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Abstract The aim of this paper is to develop a probabilistic
approach of high cycle fatigue (HCF) prediction of glass fiber-
reinforced epoxy composites by taking into account the mod-
ifications induced by the variation of the loading parameters
(stress and number of cycles) and those of the material param-
eters (fiber Young’s modulus and fiber volume fraction).
Using fatigue curve analytical expression and Monte Carlo
simulation assessment, probabilisticWöhler curves are plotted
to predict the high cycle fatigue behavior of the material. In
this regard, four cases are studied by varying the hypothesis
for the stress and number of cycle values to be probabilistic or
deterministic. The design of experiment (DoE) techniques are
used in this work by varying the factors of interest in a full
factorial design to evaluate the effect and the interaction of
some factors influencing the fatigue reliability. The controlled
input factors of the process are traduced by (i) the materials’
parameters represented by the variation of fiber and matrix
Young’s moduli (Ef and Em) and the fiber volume fraction
(Vf) and either traduced by (ii) the loading parameters repre-
sented by the applied stress and number of cycles.

Keywords Fatigue reliability . Glass fiber .Monte Carlo
simulation .Wöhler curve . Design of experiments

Nomenclature
τu Ultimate shear strength
τmax Maximum shear stress
σmin Minimum tensile stress
σmax Maximum tensile stress
σu Maximum flexural strength
Ec Composite Young’s modulus
Em Matrix Young’s modulus
Ef Fiber Young’s modulus
I Section property of the specimen
I2 Second moment of inertia of

the specimen
L Specimen length
G(xi) ; S(xi) ; L(xi) Performance, strength, and

load functions, respectively
Cv Coefficient of variation

(quotient of standard deviation
and mean value)

X Random variables
N Monte Carlo simulation sample size

of the pair (a,b)
l
r Span-to-depth ratio
P Applied stress
Pf Probability of failure
R Reliability
Rσ Fatigue load ratio
r Specimen radius
{X} Vector of random variables
xi Element of the vector {X}
Vf Fiber volume fraction
u Deflection during flexural test
sa ; sb Standard deviation of a and b

Wöhler parameters
sσ Standard deviation of the

applied stress
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a0 ; b0 Mean values of a and b Wöhler
parameters

cva ; cvb Coefficient of variation of Wöhler
parameters a and b, respectively

cvσapp ; cvNcyc Coefficient of variation of the
applied stress and of the number
of cycles, respectively

i Computing index for (a,b) random
sampling

j Computing index of the stress
beam lines

k Computing index of the loading
random sampling

Ntot Random sampling size

1 Introduction

Over the past few decades, the use of composite materials for
various structural applications has received wide acceptance.
Several reasons have been advanced to justify the popularity
of composite materials: high strength-to-weight ratios in com-
parison with many other materials, advances in processing,
high-volume production, and structural performance.
Besides, composite materials give unique opportunities in
the area of new structural materials, since the choice of rein-
forcements and matrices offers a large variety of composites.

Composites reinforced with glass, carbon, Kevlar, or even
natural fibers are well-known for their good fatigue behavior,
especially when loading is applied in the direction of the re-
inforcement [1, 2]. These composites find extensive use in
applications where structures are cyclically loaded with rela-
tively low stress values such as automotive, electronics, hous-
ing construction, furniture, sports goods, and many others.
The fatigue behavior, even under this simple loading condi-
tion, is complex and difficult to describe quantitatively.

To predict high cycle fatigue (HCF) behavior of compos-
ites, many research works have been undertaken; a review of
the literature on related researches has been presented by
Degriek et al. [3] andWicaksono et al. [4]. There are currently
three main groups of composite fatigue approaches: fatigue
life and phenomenological and progressive damage models.

The fatigue damage has been studied inmanyworks basing
on the analysis of the evolution of residual strength [5, 6] and
residual stiffness [7]. Other works discussed the fatigue life
prediction basing on the analysis of the progressive damage
growth or the residual properties [8–11].

Progressive damage and phenomenological approaches
are very complex and expensive in terms of computational
solution as well as in terms of the number of experiments
needed to fully characterize the material properties. The
fatigue life approach is rather straightforward and simple
from the computational and experimental point of view

[12, 13]. Recent studies have the advantage to use numer-
ical simulation by finite element analysis [14]. Current
fatigue life models normally utilize one of the failure
criteria as the base and an empirical S–N curve as an
input [15, 16]. Such fatigue life models can be used to
predict the number of cycles to failure under fixed loading
conditions, without taking into account damage accumu-
lation [3, 17–19].

For the majority of cases, the approaches mentioned above
remain deterministic. However, a second probabilistic catego-
ry of models includes the uncertainties to predict the fatigue
life of composite materials [20–25]. Considering the develop-
ment of the reliability fatigue-based methods taking into ac-
count the scatterings and the significant dispersions related to
the used geometrical and material parameters [26, 27], it
seems to be necessary and with substantial benefit to analyze
the HCF behavior of composites using probabilistic methods.
Indeed, these stochastic approaches used for the assessment of
fatigue reliability have attracted significant attention in the
recent studies [28–32]. Consequently, the fatigue reliability
computation becomes more and more considered as an engi-
neering design way, which takes into account the various un-
certainties corresponding to the different fatigue parameters.

In the present work, a probabilistic prediction of the HCF
behavior of glass fiber-reinforced epoxy composites is devel-
oped. It is based on the S-N (Wöhler) curve analytical expres-
sion and the Monte Carlo simulation assessment. By taking
into account the variation of the composite material parame-
ters (a,b) and the loading parameters (σ,N), probabilistic S-N
Wöhler curves are plotted to predict the high cycle fatigue life.
Two different cases are discussed and compared: the first is
fibers provided from several suppliers and the second is fibers
provided from only one supplier. The DoE techniques are
used in this work by varying the factors of interest in a full
factorial design to assess the effect and the interaction of some
factors influencing the fatigue reliability.

2 Background

2.1 S-N curve

Fatigue is defined as “the weakening of a material caused by
repeatedly applied loads.” It is the progressive and localized
structural damage that occurs when a material is subjected to
cyclic loading.

The fatigue test parameters are the minimum/maximum
stress ratio Rσ (Rσ ¼ σmin

σmax
), the frequency, and the maximum

stress.
To analyze the results, the most well-known endurance

diagram is the S-N curve (stress–number of cycles) or
Wöhler curve: it displays the imposed stress levels (e.g., the
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maximum stress) against the number of cycles to failure Nr

(generally a logarithmic scale). A large number of tests must
be conducted during the fatigue test campaigns since the re-
sults are generally highly dispersed. For a given level of stress,
therefore, the Nr may extend over a decade, a situation which

is partly due to the experimental conditions but more especial-
ly to the phenomena involved in crack initiation and propaga-
tion. Figure 1 shows an example of S-N curve and indicates
the three fatigue regions:

– Low cycle fatigue: Under high stresses generating plastic
strains and small numbers of cycles to failure (often from
just a few cycles up to 104 cycles)

– High cycle fatigue: Failure still occurs, but the lifetime
increases when the stress level decreases

– Fatigue limit, under which fatigue failure no longer oc-
curs, is frequently observed: In this case, the S-N curve
extends towards a horizontal asymptote (this region often
concerns the number of cycles to failure Nr > 107 or 108).
This asymptote is not always the rule, however, especially
when other damage such as corrosion occurs in addition
to mechanical fatigue

It is well established in fatigue studies that for HCF
(104 < Nr < 107), a “duplex S-N curve” occurs [33, 34].

Fig. 1 Wöhler curve and fatigue zone classification

 

Start 

Read input data: 
Material data: 0a and 0b   

Random material data: cva , cvb  

Loading data: appσ and cycN  

Random sampling size: totN  

Generate totN random sampling of values with a normal distribution on a  and 

b  parameters defined by their mean and Cov values. 

Generate the 
totN dispersed Wöhler curves 

Plot two lines for the applied stress appσ  and the loading number of cycles cycN

Initialize the computing index: i=1 and compt =0 

Compute and plot r iN points representing the intersection between 

the applied stress appσ line and each line of the totN Wöhler curves

cycN < riN  

Compute the fatigue reliability R
tot

compt

N

Fig. 2 Flowchart for the HCF
reliability calculation (case 1)
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Deterministic and probabilistic approaches have been pro-
posed to take into account this phenomenon. Numerous
standards and opening procedures, especially statistical,
are available to conduct the tests. Probabilistic failure
curves (at 90%, 50% survival) for example can be plotted
on the endurance diagram.

2.2 Probabilistic approach

To compute the reliability, one considers a vector of random
variables {X} representing uncertain structural quantities. Let
xi be an element of the random vector {X}, with a probability
density function (PDF) f Xi

xið Þ. A performance function

G({x}), separating the security and the failure fields, is written
as follows:

G xf gð Þ ¼ S xf gð Þ−L xf gð Þ ð1Þ
where G({x}) = 0 is the limit state function, S({x}) is the
strength function, and L({x}) is the load function [35, 36].
The probability of failure Pf is given by:

P f ¼ ∫G xf gð Þ<0 f Xf g xf gð Þ dx1::…dxn

¼ Pr L xf gð Þ > S xf gð Þð Þ ¼ Pr G xf gð Þ < 0ð Þ ð2Þ

In that case, if the inequality G({x}) ≥ 0 is satisfied,
this indicates a structural safety condition. In the opposite

Yes 

Yes  

Generate the dispersed Wöhler curve with a normal distribution with 1totN random sampling

Start

Generate the stress beam of lines: 2totN random sampling of values with a normal distribution on 

the applied stress appσ  defined by its mean and Cov values. 

Generate the loading number of cycle beam of lines: 3totN random sampling of values with a 

normal distribution on the loading number of cycle cycN  defined by its mean and Cov values. 

Initialize the computing index: i=1; j=1; k=1; C1(1) =0 ; C2(1) =0 

Compute and plot r ijN  points representing the intersection between each line of the 1totN Wöhler 

curves and each line of 2totN the stress beam 

 Nrij C1 (j)= C1 (j)+1 

No  i=i+1 i=
1totN

R(j)=
1

1( )

tot

C j

N
*100 

C2 (k)=C2(k)+R(j) 

No j=
2totN

Compute the fatigue reliability: R=
3tot

Tot

N
*100 

R(k)=
2

2( )

tot

C k

N
*100 

Tot =Tot+R(k) 

Yes 

Yes  

No k=
3totN

Fig. 3 Flowchart for the HCF
reliability calculation for cases 2,
3, and 4
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case, if G({x}) < 0, this means a structural failure
condition.

To compute the probability of failure Pf, Eq. 2, one can use
many approaches such as analytical resolution, approximate
computational methods, and the Monte Carlo simulation [35,
36].

In this work, the last approach has been used. In fact,
when the performance function is defined over a vector of
more than two random variables, the joint probability den-
sity function of X is practically difficult to find. The
Monte Carlo simulation method remains often the only
means of taking into account certain nonlinear behavior.
Such procedure is simple; however, it has the drawback to
have a large number of runs possibly required to obtain an
accurate result. Its convergence speed is low and it is

proportional to
ffiffiffiffi
N

p
[37].

Let I({x}) denotes an indicator failure function where:

I xf gð Þ < 0 ¼ 1 if G xf gð Þ < 0
0 if G xf gð Þ≥0

�
ð3Þ

Pf ¼ ∫D f I xf gð Þ f Xf g xf gð Þ dx1::…dxn ð4Þ

where Df denotes the failure space defined by G({x}) < 0. By
introducing I(xi)in Eq. 4, Pfbecomes the expectation value of
I(xi):E[I(xi)].

Using several random samplings, the Monte Carlo method
aims to simulate a high number of load and strength values
according to their PDF. Let N be the total number of simula-
tion events. For the N computed values of G({x}), it is as-
sumed that the failure event frequency, where G({x}) < 0, ex-
tends towards the failure probability Pf when N→ +∞ [36].

Pf ¼ lim
N→þ∞

Number of failure events G xf gð Þ < 0

N
¼ lim

N→þ∞

1

N
∑
N

i¼1
I xf gð Þ

ð5Þ

For a given coefficient of variation ofPf equal to 0.1 and for
Pf ¼ 10−n0 , the number of Monte Carlo simulations needed

N ¼ 10n0þ2 (i . e., Pf = 0.01,N = 104) [35, 38]. In this paper,
N is taken equal to 104. It is an acceptable computational cost
especially in the case of explicit function.

The reliability R is given by the following relationship:

R ¼ 1−P f ð6Þ

3 HCF reliability calculation

3.1 Wöhler curve analytical expression

Many analytical expressions have been proposed to plot the
Wöhler curve for the limited and unlimited endurance zones.
The model used in this work is the Wöhler law:

σa ¼ b−a � logNr

a > 0; b > 0
ð7Þ

with σa alternate stress amplitude and Nr number of cycles to
failure.

In this work, we attempt to study the practicability of the
probabilistic approach, by taking into account the variation of
the composite material parameters (a,b) and the loading

 

 

 

 

Generate the Wöhler curve using the least squares method based on the four 
experimental tests
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Following the same steps of the first case (deterministic stress and number of 
cycle) to calculate reliability

3 367.10 ,87.10fE MPa
2 235.10 ,45.10mE MPa

Fig. 4 Calculation flowchart to study the influence of Young’s modulus

Fig. 5 Three-point flexural test for a semi-circular specimen [39]

Table 1 Geometrical properties of the semi-circular specimen [39]

r (mm) l
r

L (mm)

6.5 16 =l + 2 × δ l = l + 2 × 10% l = 120 × % l
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parameters (σapp, Ncyc). These parameters with their disper-
sion are integrated into the probabilistic model to predict the
high cycle fatigue behavior of the material.

3.2 Calculation steps

We suppose that a and b are two random variables defined
by their mean values a0 and b0 and their coefficient of
variation (cva) and (cvb). By making a random sampling
using the Monte Carlo method, we obtain a straight line
for each (a,b) pair, which results in a beam lines leading
to three zones: (i) a failure zone, (ii) a resistance zone,
and (iii) an uncertain zone. For each point defined by
stress amplitude and number of cycles, we can determine
the reliability value. The flowchart of Fig. 2 represents the
fatigue reliability calculation steps in the case of deter-
ministic values of stress and number of cycles (case 1).
When one or more of these values are probabilistic (cases
2, 3, and 4), the calculation steps are developed in the
flowchart of Fig. 3 to evaluate the fatigue reliability.

3.3 Parameters influencing the fatigue behavior
of composites

The fatigue behavior of fiberglass composites can be in-
fluenced by many factors such as type of fiber, fiber me-
chanical properties, fiber strength and modulus, fiber-
matrix adhesion, environmental temperature, etc. In this
work, we focus our study on the influence of glass fiber
and matrix Young’s modulus and the fiber volume
fraction.

A computing code was developed under MATLAB® soft-
ware to study the influence of Young’s modulus variation on
theWöhler curve for the flexural test. The calculation steps are
represented in flowchart of Fig. 4.

The approach for the reliability calculation is described as
follows: Four experimental test points have been taken from
the flexural-fatigue curve, which represents the standard stress
(ratio of applied and ultimate stresses) versus the number of
cycles to failure [39]. The four taken points coordinates are
respectively [(1,100%); (20, 80%); (102, 70%); and (103,
60%)].

For σu = 1660 MPa [39], the four-point coordinates in S-N
diagram are then [(1, 1660); (20, 1328); (102, 1162); and (103,
996)].

We have:

σ ¼ 1:311� L
r3

� P ð8Þ

with P applied stress, l span length, L specimen length, δl
cantilever length represents 10% of the span length, and I2I2
second moment of the specimen area (Fig. 5).

FromTable 1, we obtain l = 104mm and L = 124.8 mm. By
introducing these geometrical values in (Eq. 8), we can deduce
the following relationship between load and stress:

Pi ¼ σi

0:6
ð9Þ

Consequently, the loading values corresponding to the four
studied points are as follows:

Pi Nð Þ ¼ 2766; 66; 2213; 33; 1936; 66; 1660½ �

Fig. 6 Inputs/outputs of DoE

Table 2 Materials and loading
parameters values at different
levels

Factor Variation
of Ef (MPa)

Variation
of Em (MPa)

Variation
of Vf (℅)

Stress (MPa) Number of cycle
exponent factor N(10N)

Level (−1)
Minimum value

1000 100 10 1000 7

Level (0)

Mean value

10,500 550 30 1400 8.5

Level (1)

Maximum value

20,000 1000 50 1800 10
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From the force deflection curve [39], we can find the dis-
placement (mm) during the flexural test corresponding to an
applied stress (N) for a span-to-depth ratio l

r = 16.
The displacement values corresponding to the four studied

points are as follows:

ui mmð Þ ¼ 6:5; 5:2; 4:6; 3:8½ �

By using the Bazergui formula for a three-point bending
flexural test, we can plot the stress which depends on the
probabilistic Youngs’ modulus as a function of the number
of cycles to failure.

P ¼ 48� I2 � u
L3

� Ec ð10Þ

I2 ¼ 0:11� r4 ð11Þ

From Eqs. 10 and 11, we deduce:

P ¼ 2:88 � 10−3 � u� Ec ð12Þ

The Young’s modulus of the composite used is expressed
by the following formula:

Ec ¼ Em � 0:2þ E f � 0:8 ð13Þ

For glass fibers, Young’s modulus ranging between
[67 · 103] and [87 · 103] (MPa) and epoxy Young’s mod-
ulus ranging between [35 · 102] and [45 · 102] (MPa), the
equivalent composite Young’s modulus Ec and, therefore,
the applied stress P dispersion can be described each one
by a vector of random values representing their probabi-
listic distribution.

The four points are inserted into a computation code under
Matlab®, and using the least squares method, a probabilistic
Wöhler curve is obtained.

3.4 Wöhler curve plotting

For this case, the Wöhler curve can be plotted using the
least squares method. By using Eq. 7 and taking into

consideration the experimental error, the Wöhler equation
becomes:

y ¼ Axþ Bþ e ð14Þ

With B = a; A = − b; Y = σa; X = logNr

With ei = yi − (Axi + B), where ei is the difference between
the regression line and the considered point.

The quadratic error summation function is expressed as
follows:

Q A;Bð Þ ¼ ∑
n

i¼0
ei2 ¼ ∑

n

i¼0
yi− Axi þ Bð Þð Þ

2

ð15Þ

In order to find the minimum of this function and by using
the least squares method, we find:

A ¼
∑
n

i¼0
xiyi− nþ 1ð Þx � y

nþ 1ð ÞVx ð16Þ

B ¼
∑
n

i¼0
yi−A ∑

n

i¼0
xi

nþ 1ð Þ ð17Þ

For Wöhler equation, the identified parameters are:

B ¼ a;A ¼ −b; y ¼ logσa; y ¼ logσa; x ¼ logNr:

Consequently, both a and b parameters are determined.

4 Factors influencing assessment

The DoE techniques are used in this work by varying the
factors of interest in a full factorial design to assess the
effect and the interaction of some factors influencing the
fatigue reliability. The goal is always to allow the exper-
imenter to evaluate in an unbiased (or least biased) way
the consequences of changing the settings of a particular
factor, that is, regardless of how other factors were set.
This would work fine, except that the number of neces-
sary runs in the experiment observations (or numerical
calculations) is very important. However, this formulation
shows how important factors affect the response and leads
to the development of first- and second-order polynomial
models that include the parameters under consideration
and their statistical significance. This method uses

Table 3 Material properties used during Adimi tests [39]

T (°C) Ultimate shear
strength (MPa)

Slope of the
curve τmax=τu

Endurance
limit (MPa)

Room temperature (20) 83.20 −3.69 42

100 64.40 −4.21 25

Table 4 Elastic material properties [39]

Elastic properties

Shear modulus (GPa) Flexural modulus (GPa)

5.39 54

Table 5 Material properties used to obtain Fig. 13

Ef (MPa) Em (MPa) Vf (%) Stress
(MPa)

Number of
cycles

[76,500 87,000] [4400 4500] [75% 80%] 1400 1010
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statistical tools such as response graph and analysis of
variance (ANOVA) techniques which are used and devel-
oped under Minitab® V14 software.

This approach is planned in the following scheme of
investigation:

1. Identifying the important factors which have influence on
the fatigue life

2. Finding the scatter range of each factor characterized by
their coefficient of variation

3. Developing the numerical design matrix
4. Conducting the numerical calculations according the

planned design matrix
5. Developing the mathematical models (if required)
6. Calculating the coefficient of the factors and their interac-

tions: For the convenience of recording and processing

experimental or numerical data, highest and lowest and
middle levels of factors have been coded as +1 and −1 and
0, respectively, and the coded values i z of any intermedi-
ate levels can be

The controlled inputs factors of the process are classified as
follows (Fig. 6):

1. The materials’ parameters represented by the variation of
fiber and matrix Young’s moduli (Ef and Em) and the fiber
volume fraction (Vf)

2. Loading parameters represented by the applied stress and
number of cycles

The levels of the inputs values are presented in Table 2.

a b 

Case1- Application1

Case2- Application1

c d 

Case3- Application1 Case4- Application1 

Fig. 7 Probabilistic Wöhler curve for a deterministic stress and number of cycles, b probabilistic stress and deterministic number of cycles, c
deterministic stress and probabilistic number of cycles, and d both probabilistic stress and number of cycles
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5 Applications

In order to validate the proposed approach, we use in this work
available results of exhaustive experimental investigations

carried out by Adimi [39–41]: fiber glass-reinforced epoxy
composites with semi-circular-shaped specimen manufactured
by the pultrusion process. The radius is on the order of 6.5 mm
and the length of 400 mm. The fiber volume fraction is chosen
between 30 and 80%. The mechanical and elastic properties of
this material are shown in Tables 3, 4 and 5.

6 Results and discussion

6.1 HCF reliability calculation

1. First case: deterministic stress and number of cycles

For a case defined by deterministic values of applied stress
σapp and test duration (loading number of cycle) Ncyc, as

Fig. 8 Variation of the reliability with the number of cycles for the three
first cases

Fig. 10 Probabilistic Wöhler curve for the flexural-fatigue test—
Young’s modulus and fiber volume fraction dispersion. a Fibers
provided from many suppliers. b Fibers provided from one supplier

Fig. 9 Probabilistic Wöhler curve for the flexural-fatigue test. a Fibers
provided from many suppliers. b Fibers provided from one supplier

Int J Adv Manuf Technol (2017) 92:4 –4399 413 4407



shown in Fig. 7a, the intersection between the stress line and
the dispersed Wöhler curve (blue-colored) gives the red-
colored points defined byNri. Fatigue reliability R is evaluated
as follows:

R ¼ number Ncyc < Nri
� �
Ntot

ð18Þ

We notice that Nri values are within the range of
[105, 106]. For the defined stress value, if the number
of cycles Ncyc is less than 105, the reliability is then
equal to 100%. Otherwise, if the number of cycles is
more than 106, the reliability is 0%. If the number of
cycles Ncyc is belonging to the interval of [105, 106], the
reliability can vary between 100 and 0%.

2. Second case: probabilistic stress and deterministic num-
ber of cycles

For a probabilistic value of stress σ, the green beam lines in
Fig. 7b show the normal distribution of σ defined by the mean
and Cov values. The value of the test duration N remains
deterministic (one line). In this case, the intersection between
each line of the Ntot1 Wöhler curves and each line of Ntot2

stress beam lines gives the red-colored Nr(i, j) points. Fatigue
reliability Ris evaluated as follows:

R ¼ 1

Ntot2
∑
j

number Ncyc < Nrij
� �
Ntot1

� �
ð19Þ

Ntot1 in this case is the sample size ofWöhler curves, andNtot2

is the size on the random sampling on the stress beam of lines.

Fig. 11 Iso-probabilistic Wöhler curves (fibers provided from many
supplier). a Young’s modulus dispersion. b Young’s modulus and fiber
fraction dispersion

Fig. 12 Iso-probabilistic curves (fibers provided from one supplier). a
Young’s modulus dispersion. b Young’s modulus and fiber fraction
dispersion

Int J Adv Manuf Technol (2017) 92:4 –4399 4134408



3. Third case: deterministic stress and probabilistic number
of cycles

By taking the same calculation steps of the last case, we
reverse the characteristics of N and σ values. Thus, we gener-
ateNtot2 random sampling of values with a normal distribution
on the loading test duration defined by its mean and Cov
values, and we replace: N <Nr(i, j) by Nj <Nri.

The fatigue reliability R is then calculated as follows:

R ¼ 1

Ntot2
∑
j

number N j < Nri
� �
Ntot1

� �
ð20Þ

Ntot1 remains the sample size of Wöhler curves, and Ntot2

defines in this case the size on the random sampling on load-
ing number of cycles (Fig. 7c).

4. Fourth case: both probabilistic stress and number of
cycles

For this case, both stress and loading duration are probabi-
listic according to a normal distribution law defined by mean
and Cov values. The applied stress sampling is represented by
green horizontal lines in Fig. 7d and the loading by green
vertical lines. Both second and third cases are combined. For
each case from the Ntot3 number of cycle random sampling,
the intersection between each line from the Ntot2 stress beam
of lines and the Ntot1 dispersed Wöhler curve (blue-colored)
gives Nrij points. Fatigue reliability R is expressed in this case
as follows:

R ¼ 1

Ntot3
∑
k

1

Ntot2
∑
j

number Ncyc < Nrij
� �
Ntot1

� � !
ð21Þ

Fig. 13 Analysis of effects. a
Diagram of main effects on
reliability. b Diagram of
interactions
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Ntot1 is the sample size ofWöhler curves,Ntot2 is the size on
the random sampling on the stress beam of lines, and Ntot3 is
the size on the random sampling on loading number of cycles.

5. Influence of number of cycles parameter on the
reliability

In this application, we try to study, for the three first
cases of HCF reliability calculation and for the same
stress value (σapp = 70 MPa), the variation of the reli-
ability versus the test duration (number of cycles to
failure). We notice from Fig. 8 that, for an applied
number of cycles less than 107, the reliability of both
second and third cases is better than that of the first
case. Whereas, if the applied number of cycles is more
than 107, the reliability of the first case is better.

6.2 Parameters influencing the fatigue behavior
of composites

In this section, two different cases are discussed. In the
first case (Fig. 9a), we consider that the glass fibers are
obtained from many different suppliers. Thus, the fibers’
Young’s modulus values vary within the range of [67,5
; 87] (103 MPa). For loading conditions defined by (i) a
stress value σof 1800 (MPa), (ii) a loading test duration
N of 107, and (iii) a reliability of 41.5%, if N < 103, the
reliability is 100% (safety zone), whereas for N < 109,
the reliability is 0% (failure zone). For <103 < N < 109,
the reliability varies between 100 and 0%.

The second case discussed is when glass fibers are obtained
from one unique supplier (Fig. 9b). In this case, we consider
that glass fibers’ Young’s modulus vary within the range of
[86 ; 87] (103 MPa).

In both cases defined previously, the variety of glass fibers
Young’s modulus induces a dispersed Wöhler curve, and by
decreasing those Young’s modulus values, the composite
withstands less loading. This result is expected since the com-
posite Young’s modulus decreases with the decrease of fiber
and matrix ones.

To study the effect of Young’s modulus and fiber volume
fraction parameters, we suppose that the Young’s modulus
values of the matrix and glass (Em and Ef, respectively), are
both dispersed, as well as the fiber volume fraction Vf.

In the case of several glass fiber suppliers, we assume that
the glass fibers are purchased from many different suppliers
and their Young’s modulus values vary within the range of
[76,5 ; 87] (103 MPa).

Using the material properties presented in Tables 4 and 5,
we obtain the probabilistic Wöhler curve for the flexural-
fatigue test shown in Fig. 10a.

For the second case (one glass fibers supplier), we
suppose that glass fibers are provided from only one

supplier and, as a result, their Young’s modulus values
vary within the range of [86,000 87,000] (MPa).
Figure 10b shows the probabilistic Wöhler curve for
the flexural-fatigue test.

We point out from Fig. 10 that the decrease of the fiber
volume fraction induces a decrease of the applied stress and
the material becomes weaker. Furthermore, the Wöhler curve
becomesmore dispersed. This result could be explained by the
fact that the fiber volume fraction Vf and the composite
Youngs’ modulus Ec are proportional and related by the rule
of mixture equation:

Ec ¼ Em � 1−V f
� �þ Ef � V f ð22Þ

This result seems to be physically coherent with many
studies which demonstrated that the increase of glass fiber
volume fraction increases the glass/epoxy composite life
[42, 43].

6.3 Iso-probabilistic Wöhler curves

To plot iso-probabilistic Wöhler curves, we have used the
computing code developed under Matlab® which was de-
scribed previously: the approach consists on fixing a stress
value for a given reliability level and then seeking for the
relevant number of cycles to rupture.

For the first applications presented below, we suppose that
fibers are provided from many suppliers.

Figure 11 shows that for a given value of applied stress, the
reliability and the number of cycles to failure are inversely
related. For instance, if the stress value is 2000 MPa
(Fig. 11a), the number of cycles to rupture equals 0 for a
reliability of 99% and more that 102 cycles for a reliability
of 75% and it reaches 104 cycles for a reliability of 50%.
Besides, by taking into consideration the dispersion of fiber
volume fraction (Fig. 11b), we have to decrease the applied
stress value to reach the same reliability level.

For the second case, we assume that the glass fibers are
provided from one only supplier, and the Young’s modulus
of those fibers varies within the range of [86,000 87,000]
(MPa).

Taking into consideration the material parameter dispersion
(Young’s modulus and fiber volume fraction), Fig. 12 shows
the iso-probabilistic curves plotted for five reliability values
(1, 25, 50, 75, and 99%). We notice that reliability is better for
a limited number of cycles to rupture.

6.4 Analysis of effects

The analysis of the main effects of the studied input pa-
rameters Em, Ef, and Vf, the applied stress, and the loading
duration N on the output response (reliability) are present-
ed in Fig. 13a.
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We note that the factors of stress,Vf, Ef, and N, have
decreasing effect on the reliability, whereas the factor Em has
a negligible effect.

1. The most significant factor on the reliability is
observed for the stress variation. When this latter
reaches minimum value, the reliability has a maxi-
mum value exceeding 80%, and for the highest stress
value, the reliability decreases until 0%. This result
may be explained by the repetitive nature of the
stress, so that it induces cumulative effect influencing
the reliability value.

2. The variation ofVf has a significant effect on the reliability
but at a lower intensity compared to the stress variation.
For a minimum variation of Vf [70% 80%], the reliability
slightly exceeds 60%. If the variation of Vf is at its mean
value [50%, 80%], the reliability is at the order of 50%,
and for maximum variation of Vf, the reliability decreases
until 35%.

3. The effect of Ef variation is slightly less significant than
that of Vf variation. For minimum Ef variation [7650,
87,000] (MPa), the reliability is about 60% and it
decreases until 40% for maximum Ef variation [76,000,
87,000(MPa)].

4. The loading duration also has an effect on the reliability
but with a lower intensity compared to those of the previ-
ous factors. The reliability decreases from 60 to 40%,
when jumping from minimum to maximum levels.

5. The variation of Em has no considerable effect the reliabil-
ity. This may be explained by the fact that the main role of
the matrix is to transfer the mechanical load to fibers, and
the variation of the matrix Young’s modulus has no
significant impact on the reliability.

For a complex system, parameters are rarely independent
and the effect that a parameter has on a response depends on
the value of other parameters. For this case, in addition to the
main effects, it is important to check for interaction effects.
Figure 13b shows the effect of interactions between the
studied parameters on the reliability response.

An interaction between two parameters is considered as
negligible when the effect of the first parameter on the
response is not affected by the level of the second parameter.
This is represented by two parallel lines on the interaction plot.
Figure 13b shows that all the interactions with the stress
variation induce a significant effect. The interactions with Vf
and Ef variations have less significant effects.

7 Conclusion

In this work, a probabilistic prediction of the HCF
behavior of glass fiber-reinforced epoxy composites was

developed. It is based on the Wöhler curve analytical
expression and the Monte Carlo simulation assessment.
By taking into account the variation of the loading
parameters (stress and number of cycles), probabilistic
Wöhler curves were plotted to predict the high cycle
fatigue behavior of the material. In this regard, four cases
were studied by varying the hypothesis for the studied
stress and number of cycle parameters to be probabilistic
or deterministic.

The main results show that, for an applied number of
cycles less than 107, the reliability is better when the
stress or the number of cycle value is probabilistic.
Whereas, if the applied number of cycles is more than
107, the reliability is better for deterministic values of
both stress and number of cycles.

The influence of the composite material parameters
(Young’s modulus and fiber volume fraction) was also
discussed. At this stage, two cases were studied and com-
pared: the first is fibers provided from several suppliers and
the second is fibers provided from only one supplier. For both
cases, it was found that the variation of glass fibers Young’s
modulus induces a dispersed Wöhler curve. And by decreas-
ing those Young’s modulus values, the composite withstands
less loading. Furthermore, it is worth noting that the decrease
of the fiber volume fraction induces a decrease of the applied
stress and the Wöhler curve becomes more dispersed.

The probabilistic Wöhler curves plotted for various
reliability values (1, 25, 50, 75, and 99%) show that, for a
given value of applied stress, the reliability and the number
of cycles to failure are inversely related. Besides, by taking
into consideration the dispersion of fiber volume fraction, we
have to decrease the applied stress value to reach the same
reliability level. When both material parameters are dispersed
(Young’s modulus and fiber volume fraction), the probabilis-
tic Wöhler curves exhibit high reliability level for a limited
number of cycles to rupture.

The DoE techniques are used in this work by varying the
factors of interest in a full factorial design to assess the effect
and the interaction of some factors influencing the fatigue
reliability.

The controlled input factors of the process are the
materials’ parameters represented by the variation of
fiber and matrix Young’s moduli (Ef and Em) and the
fiber volume fraction (Vf), and the loading parameters
represented by the applied stress and number of cycles.

Analysis of effects shows that the factors of stress,
Vf, Ef, and N, have considerable effect on the reliability,
whereas the factor Em has a negligible effect. The most
significant factor on the reliability is observed for the
stress variation. When this latter reaches minimum
value, the reliability has a maximum value exceeding
80%, and for the highest stress value, the reliability
decreases until 0%.
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