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Abstract This paper presents the analysis of average surface
roughness, cutting force, and feed force in turning of difficult-
to-machine Ti-6Al-4Valloy by experimental investigation and
performance modeling. Based on knowledge of the literature,
to pacify the elevated temperature in machining Ti-6Al-4V
and to ensure a clean environment, the experiments are carried
out in cryogenic (liquid nitrogen) condition by following the
Taguchi L18 mixed-level orthogonal array. Afterward, the
models of responses have been formulated by the response
surface methodology (RSM) and artificial neural network
(ANN). The higher values of correlation coefficient (≥96%)
and lower values of error determined the adequacy of the
developed models. Comparative study of both models re-
vealed that the RSM-based model revealed greater accuracy
for the testing data and hence recommended. Analysis of var-
iance (ANOVA) determined the effects of cutting speed, feed
rate, and insert configuration on the quality characteristics.
The results revealed that a cutting speed not exceeding
110 m/min is likely to generate favorable machining

responses. In addition, the higher feed rate was found to en-
sure better machining performances. Moreover, the
desirability-based multi-response optimization determined
that a cutting speed of 78 m/min, a feed rate of 0.16 mm/rev,
and use of the SNMM tool insert are capable of minimizing
surface roughness at 1.05 μm, main cutting force at 315 N,
and feed force at 208 N.

Keywords Surface roughness .Machining forces .Cryogenic
liquid nitrogen . Artificial neural network . Response surface
methodology

1 Introduction

Ti-6Al-4V has been extensively used in many critical engi-
neering areas, typically in load-carrying parts, chemical plant,
and aerospace industries due to its versatile properties [1].
This acceptability of Ti alloy is mainly accredited to its load
taking capability at elevated temperature and high specific
strength. However, at the same time, it is appraised as a
difficult-to-machine material owing to the adversities faced
during machining which are caused by the low Young’s mod-
ulus, poor thermal conductivity, and high chemical reactivity
[2, 3]. As a result, the performances get affected and the ma-
chining cost is increased. Researchers are seeking a way to
economically machine Ti-6Al-4V and, furthermore, trying to
control the machining process. Since Young’s modulus is a
material’s inherent property and cannot be changed, the focus
of researchers is to increase thermal (heat) dissipation from the
cutting zone. In addition, inertness is required to hinder the
chemical reactivity during the cutting.

Though the use of conventional cutting fluid can ensure
thermal cooling and lubrication, it violates the principle of
sustainable manufacturing due to its detrimental effects on
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the machine operator’s health and natural environment. In
addition, it is proved as counter-productive due to higher cost
associated with the huge amount of circulated fluid. In this
regard, the implementation of liquid nitrogen (cryogenic) is
deemed as an alternative sustainable solution [4]. The liquid
state of N2 (very low temperature), its chemical inertness, and,
most significantly, its environmental friendliness offer this
green technology as a problem solver for the aforementioned
adversities.

Researchers have reported the use of various coolant tech-
nologies for attaining amiable machinability of titanium alloy.
Notable coolant technologies include high-pressure coolant,
minimum-quantity coolant, and compressed-air and cryogenic
cooling [5–8]. It is reported that machining of Ti alloy is
possible by pacifying the temperature-oriented effects under
cryogenic application [9]. In support, Sun et al. [10] used
cryogenic compressed air and found reduced cutting temper-
ature which extended tool life and reduced cutting force.
Vazquez et al. [11] analyzed the superiority of MQL over
dry and flood cutting in respect of surface finish and tool wear
in micro-milling. Moura et al. [12] evaluated the performance
of solid lubricant mixed with fluid in machining of Ti alloy in
respect of surface roughness, force, and temperature. da Silva
et al. [13] examined tool wear in high-pressure-coolant-
assisted turning. Xie et al. [14] experimentally investigated
the temperature and force in turning using a specially designed
grooved tool. Su et al. [1] investigated tool wear behavior
under different environments in high-speed milling.

Effective control of machining is executed by modeling of
the performances prior to actual machining. The predictive
models of the quality characteristics forecast the outcome of
any machining well before it happens. As a result, the machin-
ing phenomena can be molded accordingly in favor of higher
productivity. Besides, the mathematical model aids in under-
standing the relation of a quality response with the influential
parameters.

Conventional (statistical regression) and non-conventional
(artificial intelligence) modeling techniques are proved to be
successful for various machining phenomena, although that
particular technique may not bring the best result for another
case [15]. For instance, Hasçalık and Çaydaş [16] employed
the Taguchi technique to optimize surface roughness and tool
life for turning of Ti-6Al-4V. A surface roughness prediction
model was developed by Zain et al. [15] by employing an
artificial neural network (ANN), and the model showed good
agreement between the actual and predicted surface rough-
ness. Hashmi et al. [17] developed a response surface meth-
odology (RSM)-based optimization model for minimum sur-
face roughness in milling of Ti-6Al-4V. Moufki et al. [18]
analytically derived cutting force for peripheral milling of
Ti-6Al-4V. Ramesh et al. [19] analyzed surface roughness
using the RSM and developed a predictive model while ma-
chining Ti alloy. Mia et al. [20, 21] in their studies conducted

modeling of different response parameters by using ANN,
support vector regression, the Taguchi S/N ratio, and the
Grey-Taguchi method with good accuracy between the
modeled results and actual machining data. However, their
studies, though focused on machining of Ti-6Al-4V alloy,
were under the application of high-pressure oil dual jets.

The presented work, in the literature, are either in the form
of experimental investigation, to evaluate the effects of any
particular factor or change on the responses, or in the form of
model development and validation for Ti-6Al-4V. However,
the studies revealed the existence of very few predictive
models of the cutting forces in the turning process. On the
contrary, some studies have been conducted for modeling of
surface roughness in machining of Ti-6Al-4V. Furthermore,
the congenial effects of cryogenic environment are well
established [4, 22] and implemented extensively in machining
of difficult-to-cut alloys. Yet, no such model exists that can
predict main cutting force, feed force, and surface roughness
for a range of values of cutting speed and feed rate in turning
of Ti-6Al-4V using two different tool inserts under the appli-
cation of liquid nitrogen. More to it, the performance of two
commercial coated carbide inserts (SNMM, SNMG) needs to
be evaluated in respect of favorable machinability.

Therefore, the study of investigation and formulation of the
predictive models of surface roughness and cutting forces in
turning under cryogenic machining condition is inevitable.
For that objective, in this study, the effects of cutting speed
and feed rate have been analyzed by using 2D and 3D graph-
ical plots and analysis of variance. Furthermore, the response
surface method and artificial neural network have been
employed to design the predictive models of main cutting
force, feed force, and surface roughness in turning of Ti-
6Al-4V alloy using two widely used tool inserts, i.e.,
SNMM and SNMG. Finally, the performance of the devel-
oped models has been checked by error analysis.

2 Methodology

2.1 Experimental conditions

The straight turning of Ti-6Al-4V (grade 5) having a diameter
of 100 mm and length of 400 mm has been carried out by a
powerful center lathe (7.5 kW, China) by using coated carbide
inserts of two different ISO specifications, namely SNMG
120408 and SNMM 120408. The chemical composition of
Ti-6Al-4V is shown in Table 1. Numerous studies are avail-
able in the literature wherein the conventional overflow-type
liquid cutting fluid has been used to pacify the elevated tem-
perature that prevails in the tool-work interface during turning
of Ti-6Al-4V. It is further noticeable that in most of the cases,
that coolant is ineffective in reducing the temperature. As
alternative cooling technology, cryogenic cooling is
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recommended. Based on this recommendation, in this study,
the cryogenic condition (by liquid nitrogen at –196 °C) is
applied. In machining such a difficult-to-cut material,
friction-induced heat generation occurs not only at the tool’s
rake surface but also at the principal flank face. Keeping this
in mind, the liquid nitrogen jets were impinged at the rake and
principal flank face of the insert by using a specially designed
nozzle applicator as shown in Fig. 1. The liquid nitrogen jet
applied at the rake surface (chip-tool interface) was oriented at
70° with the normal of the rake face and along the auxiliary
cutting edge of the tool. At the same time, the jet applied at the
flank surface (tool-work interface) was making an angle of
15° with the principal cutting edge [23, 24]. The experimental
conditions are listed in Table 2.

The depth of cut was kept constant at 1.0 mm. The cutting
speed, feed rate, and tool insert configuration have been con-
sidered as the input variables and diffused into levels as shown
in Table 3. The experimental layout has been oriented by
following a Taguchi L18 mixed-level orthogonal array-based
experimental design. Surface roughness was measured by a
Talysurf (Surtronic 3+) roughness checker; main cutting and
feed force were monitored by a 3D dynamometer (Kistler)
equipped with a data acquisition system. The photographic

view of the experimental setup is shown in Fig. 2. During
the recording of these responses, three replicates were taken
corresponding to eachmachining run, and afterward, themean
of these three values was obtained for further analysis. The
recorded forces and surface roughness are listed in Table 4.
Afterward, these data are used for the formulation of the arti-
ficial neural network predictive model and response surface
methodology-based predictive, mathematical, and optimiza-
tion model.

2.2 Artificial neural network

A feed forward back-propagation multi-layer neural network
with 3-n-1 architecture has been used, separately, for each
response. The used structure, as shown in Fig. 3, has three
input neurons (corresponding to the cutting speed, feed rate,
and cutting tool insert) and possess n number of neurons (de-
termined by the accuracy level) and one output neuron (main
cutting force or feed force or surface roughness). Basically,
this type of neural network algorithm works by following the
ten steps [25] listed in Table 5.

The ANN models of forces and surface roughness have
been trained by using the Bayesian regularization “trainbr”
of the MATLAB R2015a “nnstart” wizard. Bayesian regular-
ization [26] can handle imprecise data by solving problems
regarding overfitting and underfitting. Moreover, the distribu-
tion of weights and biases to the neurons is random, and after
an analysis, the optimum weights are assigned [27]. In the
hidden layer, the hyperbolic tangent sigmoid function “tansig”
and, in the output layer, the pure linear function “purelin” have
been employed based on the study of Ezugwu et al. [28].
During training of models, the error function “mean square
error” (MSE) and, during testing of the models, the “mean
absolute percentage error” (MAPE) were employed. The error
functions are defined in Eqs. 1 and 2.

MSE ¼ 1

N
∑
N

n¼1
Actual−Predictedð Þ2 ð1Þ

MAPE ¼ 1

N
∑
N

n¼1

Actual−Predictedj j
Actual

� �
� 100 ð2Þ

It is a challenge to develop an effective model with few
numbers of experimental data. Nonetheless, it is essential and
therefore can determine the ability of a particular method in
formulating a model. Among the 18 data sets in Table 4, ran-
domly selected 13 sets have been used to construct models
and the other 5 sets were employed for the validation of the
developed ANN model. Note that as mentioned earlier, the
model is “3-n-1”; thereby, for each response (i.e., surface
roughness, feed force, and main cutting force), this training
and testing ratio (=13:5) remains valid.

Cutting 
tool insert

Liquid N2

chamber

Inlet nozzle

Nozzle opening 
aiming at rake surface

Nozzle opening aiming 
at flank surface

Fig. 1 Schematic of nozzle system for simultaneous applications of
liquid nitrogen at the rake surface and principal flank surface of cutting
tool insert

Table 1 Chemical composition of Ti-6Al-4V

Element

Al V Fe O C N H Ti

%wt 6.34 4.12 0.04 0.194 0.014 0.009 0.0023 Balance
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2.3 Response surface methodology

The RSM is a conventional statistical tool to formulate an
approximate mathematical relationship, for modeling, simula-
tion, and optimization, of the dependent variables (herein
main cutting force, feed force, and surface roughness) in terms
of the independent variables (herein the cutting speed, feed
rate, and tool insert) [29, 30]. The RSM covers the response(s)
of a system (i.e., machining system) for a range of factor levels
and further deals with defining a region corresponding to the
optimum solution or near-optimum solution. As a course of
action, the response can be mathematically related with the
factors by using first-order or second-order polynomial equa-
tions. For a complex system like machining wherein multiple
factors influence the outcome and there exist mutual interac-
tions, the pure linear system hardly reflects the actual machin-
ing behavior. In this perspective, the use of the quadratic re-
sponse function as shown in Eq. 3 is deemedmore appropriate
to express the relevant relation.

X ¼ βo þ ∑
k

i¼1
βixi þ ∑

k

i¼1
βiixi

2 þ ∑∑i< jβijxix j þ ε ð3Þ

where X is the dependent variable; βo is the fixed term;
βi , βii , βij are the coefficients of linear, quadratic, and cross-
product terms, respectively; and xi is the input variable.

This general equation can be presented as Eq. 4 wherein the
symbols of the current study are used.

Y ¼ C þ Vcþ f þ Vc2 þ f 2 þ Vc� f ð4Þ

Here, Y indicates the response parameter (i.e., Pz, Px, and
Ra) and C is the constant term. Note that the independent
variable cutting tool (T) insert is a categorical variable and
therefore is not included in Eq. 4; rather, two forms of Eq. 4
respective to SNMM and SNMG are constructed.

Associated with the RSM is the statistical analysis of var-
iance (ANOVA). The influences of the individual factor and
interactions among factors on the responses are determined by
the ANOVA. Furthermore, it assists in determining the statis-
tical significance [31].

Optimization by the desirability method includes the use of
an objective function, also called the desirability function, de-
noted byD(X).D(X) comprisesmultiple desirability values (i.e.,
di). Each desirability ranges from the least to the most which in
turn possesses the numerical value 0 to 1. Presumably, the
highest combined desirability, which is computed by taking
the geometric means of all the desirability functions, represents
the optimum responses for an optimum parameter setting. The
combined objective function is shown in Eq. 5.

D ¼ d1 � d2 �…� dnð Þ1=n ¼ ∏
n

i¼1
di

� �1=n

ð5Þ

Table 2 Experimental conditions
Category Specification

Machine tool Lathe; origin, China; power, 7.5 kW

Material Ti-6Al-4V; grade, 5; phase, α + β; hardness, 35–40 Rockwell C; density, 4.43 g/cm3;
heat conductivity, 7 W/mK; yield strength, 950 MPa; tension strength, 1050 MPa;
Young’s modulus, 110 N/mm2; elongation, 8%

Cutting tool SNMG 120408 (chip breaker at double side); SNMM 120408 (chip breaker at single
side); material, WC; coating, CVD Ti(C,N) + Al2O3 + TiN; shape, square;
clearance angle, 0°; rake angle, 0°; effective cutting edge length, 11.91 mm; insert
thickness, 4.76 mm; nose radius, 0.8 mm

Tool holder PSBNR 2525 M12

Cutting parameters Cutting speed and feed rate, variable; depth of cut, 1.0 mm

Machining length 200 mm per experimental run

Cutting tool condition New tool in each machining run

Cutting environment Cryogenic condition by liquid nitrogen (temperature, −196 °C)

Ti-6Al-4V

Force reading

N2 Dewar

Dynamometer

Fig. 2 Experimental setup

Table 3 Input variables and distribution of levels

Variables Level 1 Level 2 Level 3

Cutting speed, Vc (m/min) 78 112 156

Feed rate, f (mm/rev) 0.12 0.14 0.16

Tool insert, T SNMM SNMG –
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The tentative goals for optimization are to maximize, min-
imize, reach a target, within range, none (applicable for re-
sponses), and meet an exact value (applicable for factors on-
ly). This study focuses on the “minimization” goal for all the
responses and concurrently applies “within range” for the fac-
tors. Therefore, the following relations are applicable:

& Minimum:

– di = 1 if response < low value
– 1 ≤ di ≤ 1 as response varies from low to high
– di = 0 if response > high value

& Range:

– di = 0 if response < low value
– di = 1 as response varies from low to high
– di = 0 if response > high value

3 Results and discussion

3.1 Probability distribution of machining data

Prior to using the collected machining response data, they
have been analyzed with the appropriate probability distribu-
tion function so that it is ensured that the data are usable.
Generally, any system is likely to generate data that are nor-
mally distributed; therefore, it is highly imperative that for
each of the responses (i.e., main cutting force, feed force,
and average surface roughness), the collected data are checked
for the assumption of normal distribution.

Empirical cumulative distribution (ECD) is such a statisti-
cal tool that analyzes a parameter for a specific probability
distribution function [5, 31]. Since this study concerns the
normal distribution function, herein the collected data are plot-
ted for ECD in Fig. 4 in association with normal distribution.
Herein, the x-axis represents the collected data of cutting
forces and surface roughness while the y-axis indicates the
percentile. Figure 4a includes the ECD of main cutting force
and feed force whereas Fig. 4b shows that of surface rough-
ness. In all these plots, the stepped (stair like) lines indicate a
gradual progression of both the data value and percentage
value of the actual data. On the contrary, the smooth curve
passing through the stepped line is the representative of the
normal distribution function.

It is appreciable that main cutting force (Pz) and feed force
(Px) are reasonably aligning with the normal distribution func-
tion. Though the surface roughness parameter is showing little
discrepancy in aligning with the normal distribution curve, it
is acceptable to further process for the mathematical model-
ing, prediction of performance parameters, and optimization
results. At the same time, it becomes important to investigate
the reason for this variance. To be exact, the means of Pz, Px,
and Ra are 370 N, 236.7 N, and 2.62 μm, respectively, and the
standard deviations are 29.1 N, 18.8 N, and 1.02 μm, corre-
spondingly. Consequently, the coefficient of variation (Cv)
value, which is the representative of the data dispersion, com-
puted by taking the ratio of the standard deviation with respect
to the mean value, stands at 7.86, 7.94, and 39.13%, respec-
tively, for main cutting force, feed force, and average surface

Table 4 Taguchi L18 mixed-level orthogonal array and machining
characteristics

Exp. runs Input variables Responses

Vc (m/min) f (mm/rev) T Pz(N) Px(N) Ra(N)

1 78 0.12 SNMG 370 229 2.65

2 78 0.12 SNMM 330 218 1.12

3 78 0.14 SNMG 370 229 4.28

4 78 0.14 SNMM 330 218 1.22

5 78 0.16 SNMG 320 198 3.66

6 78 0.16 SNMM 320 211 1.1

7 112 0.12 SNMG 390 242 2.78

8 112 0.12 SNMM 370 244 1.52

9 112 0.14 SNMG 380 236 2.89

10 112 0.14 SNMM 380 251 1.59

11 112 0.16 SNMG 350 217 2.9

12 112 0.16 SNMM 360 238 1.4

13 156 0.12 SNMG 400 248 2.91

14 156 0.12 SNMM 400 264 3.54

15 156 0.14 SNMG 410 254 3.2

16 156 0.14 SNMM 400 264 3.74

17 156 0.16 SNMG 390 242 3.21

18 156 0.16 SNMM 390 257 3.48

Fig. 3 ANN architecture for three inputs and one output

Int J Adv Manuf Technol (2017) 93:975–991 979



roughness in turning of Ti-6Al-4Valloy under cryogenic con-
dition. This low value of the coefficient of variation (of Pz and
Px) provides the acceptability of using these data. However,
the high value of the coefficient of variation of Ra can be
justified if one or more factor(s) influenced the responses to
be changed significantly. This clarification is provided in
Sections 3.2 and 3.3.

3.2 Analysis of variance

As mentioned earlier, the influence of each factor on the indi-
vidual response is determined by using analysis of variance

(ANOVA). The ANOVA operates based on parameters, name-
ly the sum of squares (SS), P value, and F statistics. The SS
indicates the deviation from the mean, which is derived from
that source (factor); the P value represents the statistical sig-
nificance to a confidence interval of 95% (i.e., significance
level α = 0.05); if the P value is lower than α, then that factor
(or source) is significant; lastly, the F statistics, which is de-
rived by dividing the term MS of a factor with MS of error,
tells the relative importance of the factors [30, 32].

Table 6 shows the ANOVA for main cutting force. A study
based on the aforementioned parameters reveals that the
highest variation in main cutting force comes from the cutting

Table 5 Steps for the feed forward back-propagation neural network

Step Description For this study

1 Number of hidden layers to be used 1

2 Input and output neuron numbers to be selected 3 and 1, respectively

3 Training function selection Bayesian regularization

4 Assigning weights to the links Smaller is better

5 Outputs of hidden and output layers to be calculated

outi ¼ f net1ð Þ ¼ f ∑
wij

out j þ θ1

 !

Here outi represents the output of the ith neuron of the said layer whereas
outj stands for the output of the jth neuron of the preceding layer.

f is the tan sigmoid function

f net1ð Þ ¼ 2
1þe−2n −1

6 Computing the output and comparison with the expected output. Computation
of error (desired value − actual value) and root-mean-square error Ep ¼ 1

2∑ tpj−dpj
� �

2

Here Ep represents the error for the pth vector and tpj and dpj
stand for the actual and desired output values, respectively.

7 Evaluating the errors in the hidden layers and back-propagation for the
hidden and output layers. Adjustment of weights accordingly

For output neurons, error—
δpi = (tpi − dpi)dpi(1 − dpi)
For hidden neurons, error—
δpi = (tpi − dpi)dpi∑ δpiWki

For weight adjustment—
ΔWji(n = 1) = η(δpidpi) =αΔWji(n)
Here η represents the learning rate parameter.

8 Iterations continued until the predefined criteria are met.

9 After stopping of iterations, the ultimate weight values attached with the
hidden and output layers are noted.

10 Validating the neural network model with the testing data. In this stage, the
prediction error should be sufficiently low. Otherwise, the back-propagation
model is again run with a new set of the aforementioned parameters.

543210
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StDev 1.026
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Empirical CDF of Ra
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baFig. 4 Empirical cumulative
distribution functions of a cutting
forces and b surface roughness
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speed, followed by the feed rate and lastly from the selection
of the cutting tool. In a similar fashion, the F statistics pro-
vides the same message; the relative importance of the cutting
speed is higher, afterward the feed rate. Based on the P value,
it can be asserted that the cutting speed and feed rate both are
statistically significant factors.

Next, Table 7 lists the ANOVA for feed force. Here, one
can see that like main cutting force, the highest variation is
contributed by the cutting speed, and then the feed rate follow-
ed by the tool insert. However, all the factors are found statis-
tically significant based on the P value (<0.05). The F value
demonstrates that the cutting speed has a far more important
role compared to the other two factors. In this respect, it is
understood that by controlling the cutting speed, the feed force
can be controlled and favorably turned to better machinability.

On the other side, Table 8 shows the ANOVA for the av-
erage surface roughness parameter. Herein, it is discernable
that tool configuration causes the highest variation in surface
roughness. The second next variation is created by the cutting
speed, which is somewhat close to the variation of the cutting
speed. Compared to these, the deviation instigated by the feed
rate is trivial. The F statistics also reveals the same outcome.
Based on the P value, it is appreciable that the tool insert
configuration and cutting speed are statistically significant.
One must notice here that a higher coefficient of variation of
surface roughness, described in Section 3.1, is accredited to
the wider variation of surface roughness caused by the tool
insert configuration and cutting speed.

Figure 5 shows the percentage contribution (PC) of factors
on the responses. PC is calculated by obtaining the ratio of SS
with respect to total SS (from ANOVA tables). Herein, quan-
titative values depict that the cutting speed exerted ∼71% con-
tribution (highest) on the cutting forces while 26.84% on

surface roughness. Furthermore, the influence of the feed rate
on forces (∼14%) and effect of tool insert configuration on
surface roughness (∼29.6%) are notable.

3.3 Main effects and 3D response surface plots

The movement of the mean of responses (for instance, the
mean of main cutting force) with respect to the investigated
input parameters is studied herein. One can see that Fig. 6
illustrates the main effects plot of main cutting force with
respect to the tool insert, cutting speed, and feed rate. It is
appreciable that use of the SNMM insert is associated with
lower main cutting force, so are using the lowest cutting speed
and highest feed rate. Further noticeable is the change in cut-
ting speed over its range, which causes a great range of cutting
force, significantly greater than the range caused by the other
factors. This is aligning with the results caused by the
ANOVA. Figure 7 shows the main effects plot for the feed
force. Like Pz, the feed force presents a similar trend except
that the SNMG tool insert divulged a lower feed force.
Therefore, the lowest feed force is found at the lowest cutting
speed, highest feed rate, and in machining under the SNMG
tool insert. Figure 8 depicts the main effects plot for average
surface roughness. Unlike the previous two responses, herein,
the tool insert plays a dominant role in defining surface rough-
ness. The SNMM insert produced the lowest surface rough-
ness (more than 50% reduced mean Ra compared to that of the
SNMG insert). Then, the behavior of the cutting speed is
different too. The lowest mean surface roughness is achiev-
able at a cutting speed of 112 m/min and at a feed rate of
0.12 mm/rev (lowest).

The 3D response surface plot is an effective graphical tool
that enables to visualize the behavior of a response with re-
spect to two variables at a time [33], in this case with respect to
the cutting speed and feed rate. Figure 9 exhibits the 3D sur-
face plots of the investigated responses, i.e., (a) main cutting
force, (b) feed force, and (c) average surface roughness. First
of all, it is appreciable that the relations which are depicted in
these figures are very complex, consisting of several peaks
and crests. In continuation, both the cutting forces signify
almost similar trends wherein a lower feed rate and higher
cutting speed tend to generate higher cutting forces and a
higher feed rate and lower cutting speed are responsible for

Table 6 ANOVA for main cutting force

Source DF Adj. SS Adj. MS F P Remark

Cutting tool 1 555.6 555.6 4.23 0.062 Not significant

Cutting speed 2 10,233.3 5116.7 38.92 0.000 Significant

Feed rate 2 2033.3 1016.7 7.73 0.007 Significant

Error 12 1577.8 131.5 – –

Total 17 14,400.0

Table 7 ANOVA for feed force

Source DF Adj. SS Adj. MS F P Remark

Cutting tool 1 272.2 272.2 5.03 0.045 Significant

Cutting speed 2 4272.3 2136.17 39.49 0.000 Significant

Feed rate 2 816.3 408.17 7.55 0.008 Significant

Error 12 649.1 54.09 – –

Total 17 6010.0

Table 8 ANOVA for average surface roughness parameter

Source DF Adj. SS Adj. MS F P Remark

Cutting tool 1 5.3029 5.3029 8.70 0.012 Significant

Cutting speed 2 4.8058 2.4029 3.94 0.048 Significant

Feed rate 2 0.4801 0.2401 0.39 0.683 Not significant

Error 12 7.3148 0.6096 – –

Total 17 17.9037

Int J Adv Manuf Technol (2017) 93:975–991 981



lower cutting forces. In the case of surface roughness, differ-
ent scenarios prevail. Herein, the feed rate has little influence,
and a cutting speed of 112 m/min is associated with the lowest
surface roughness (understandable from the crest existing at
Vc = 112 m/min). Note that a higher cutting speed is reflected
with higher surface roughness.

3.4 Residual analysis of responses

Residual plots are critical tools for evaluating the goodness of
fit of the models [31]. There are four plots: the normal prob-
ability plot, then the residual versus fitted plot, histogram of
the residuals, and the residual versus observation order plot.
Figure 10 shows the residual plot for main cutting force. Here,
in the normal probability plot, the data points are reasonably
close to the straight line; thereby, the assumption for normality
remains valid [34]. The residual versus fitted plots show that
data points are randomly scattered; therefore, the assumption
for constant variance is correct [34]. Nevertheless, some
skewness in the left side is noticeable from the histogram plot.
Finally, in the residual versus order plot, an increasing trend is
visible in the first segment and after that, ups and downs are
appreciable. This can be due to the contribution of SNMMand
SNMG tool-induced cutting force.

Figure 11 illustrates the residual plots for feed force. The
residuals are normally distributed; constant variance is valid;
however, little skewness in the left tail and increasing and
decreasing correlations are visible in the initial and later
stages. Figure 12 shows the residual plot for surface rough-
ness. Herein, residuals are normally distributed, three groups
of data are visible, skewness is not visible, and increasing and
decreasing patterns are noticeable.

3.5 Effects of cutting speed and feed on surface roughness

Figure 13 exhibits the behavior of the average surface rough-
ness parameter with the progression of the cutting speed at
different feed rates operated by using the SNMG and SNMM
tool inserts. When machined by the SNMM insert, surface
roughness gradually increases with the cutting speed, and this
increment is higher at higher speeds. This can be attributed to
the expedited tool wear originated at increased cutting speed
which makes the tools blunt [35]. While machining by the
SNMG insert, the pattern of surface roughness is almost recip-
rocal, i.e., reduces with an increasing cutting speed. In this case,
the effect of reduced friction due to a higher cutting speed and
less chattering associated with no-BUE formation on the tool
contributed to this lowering of surface roughness [5, 33].

Fig. 5 Percentage contribution of
the factors on the responses

Fig. 7 Main effects plot for feed forceFig. 6 Main effects plot for main cutting force
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Noticeably, at a higher speed, this increment is very trivial. On
the other side, the effect of another cutting parameter, i.e., the
feed rate, is not coherent; however, in the SNMG insert, the
lowest feed rate induced the lowest surface roughness whereas
in the case of the SNMM insert, the highest feed rate produced
the lowest surface roughness. Presumably, the results found for
the SNMG insert are in good agreement with the theoretical
relation of surface roughness and feed rate, i.e., surface rough-
ness is proportional to the square of the feed rate for a constant
tool nose radius [5]; nonetheless, the behavior of surface rough-
ness for the SNMM insert shows, unexpectedly, the opposite of
the theoretical relation. The prime reason for this opposing
behavior may be the proportionate increment in the tool nose
radius with the augmented feed rate under the application of
cryogenic cooling, which also contributed to the material’s in-
stantaneous thermal treatment and hardening [36]. This hard-
ening of the material induces better finishing by generating
lower surface roughness.

3.6 Effects of cutting speed and feed on cutting forces

Figure 14a shows a steady increase in main cutting force with
increasing cutting speed; besides, the highest feed rate for both
inserts creates the lowest cutting force. The former point is
explained by the fact that the increased cutting speed imparts
higher material straining for chip formation which in turn en-
gendered elevated cutting zone temperature [30, 36].
Presumably, the application of cryogenic cooling reduces the
cutting zone temperature [8], yet as a side effect, it created
material hardening and thereby an augmented cutting force
was required at an accelerated cutting speed. Furthermore, as
mentioned earlier, the rapid tool wear at higher cutting speed
hinders the performance of the tool insert and the tool becomes
blunt. To compensate for this loss, while machining at a higher
cutting speed, a higher cutting force is required for chip shear-
ing. Furthermore, the change in chip formation along with in-
creased friction tends to accumulate machining forces [10].

Figure 14b reveals a similar trend for feed force wherein the
SNMG insert is associated with lower feed force generation.
Similar causes can be attributed to this feed force pattern.

3.7 Predictive model by ANN

After using the randomly preselected training data in ANN
model construction, the network structure was determined
with an optimized error value right after the halting of gener-
alization. Figure 15 shows the designed networks with speci-
fied hidden neurons for main cutting force, feed force, and
surface roughness under the application of liquid nitrogen.
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Here, w and b are the assigned weights and biases for the
neurons, respectively. According to Fig. 15, the value of main
cutting force (Pz) has been predicted by using the 3-20-1 struc-
ture and feed force (Px) by using the 3-15-1 structure. During
the trial-and-error stage of determining the hidden neuron
numbers for surface roughness, 2 × no. of input neurons +
1 = 7, suggested by Lippmann [37], has been implemented
and provided the best result. Thus, the 3-7-1 structure has been
used for surface roughness (Ra) prediction corresponding to
the input parameter setting. However, there is no certainty that
this hidden node number works accurately in other application
areas. In addition, these constructed models need to be tested
to ascertain the level of prediction accuracy for the data out-
side of the training data which is done under Section 3.9.

3.8 Quadratic model by RSM

The full quadratic models (equations) of main cutting
force, feed force, and surface roughness have been de-
veloped by using the RSM for the two different inserts,
i.e., SNMG and SNMM, and are shown by Eqs. 6–11,
respectively. The corresponding correlation coefficient
(R2) has also been mentioned. Bouacha et al. [38], when
they developed response surface models of forces and
surface roughness, also found almost similar values of
R2. Therefore, these R2 values suggest that the formu-
lated RSM models can be used for the prediction of
cutting forces (main and feed) and surface roughness
[16].

SNMG Pz ¼ −241−1:106Vc þ 10; 170 f −0:0004Vc
2−44; 409 f 2 þ 12:86Vc � f R2 ¼ 98:54%

� � ð6Þ
SNMM Pz ¼ −408−0:562Vc þ 10; 893 f −4� 10−4Vc

2−44; 409 f 2 þ 12:86Vc � f R2 ¼ 98:54%
� � ð7Þ

Fig. 11 Residual plots for feed
force

Fig. 10 Residual plots for main
cutting force
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SNMG Px ¼ −136þ 0:961Vc þ 4937 f −0:00205Vc
2−19; 440 f 2−1:08Vc � f R2 ¼ 96:54%

� � ð8Þ
SNMM Px ¼ −230þ 1:202Vc þ 5459 f −0:00205Vc

2−19; 440 f 2−1:08Vc � f R2 ¼ 96:54%
� � ð9Þ

SNMG Ra ¼ −13:6−0:1085Vc þ 309 f þ 5:55� 10−4Vc
2−944 f 2−0:199Vc � f R2 ¼ 97:21%

� � ð10Þ
SNMM Ra ¼ −16:1−0:0708Vc þ 288 f þ 5:55� 10−4Vc

2−944 f 2−0:199Vc � f R2 ¼ 97:21%
� � ð11Þ

3.9 Comparison of ANN and RSM models

Themean absolute percentage error (MAPE) for the ANN and
RSM models has been computed for main cutting force, feed
force, and surface roughness after calculating the absolute
percentage error (APE) for each experimental and predicted
response. These values are listed in Table 9. It is discernable
from Table 9 that theMAPE for main cutting force, feed force,

and surface roughness is 2.93, 2.32, and 12.36%, respectively,
for the predicted response values by ANNwhereas 1.73, 1.63,
and 9.06%, respectively, for the RSM predicted response
values. Although the average errors of main cutting force
and feed force are comparatively low, the errors of surface
roughness for both ANN and RSMmodels are high. This high
prediction error is attributable to the undefined randomness of
surface roughness, which has resulted from the contribution of
the feed rate and generated cutting temperature due to friction
and non-uniform hardness distribution within the material
[32]. However, the response surface method showed an accu-
racy that is higher than the accuracy of the neural network-
based models. However, a comparative study of the RSM and
ANN conducted by Sahoo et al. [39] found superior perfor-
mance of the ANN. The RSM-based surface roughness pre-
diction model even though suggests a MAPE of 9%, which is
greater than the average prediction error level derived by
Azam et al. [40] for high-strength low-alloy steel by using
the RSM, yet the developed model is acceptable as the error
rate lay below 10% and the error rate found by Basheer et al.
[41] for a metal matrix composite.

The formulated models were put into the testing phase to
evaluate prediction capability for a parameter setting that is
different from the training data set [33]. The results of the
model testing are shown in Fig. 16, wherein the y-axis rep-
resents the response and the x-axis shows the testing run

Fig. 12 Residual plots for
average surface roughness
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orders (italicized data, as in the sequence in Table 9). Here,
it is noticeable that the response surface model, for most of
the runs, generated response values closer to the actual
response values. In the case of main cutting force, the
RSM and ANN models showed a mixed tendency of
over- and underestimation. For the feed force, the ANN
exhibited overestimation and the RSM showed mixed esti-
mation. Lastly, for surface roughness, the ANN revealed
overestimation for all runs except the first run and the
RSM provided a combination of over- and underestima-
tion. In sum, on the ground of testing of non-trained data,
the response surface-based models are more accurate in
prediction. This superior accuracy of the RSM was
established due to the fact that the quadratic relation of

response and factors defined by the RSM agreed complete-
ly for these cases [32].

The regression plots of the actual and predicted forces and
surface roughness are illustrated in Fig. 17. These figures are
constructed for the total data sets (training and testing). The y-
axis shows the predicted value while the x-axis represents the
actual values of the response. The dot line is the ideal straight
line which indicates an equal relation between the actual and
predicted responses, whereas the solid line represents the re-
gression line showing the best fit between the predicted and
actual responses. The dot points represent the actual versus
predicted response plot.

Figure 17a shows that the ANNmodel has a comparatively
low value of correlation coefficient (91.51%) as the points are
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scattered, while the RSM model possesses a correlation coef-
ficient value (94.85%) that is higher than that of the ANN
model due to the existing closeness among the points.
Similarly, Fig. 17b shows that the ANN regression curve
shifted to the left side at the region of lower feed force; how-
ever, at higher feed force, the ideal and fit curves inclined
closely to each other. The RSM regression fitting is found to
be in good accordance (96.38%) with the ideal actual-
predicted response as the experimental values of the forces
are closely aligned. Figure 17c reveals quite alarming results
when predicted by the ANNmodel as the experimental values
formed clustered into two groups—one at the higher values of
surface roughness and the other at the low values of surface
roughness. In addition, the variability of the data is very high
and results in a lower value of the correlation coefficient
(91.03%) than that of the RSM (96.69%). Though, in the
RSM model, there exist two groups of data at the lower and
higher ranges, the variability of the data is uniformly distrib-
uted against the ideal curve and hence reveals a better value of
the correlation coefficient.

Even though the accuracy of the ANNmodel is expected to
be higher for a good number of training data, the limitation of
the resource [15] (machine, material, time, etc.) has forced us
to conduct this experiment with 18 experimental trials. This
fact might be a possible reason for the ANN model to exhibit
the higher error values for the training data. Trade-off between

cost-time and accuracy is thus required. After a lot of trial-and-
error iterations to determine the number of hidden neurons, the
best results providing network structures are determined in
this work to predict the machining responses. These network

Table 9 Absolute percentage error of ANN and RSM models

SL no. Artificial neural network Response surface method

APE-Pz APE-Px APE-Ra APE-Pz APE-Px APE-Ra

1 2.4806 0.5922 19.8207 0.4140 0.0209 11.9022

2 6.5098 2.7790 3.5468 1.0161 0.5283 22.3878

3 5.0450 2.2289 26.3636 1.6059 1.7751 8.1249

4 3.6726 0.7813 6.2367 3.1356 2.4150 15.514

5 6.8666 9.8095 14.9616 0.3302 3.7203 13.214

6 4.0475 2.2249 3.6604 2.5580 1.4832 8.5277

7 2.0394 1.7817 18.5061 1.5809 0.8385 26.273

8 0.7262 1.0017 30.0652 1.5878 1.5975 18.632

9 1.9640 1.6752 15.2863 1.3426 1.3903 0.3076

10 4.4365 3.4011 15.8095 0.0366 2.0767 3.2485

11 3.7117 4.3740 16.0331 0.2406 0.9130 1.9766

12 1.7685 0.1465 22.9432 0.0193 0.8734 7.7836

13 2.1532 4.2291 8.8101 0.4003 3.4338 4.8638

14 0.0635 1.5253 2.6294 0.6478 0.3142 2.1715

15 2.5363 0.3624 0.5471 0.2387 1.2513 7.0390

16 2.3747 0.7248 9.7681 7.4099 1.4811 2.8562

17 0.0907 3.8302 1.8346 0.5047 5.1339 3.6309

18 2.2859 0.3893 5.6690 7.9899 0.0380 4.5605

MAPE 2.9318 2.3254 12.3606 1.7255 1.6269 9.0566

Italicized numbers indicate APE for testing data
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structures are 3-20-1, 3-15-1, and 3-7-1 (trained by Bayesian
regularization) for main cutting force, feed force, and surface
roughness, respectively.

3.10 Optimization by desirability function

In this section, the minimization of main cutting force, feed
force, and surface roughness is performed by using the desir-
ability function. Since multiple responses are involved, herein,
the optimization has turned to be a composite desirability-
based optimization [42]. The optimization has been conducted
within some constraints and objectives, which are listed in
Table 10. The weights and importance for all the responses
are given as 1.0, that is, all the responses are equal in all
perspectives. With a view to attain these objectives, the opti-
mization has been conducted, which is displayed in Fig. 18.

Fig. 17 Regression plots of
predicted and actual responses for
amain cutting force, b feed force,
and c average surface roughness

Table 10 Parameters for optimization of multiple characteristics

Response Goal Lower Target Upper Weight Importance

Ra Minimize 1.1 1.1 4.28 1 1

Px Minimize 198 198 264.0 1 1

Pz Minimize 320 320 410.0 1 1
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The results of the optimization provided by the composite
desirability function and its comparison with that of the ex-
perimental value are shown in Table 11. One can see that the
composite desirability is 0.9455, which makes the optimum
results acceptable. The optimum parameter values are a cut-
ting speed of 78 m/min, a feed rate of 0.16 mm/rev, and use of
the SNMM cutting tool insert. Consequently, by using these
cutting parameter values, it is possible to simultaneously
achieve a surface roughness of 1.05 μm, main cutting force
of 315.1 N, and feed force of 208.21 N. One can further notice
that the actual experimental results, which are the values of
surface roughness, main cutting force, and feed force, are very
close to the optimum outcomes derived by the composite de-
sirability function. To be specific, the percentage changes be-
tween the theoretical optimum and experimental optimum re-
sults are 4.55, 1.32, and 1.53% for surface roughness, main
cutting force, and feed force, respectively. These deviations
are small and thereby declare the optimum results of this study
as acceptable. Similar deviations can be found in the work
reported by Mia et al. [21].

4 Conclusions

In this work, an attempt has been made to investigate the
effects of machining parameters during turning of difficult-
to-cut Ti-6Al-4V alloy. Furthermore, two predictive models
of main cutting force, feed force, and surface roughness were
developed by using the RSM and ANN. The optimization of
these responses was also performed by using the composite
desirability function. The experimental data were collected
under the application of environmentally benign cryogenic
machining condition. The cutting speed, feed rate, and tool
insert configurations were considered as the influential factors
in this study. From the experimental runs, subsequent model
development, and result analysis, the following concluding
notes can be extracted:

& The SNMM insert is found to provide lower surface
roughness when subjected to low-cutting-speed machin-
ing. However, a low cutting speed is counter-productive;
thereby, it is suggested to maintain the cutting speed not
more than 110 m/min. Herein, the effect of the feed rate is
recognized as insignificant.

& A lower-to-medium cutting speed is deemed favorable as
a balance between low cutting force and feed force with
productivity. Unexpectedly, the highest feed rate produced
the lowest forces, which yet maintain good agreement
with the lowering of surface roughness. In this case, the
recommended cutting speed is ∼110 m/min and feed rate
0.16 mm/rev.

& The RSM models of forces and surface roughness re-
vealed better accuracy with untrained data compared to
the ANN models.

& The mathematical models (by the RSM) showed very
promising values of correlation coefficient (above 96%)
and thus reflect the appropriate relation of the dependent
and independent variables; thus, these equations are rec-
ommended as usable for predicting surface roughness and
cutting forces in turning Ti-6Al-4V alloy under liquid
nitrogen-assisted cryogenic condition.

& Optimum results are as follows: average surface rough-
ness of 1.05 μm, feed force of 208 N, and main cutting
force of 315 N, attainable by using a coated WC insert of
SNMM 120408 configuration at a cutting speed of 78 m/
min, a feed rate of 0.16 mm/rev, and a depth of cut of
1.0 mm under cryogenic LN2 condition.

Fig. 18 Optimization of multiple responses by composite desirability
function

Table 11 Comparison of the
optimum results by composite
desirability function with actual
experimental results

Run Vc

(m/min)
f (mm/rev) T Ra (μm) Px (N) Pz (N) Composite

desirability

Desirability optimization 78 0.16 SNMM 1.05 208.21 315.1 0.9455

Actual run 78 0.16 SNMM 1.10 211 320 –

% Deviation with respect to actual run 4.55 1.32 1.53 –
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& In this study, the inclusion of a textual variable such as tool
insert configuration has been possible by using an artificial
neural network and hence widens the capability to model-
ing the machining performance characteristics more effec-
tively and in extended areas of machining industries.
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