77 0.67 15.05 0.41

15 248.35 246.04 0.94 0.00 0.93 0.97 3.26 0.63

16 210.24 211.73 0.70 0.00 0.63 0.68 7.78 0.53

17 173.59 173.59 2.15 2.15 0.96 0.96 2.69 2.54

18 102.36 93.45 9.54 0.00 0.86 0.81 6.69 0.09

19 148.26 145.92 3.03 1.40 0.82 0.87 5.32 0.48

20 228.44 229.86 0.78 0.17 0.83 0.81 2.57 0.38

21 173.59 173.59 0.02 0.02 0.96 0.96 4.62 4.47

22 167.83 176.68 2.06 3.10 0.71 0.70 1.73 0.48

23 198.41 204.99 3.21 0.00 0.88 0.90 2.36 0.26

24 133.58 132.02 1.18 0.00 1.30 1.33 1.48 0.76

25 197.01 205.59 4.17 0.00 1.31 1.33 2.58 0.79

26 229.88 235.42 2.35 0.00 0.89 0.92 3.58 0.53

27 126.98 133.52 4.90 0.00 1.00 1.05 4.72 0.12
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the three cooling conditions, and the rest are used for
predicting the tangential force. Training the neural net-
work is an important operation for accurate results; less
training makes the ANNs inefficient and may provide in-
accurate prediction.

For the tangential force, the determination coefficients (R2)
of the developed predictive models are 99.80, 99.94, and
99.78%, respectively, for dry, wet, and MQL machining.
Concerning that of surface roughness, their R2 are 99.14,
99.12, and 99.40%, respectively, for the dry, wet, and MQL
prediction models.

Each network will be trained starting from different
initial weights and biases, and with a different division
of the first dataset into training, validation, and test sets.
It is good to note that the test sets are a good measure of
generalization for each respective network, but not for all
the networks, because data that is a test set for one net-
work will likely be used for training or validation by

other neural networks. This is why the original dataset
was divided into two parts, to ensure that a completely
independent test set is preserved. The performance capa-
bility of each network was examined based on the cor-
relation coefficient between the network predictions and
the experimental values using the training, validation,
and test dataset. The performances of the prediction
models of cutting force and surface roughness using the
training validation and test dataset are shown in Figs. 8,
9, and 10.

3.4 Comparative results of ANN and RSM models

The trend in modeling using RSM has a low-order non-
linear behavior with a regular experimental domain and
relatively small factor region, due to its limitation in
building a model to fit the data over an irregular experi-
mental region. Moreover, the main advantage of RSM is

Table 10 Comparison of
prediction results for RSM and
ANN under Wet machining

Number Predicted tangential
force (Fz)

Absolute prediction
error (%)

Predicted surface
roughness (Ra)

Absolute prediction
error (%)

RSM ANN RSM ANN RSM ANN RSM ANN

1 124.71 126.21 1.11 0.08 0.56 0.58 3.45 0.01

2 110.66 114.78 3.46 0.13 0.62 0.64 3.65 0.01

3 77.85 85.12 7.64 0.99 0.47 0.49 3.74 0.37

4 281.67 280.45 0.43 0.00 0.84 0.85 0.59 0.15

5 221.86 220.09 0.79 0.02 0.98 0.91 8.06 0.01

6 144.80 137.39 5.51 0.11 0.53 0.50 5.67 0.00

7 174.63 171.24 1.99 0.01 0.90 0.91 1.10 0.00

8 250.34 244.36 2.41 0.04 0.61 0.62 1.08 0.61

9 200.47 198.36 1.15 0.08 0.90 0.88 2.08 0.28

10 139.99 131.83 6.14 0.04 0.51 0.54 4.94 0.00

11 258.81 259.42 0.25 0.01 0.62 0.62 0.00 0.01

12 181.27 189.86 4.54 0.02 0.70 0.71 1.88 0.00

13 168.19 168.41 0.52 0.39 0.94 0.97 7.20 10.25

14 112.52 98.89 9.97 3.36 0.69 0.64 8.59 0.70

15 235.21 232.62 1.06 0.05 0.84 0.83 1.20 0.00

16 193.04 201.37 2.52 1.69 0.60 0.66 8.84 0.00

17 168.19 168.41 0.65 0.78 0.94 0.97 2.75 0.02

18 95.55 91.63 4.30 0.02 0.81 0.76 7.02 0.00

19 144.23 143.49 0.52 0.00 0.44 0.41 6.50 0.09

20 227.82 228.14 0.16 0.02 0.80 0.81 1.03 0.00

21 168.19 168.41 0.12 0.01 0.94 0.97 3.74 1.00

22 160.21 164.06 0.15 2.26 0.70 0.67 5.22 0.00

23 195.49 204.07 4.19 0.01 0.58 0.57 1.75 0.01

24 129.21 127.92 2.65 1.62 1.05 1.08 3.09 0.36

25 193.26 198.56 2.69 0.03 1.01 1.06 4.72 0.13

26 213.22 216.37 1.48 0.03 0.83 0.83 0.40 0.00

27 113.26 120.34 5.87 0.02 0.94 0.97 3.44 0.00
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its ability to exhibit factor(s) contributions from the coef-
ficients in the regression model. This ability is powerful
for identifying the insignificant main factors and interac-
tion factors or insignificant quadratic terms in the model
which can reduce the complexity of the problem. On the
other hand, this technique requires good definition of
ranges for each factor to ensure that the response(s) under

consideration changes in a regular manner within this
range.

From another side, it is noted that ANNs perform better
than the other techniques, especially RSM when highly non-
linear behavior is considered. Also, this technique can build an
efficient model using a small number of experiments; howev-
er, the technique accuracy would be better when a larger

Table 11 Comparison of
prediction results for RSM and
ANN under MQL machining

Number Predicted tangential
force (Fz)

Absolute prediction
error (%)

Predicted surface
roughness (Ra)

Absolute prediction
error (%)

RSM ANN RSM ANN RSM ANN RSM ANN

1 122.87 125.09 1.78 0.00 0.35 0.39 8.77 2.89

2 101.58 107.54 5.54 0.00 0.61 0.62 2.91 0.96

3 77.95 83.07 6.15 0.02 0.56 0.59 4.73 0.04

4 284.34 280.65 1.31 0.01 0.84 0.82 2.90 0.13

5 208.40 206.62 0.86 0.00 0.91 0.90 0.88 0.36

6 135.77 130.20 8.03 3.59 0.46 0.41 13.31 0.63

7 167.82 161.54 2.66 1.18 0.63 0.60 4.24 0.35

8 244.89 236.80 3.41 0.00 0.62 0.58 6.54 0.01

9 199.91 199.64 0.13 0.00 0.79 0.79 0.47 0.05

10 126.72 119.57 7.26 1.21 0.49 0.45 9.54 0.00

11 243.83 246.79 1.20 0.00 0.57 0.60 4.72 0.18

12 177.44 183.23 3.16 0.00 0.61 0.64 4.62 0.06

13 162.63 162.63 2.32 2.32 0.93 0.95 5.30 7.96

14 108.58 94.01 15.50 0.00 0.67 0.62 8.80 0.62

15 232.55 234.36 0.20 0.98 0.70 0.71 2.08 0.92

16 190.32 193.48 2.00 0.37 0.55 0.58 4.81 0.20

17 162.63 162.63 0.63 0.63 0.93 0.95 2.46 0.00

18 93.01 88.21 2.50 2.79 0.67 0.66 1.96 0.33

19 131.80 131.28 4.56 4.94 0.51 0.53 4.09 0.50

20 223.67 227.88 1.85 0.00 0.56 0.56 0.67 0.59

21 162.63 162.63 1.78 1.78 0.93 0.95 2.46 0.00

22 163.15 160.71 1.52 0.00 0.47 0.45 5.28 0.82

23 170.25 175.28 2.87 0.00 0.53 0.54 2.70 0.28

24 109.68 106.08 3.39 0.00 0.98 0.97 1.07 0.31

25 186.31 188.92 1.38 0.00 0.84 0.87 2.87 0.03

26 214.17 220.86 3.03 0.00 0.75 0.76 1.75 0.02

27 107.84 117.20 8.00 0.01 0.84 0.87 3.64 0.09

Table 12 Comparison between
RSM and ANN Cooling condition RSM Predicted data ANN Predicted data

R2 MPE R2 MPE

Cutting force DRY 0.9894 3.09 0.9980 0.81

WET 0.9911 2.68 0.9994 0.44

MQL 0.9881 3.45 0.9984 0.74

Surface roughness DRY 0.9375 5.50 0.9914 0.97

WET 0.9651 3.77 0.9912 0.55

MQL 0.9726 4.21 0.9940 0.68
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number of experiments are used for modeling. On the other
hand, the ANN model itself provides little information about
the design factors and their contribution to the response in
further analysis has not been done. Generation of ANNmodel
requires a large number of iterative calculations whereas it is
only a single-step calculation for a response surface model.

In this study, the predictive models developed by RSM
and ANN were compared on the basis of their prediction
accuracy using their coefficient of determination (R2),
mean predicted error (MPE), and root mean square error
(RSME). Tables 9, 10, and 11 show the RSM and the
ANN prediction comparison for tangential force and sur-
face roughness.

Despite the fact that the R2 of RSM models are initially
good, from the prediction results, in some cases, the RSM

models have over-fitted the data and have not generalize
well. According to the case of the tangential force model-
ing results presented in Table 9, the obtained APE values
by RSM are 6.61, 7.98, 6.23, and 9.64 for tests numbered
2, 3, 10, and 18, respectively. These deductions are to be
favorably retained in ANN modeling with APE values of
2.41 for test 2 and just 0.00 for tests 3, 10, and 18, as it
was presented in Table 9. However, the ANN provides
good results with very low errors (APE). The ANN
models proved their effectiveness as soon as their deter-
mination coefficients and mean prediction errors (MPE)
presented in Table 12 are rather small compared to those
obtained by the RSM models.

Figures 11 and 12 illustrate the performance of RSM
and ANN predictive models for Fz and Ra. The most
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Fig. 11 Experimental data versus the predicted RSM and ANN data for
tangential force under a dry, b wet, and c MQ
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Fig. 12 Experimental data versus the predicted RSM and ANN data for
surface roughness under a dry, b wet, and c MQL
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approximate points here are those with a lower failure
rate; the deviations of the predicted and experimental data
are smaller for ANN models as compared to RSM models.
The developed ANN models provide more accurate re-
sults than those predicted by RSM where the data have
been over-fitted especially in roughness models.

Certainly, the obtained R2 for the surface roughness
RSM models are 0.9375, 0.9651 and 0.9726 and their
values for ANN models are 0.9914, 0.9912, and 0.9940.
This can also clarify the capability of ANN models, as
shown in Figs. 13 and 14, which illustrates the lower
residuals in Fz and Ra (at the different cooling conditions)
for ANN models as compared to RSM models .
Furthermore, the RSME values in Fig. 15 confirm that
the prediction capability of ANN models was found to

be better than RSM models for the tested material and
process. Otherwise, in different conditions, the two
methods can be complementary in order to improve better
predictive modeling and optimization.

4 Conclusion

This study investigates the MQL efficiency and compares the
performance of both the response surface methodology
(RSM) and the artificial neural network (ANN) according to
their prediction and generalization capabilities using experi-
mental results based on the Box-Behnken design for surface
roughness and cutting force under dry, wet, andMQL turning.
It has been found that
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Fig. 13 Comparison between RSM and ANN models residuals for Fz
under a dry, b wet, c MQL
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1. The tangential cutting force is largely affected by the cut-
ting depth surface, and the feed rate is the main affecting
parameter on surface roughness.

2. The use of cutting inserts having large nose radius
improves the surface quality and provides a low sur-
face roughness that allows achieving the needed
precision.

3. The response surface methodology is a good model-
ing tool that helps in identifying the insignificant
main factors and interaction factors or insignificant
quadratic terms in the model which reduce the com-
plexity of the problem.

4. The comparative study indicated that the ANN models
were found to be better for prediction accuracy of surface
roughness and cutting force within the range they trained
than the RSM models in terms of better correlation and
lower error.

5. The minimum quantity lubrication can achieve the re-
quired machining factors for eliminating the problems of
flood cooling. MQL machining can be qualified as a
green machining process when the optimization is
considered.
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