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Abstract This study proposes a method for a quick, simple
interim check and practical accuracy improvement of machine
tools using just a double ball-bar. The double ball-bar is used
to measure sequentially the length of the six sides of a virtual
regular tetrahedron within the workspace of the machine tool.
Then, the scale and squareness errors of and between the three
linear axes are calculated from the length results, and the mea-
sured lengths and the calculated errors can be used as criteria
for the interim check. The calculated errors can also be com-
pensated for to improve the accuracy of experimented ma-
chine tools practically. A sample machine tool was subjected
to experimental interim checks applying the proposedmethod;
it showed primarily large length deviations for the six sides
due to geometric errors mainly. To improve the geometric
accuracy practically, the calculated errors were compensated
for and the measurements were repeated, showing significant-
ly improved length deviations for the six sides. The main
advantage of the proposed method is that it requires only a
double ball-bar and sequential measurements; thus, it is a sim-
ple procedure with a measuring time of ∼5 min for a virtual
regular tetrahedron. Additionally, the size of the virtual regular
tetrahedron can be readily modified by changing the nominal
length of the double ball-bar, increasing measurement flexi-
bility. Thus, the proposed method is suitable for quick, simple,
cost-effective daily and periodic interim checks, with practical
improvement of machine tool accuracy.

Keywords Double ball-bar . Interim check .Machine tools .

Scale error . Squareness error . Virtual regular tetrahedron

Nomenclature
ci Scale errors of linear axis i (i = X, Y, Z), ppm
sij Squareness errors of linear axis j around i

axis, µrad
L Nominal length of the sides of a virtual regu-

lar tetrahedron, mm
Lij Measured length between vertices Pi,m and

Pj,m, mm
Pi(xi, yi, zi) Nominal coordinate of the vertex of a virtual

regular tetrahedron (i = 1,…, 4), mm
Pi,m(xi,m, yi,m,
zi,m)

Measured coordinate of the vertex of a virtual
regular tetrahedron (i = 1,…, 4), mm

EMi 4 × 4 matrix of the scale errors for linear axis i
SMi 4 × 4 matrix of the squareness errors for linear

axis i
TMi 4 × 4 matrix of the nominal translation for

linear axis i
τB
A 4 × 4 homogeneous transformation matrix

from coordinate system {B} to coordinate
system {A}

1 Introduction

The geometric accuracy of machine tools (MTs) should be
checked, and main factors must be measured and compen-
sated for to improve the form accuracy of the machined
part [1]. Geometric errors are one of the main factors in
the geometric accuracy of MTs [2]. A test-piece with geo-
metric features is machined and its form accuracy is used
to quickly check and improve the accuracy of the MTs [3,
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4]. However, it is difficult to apply the machining-based
method to all MTs in a manufacturing factory because the
machining and measuring of the workpiece is time-con-
suming. Therefore, both direct and indirect measurements
are recommended [5, 6], and these are used to compensate
for individual geometric errors, for simplicity. Recently,
highly sophisticated computer numerical control (CNC)
supply compensation functions for measured geometric
errors have been applied to improve geometric accuracy
between the workpiece and tool. However, a cost-effec-
tive, easy-to-use method is still required for interim
checks of MTs, daily and periodically, to monitor geomet-
ric accuracy, to make engineering judgments for measure-
ment and compensation, and to maintain consistent pro-
ductivity of the manufacturing system.

For interim checks of MTs, a circular test is widely
used with a double ball-bar (DBB) [7, 8]; however, the
test results are, in general, not geometrically accurate due
to dynamic test conditions [9]. In detail, because the dy-
namic effects depend on the machine tested, it is difficult
to determine the criterion for measuring the velocity in the
circular test such that the dynamic effects are excluded
from the result. Making detailed velocity measurements
increases the measurement time, which is unacceptable
for interim checks. By way of contrast, there are two
methods, using a ball-bar and a three-dimensional (3D)
artifact for interim checks of coordinate-measuring ma-
chines (CMMs). For the ball-bar method, the fixed length
between two balls is measured at several positions, and
the measured lengths are used to calculate squareness er-
rors between the three linear axes [10, 11]. Similarly, a
telescoping ball-bar can be used to calculate squareness
errors by measuring the coordinates of the ball during a
circular test [12]. In the case of a 3D artifact, feature
points of a dimensionally well-established artifact are
measured, and geometric deviations from the nominal
values are used to calculate scale and squareness errors
of and between the three linear axes [13]. In particular, a
tetrahedral artifact is used widely in interim daily checks
due to its simplicity [14].

However, it can be difficult to apply these methods to
MTs because they require a dimensionally well-
established artifact and a 3D touch probe (not found on
many MTs) to measure the artifact. Thus, the measure-
ment procedure becomes more complex than those for
CMMs, with increases in measurement time and cost. To
overcome these limitations partially, a laser ball-bar was
developed for sequential trilateration and applied to MTs
[15]. However, this is limited to assessing the spindle
thermal drift and dynamic evaluation [16, 17].

Therefore, our study proposes a method for a quick,
easy-to-use interim check for the practical accuracy im-
provement of MTs by sequential measurements of a DBB

to measure the length of the six sides of a virtual regular
tetrahedron. It only requires a DBB to complete the inter-
im check for scale and squareness errors, thus simplifying
the measurement procedure cost-effectively. In Sect. 2,
sequential measurements of a DBB on a virtual regular
tetrahedron are proposed, and the relationship between
the measured lengths of the six sides and scale and
squareness errors are derived using homogeneous trans-
formation matrices under a small-value assumption. In
addition, the possible range of the scale and squareness
errors are calculated by using main contributors. In Sect.
3, the proposed method is applied to a MT for an interim
check and to improve the geometric accuracy via compen-
sation for measured scale and squareness errors. In Sect.
4, the advantages of the proposed method are summarized
with a discussion of its inherent limitations.

2 Interim check of machine tools using a double
ball-bar

Geometrically, a tetrahedron consists of vertexes Pi (i = 1,…,
4) and six sides (Fig. 1). The relationships between the

Fig. 1 Regular tetrahedron with nominal length L

Fig. 2 Formation of the virtual regular tetrahedron using the tool ball and
center mounts
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coordinates of the vertexes and the lengths of the sides are
determined as in Eq. (1).
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A tetrahedral artifact is commonly used for interim checks
of CMMs by comparing the measured and nominal coordi-
nates of the vertexes and calculating scale and squareness
errors. However, as mentioned in Sect. 1, this method has an
increased measurement cost with MTs as a tetrahedral artifact
and 3D touch probe are required to measure vertex coordi-
nates. Additionally, the checking workspace for MTs would
be determined by the fixed size of the commercially available
tetrahedral artifact. Thus, it would be necessary to prepare
several tetrahedrons for various cases. These limitations can
be avoided using sequential measurements of a DBB on a
virtual regular tetrahedron, as explained in detail below.

2.1 Sequential measurements of a virtual regular
tetrahedron

A tool ball, fixed at the tool nose, is commanded sequen-
tially for the nominal vertexes Pi (i = 1, 2, 3) of a virtual

regular tetrahedron. Center mounts, fixtures to keep the
ball position stationary during measurements, are then
used to retain each position of the tool ball (Fig. 2). The
tool ball is then commanded to locate at the vertex P4 to
completely form a virtual regular tetrahedron. The actual
vertexes Pi,m (i = 1,…, 4) might deviate from the nominal
position mainly due to geometric errors, including scale
and squareness errors. The virtual regular tetrahedron is
formed using the MT, so there are no alignment errors of
the tetrahedron, in comparison with the existing approach
[14]; this ensures consistent measurement results.

(a) 1st measurement

(d) 4st measurement (e) 5th measurement (f) 6th measurement

(b) 2nd measurement (c) 3rd measurement

Fig. 3 Sequential measurement
of a virtual regular tetrahedron
using a DBB

Fig. 4 Kinematic chain of the experimental MT structure

Int J Adv Manuf Technol (2017) 93:1527–1536 1529



Then, the lengths Lij between the actual vertexes Pi,m

(i = 1,…, 4) are measured using a DBB sequentially (Fig. 3).
The relationship between the lengths Lij and the actual vertex-
es Pi,m (i = 1,…, 4) is defined as in Eq. (2).

P1;m P2;m P3;m P4;m½ �

¼

0 L12 L13cosθ312 L14cosθ412

0 0 �L13sinθ312
L213 þ L214 � 2x3;mx4;m � L234

2y3;m

0 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L214 � x24;m � y24;m

q
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where

cosθ312 ¼ L212 þ L213 � L223
2L12L13

;

cosθ412 ¼ L212 þ L214 � L224
2L12L14

In this case, the length Lij may deviate from the nominal
length L due mainly to geometric errors of the three linear
axes. Generally, there are 21 geometric errors for the three
linear axes [18]; however, only three scale errors and three
squareness errors of and between the three linear axes are
modeled and calculated from the lengths Lij for the purpose
of a quick interim check and practical accuracy improvement.

2.2 Linear relationships between the measured lengths
of the six sides and geometric errors

The actual vertexes Pi,m (i = 1,…, 4) deviate from the nominal
vertexes Pi (i = 1,…, 4), because of geometric errors, including
scale and squareness errors. Therefore, it is necessary to derive
the relationship between the actual vertexes Pi,m (i = 1,…, 4),
nominal vertexes Pi (i = 1,…, 4), and geometric errors under a
small-value assumption for high-order terms of the geometric
errors [19]. The relationship is integrated to calculate the geo-
metric errors by applying a least squares method. As an exam-
ple, the experimentalMTstructure in Sect. 3 is used to derive the
relationship by applying the kinematic chain shown in Fig. 4.

In this case, the coordinate system {Y} can be derived from
the reference coordinate system {R} as follows:

τY
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Then, the coordinate system {X} is defined from the coor-
dinate system {Y} by defining τX

Y in Eq. (4).
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1 �szx 0 0
szx 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775

1 0 0 cxxi
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775

1 0 0 �xi
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775

¼
1 �szx 0 �xi þ cxxi
szx 1 0 �szxxi
0 0 1 0
0 0 0 1

2
664

3
775

ð4Þ

The coordinate system {Z} from the coordinate system {R}
is defined as shown in Eq. (5).
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To complete the kinematic chain of the MT, it is also nec-
essary to define the workpiece coordinate system {W} from
coordinate system {X} and the tool position {t} from coordi-
nate system {Z}, as shown in Eq. (6).
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Finally, the actual vertexes Pi,m (i = 1,…, 4) are derived by
using τt

W defined in Eq. (7).
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By integrating the relation in Eq. (7) for vertexes, a rela-
tionship between the actual vertexes Pi,m (i = 1,…, 4) nominal

vertexes Pi (i = 1,…, 4) and geometric errors is determined as
in Eq. (8). Then, the geometric errors are calculated by apply-
ing a least squares method to Eq. (8).

x1;m � x1
y1;m � y1
z1;m � z1

⋮
x4;m � x4
y4;m � y4
z4;m � z4

2
666666664

3
777777775
¼

�x1 0 0 y1 0 z1
0 �y1 0 0 �z1 0
0 0 z1 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
�x4 0 0 y4 0 z4
0 �y4 0 0 �z4 0
0 0 z4 0 0 0

2
666666664

3
777777775

cx
cy
cz
szx
sxz
syz

2
6666664

3
7777775

ð8Þ

In addition, it is essential to check the possible range of
the calculated geometric errors in Eq. (8) corresponding to
the possible range of the main contributors [20]. This
means that the calculated geometric errors are affected
by the repeatability of the linear axes controlled for the
measurement, and by the accuracy of the DBB used to
measure length Lij for the virtual regular tetrahedron. In

(a) Kinematic structure of the subject MT

(b) Regions 1 and 2 for interim checks

Fig. 6 Interim check volumes for the overall workspace of the subject
MT
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detail, the repeatability and accuracy of the DBB affect
the actual vertexes Pi,m (i = 1,…, 4) and the measured
length Lij, respectively. In addition, the effects of the re-
peatability and the DBB accuracy on the measurement
result are weighted in combination with the nominal
length L. Thus, the effects of these contributors on the
calculated geometric errors are investigated using a
Monte Carlo simulation. It should be noted that there
are few commercial DBBs, and the accuracy of the com-
mercial DBB used on the experiment in Sect. 3 is just
±0.2 µm. In comparison, the repeatability and nominal
length L have various practical values and their effects
on the measurement result are investigated. For the simu-
lation, random numbers following a normal distribution
are first generated within the possible ranges for the re-
peatability and the DBB accuracy. Then, the numbers
generated for the repeatability and DBB accuracy are
added to the nominal values. Finally, the geometric errors
are calculated using Eq. (8). This process is repeated
10,000 times and the range of the calculated geometric
errors is obtained to investigate the effect of the main
contributor on the measurement result. The range of the
calculated geometric errors is shown in Fig. 5 according
to the repeatability of the linear axes and the nominal
length L.

The range of the calculated geometric errors increases with
the repeatability of the linear axes and decreases as the nom-
inal length L increases. The range of the squareness errors
exceeds the range of the scale errors because the squareness
errors are defined and calculated using relative values between

(a) 1st measurement (b) 2nd measurement (c) 3rd measurement

(d) 4th measurement (f) 5th measurement (f) 6th measurement

Fig. 7 Sequential measurements of a DBB for an interim check in region 1

Fig. 8 Nominal vertex and actual vertex without/with compensation at
region 1
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the measured coordinate in Eq. (2). In general, the repeatabil-
ity is more significant for the measurement result than the
nominal length L. Thus, it is critical to use a MT with high
repeatability to obtain more accurate results with the method
proposed here.

3 Experimental study of the proposed method

The proposed method was applied to an example MT (SPT-
T30, Komatec Co. Ltd., Republic of Korea) using a DBB
(QC20-W, Renishaw PLC, UK) for an interim check. The
workspace of theMTwas 500 × 300 × 300mm; thus, a regular
tetrahedron could not cover all of the workspace. Two regular
tetrahedrons with a nominal side length L = 300 mm were
planned to cover the workpiece (Fig. 6).

In this case, a virtual regular tetrahedron was formed in
region 1 and the lengths Lij of the six sides were measured
sequentially using the DBB (Fig. 7). The coordinates of the
nominal vertexes Pi (i = 1,…, 4) and the actual vertexes Pi,m

(i = 1,…, 4) without/with compensation, derived using
Eq. (2), are shown in Fig. 8.

This procedure was then repeated for region 2 (Fig. 9),
and the nominal vertex Pi (i = 1,…, 4) and actual vertex

Pi,m (i = 1,…, 4) without/with compensation as shown in
Fig. 10. The tetrahedron measurements took ∼5 min. The
length deviation, which is the measured length Lij minus
the nominal length L, had maximum values of 19.4 and -

(a) 1st measurement (b) 2nd measurement (c) 3rd measurement

(d) 4th measurement (f) 5th measurement (f) 6th measurement

Fig. 9 Sequential measurements of a DBB for an interim check in region 2

Fig. 10 Nominal vertex and actual vertex without/with compensation at
region 2
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10.9 µm for regions 1 and 2, respectively (Fig. 11). These
findings show that the geometric errors of the subject MT
should be measured and compensated for to improve its
geometric accuracy. Additionally, the measured lengths in
regions 1 and 2 were not the same. Thus, the geometric
errors of the subject MT apparently had non-linear char-
acteristics within the workspace.

The scale and squareness errors of and between the three
linear axes were calculated using Eq. (8) for regions 1 and 2,
individually, and for regions 1 + 2 (Fig. 12). Table 1 lists the
possible range of the main contributors and the calculated
geometric errors in this case.

There were large values and large deviations between
them due to the non-linear characteristics mentioned
above. The measurements were repeated after compensat-
ing for the calculated geometric errors in Fig. 12 for each
case. The measured length deviations without/with com-
pensation are listed in Fig. 11. With compensation for
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Fig. 11 Measured length deviations in regions 1, 2, and 1 + 2

Fig. 12 Calculated geometric errors in regions 1, 2, and 1 + 2
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regions 1 and 2, individually, there were significant im-
provements in the length deviation to a maximum of only
2.6 µm. This result may have been affected by the repeat-
ability of the compensation and the possible range of
measured geometric errors, which are listed in Table 1.
The length deviation is amplified by the measuring sensi-
tivity direction compared to the X, Y, and Z directions of
the MT. However, in the case of compensating for regions
1 + 2 simultaneously, the maximum length deviations
were 8.7 and -9.3 µm for regions 1 and 2, respectively.
This may have been caused by an average effect of the
geometric errors in regions 1 and 2; however, they were
still smaller than the values without compensation.

Thus, experimentally, we can conclude that if the size
of the machined part is within the single tetrahedron vol-
ume in region 1 or 2, the form accuracy of the machined
part can be improved practically and significantly by
compensating for the calculated geometric errors.
However, if the size of the machined part is beyond that
of a single tetrahedron volume, it is recommended to mea-
sure the main geometric errors for the MT and compensate
for them to improve the geometric accuracy of the overall
workspace.

4 Conclusions

In this study, a method is proposed and demonstrated
experimentally for a quick, easy-to-use cost-effective in-
terim check and practical accuracy improvement of MTs.
Only a DBB is required to complete the interim check via
sequential measurements of a virtual regular tetrahedron.
Scale and squareness errors of and between the three lin-
ear axes were calculated using the measured lengths of the
six sides of the tetrahedron. Thus, the geometric accuracy
of the MT can be checked readily and improved upon by

compensating for the measured errors, daily and
periodically.

The advantages of the proposed method include (1) a
simple measurement procedure, using only a DBB; (2)
consistent measurement results by forming a virtual regu-
lar tetrahedron using the MT; and (3) high measurement
flexibility, by simply changing the DBB length and the
size of the tetrahedron. Thus, the proposed method is
suitable for cost-effective, quick interim checks of MTs
and practical accuracy improvement. In addition, the pro-
posed method may be extended to CMMs due to these
advantages.

It should be noted that the proposed method is effective
for interim checks of geometric accuracy, daily and peri-
odically, and practical accuracy improvement by measur-
ing and compensating the measure scale and squareness
errors. However, it does not address all possible inherent
geometric errors of MTs.
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