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Abstract Process parameters in plastic injection molding
(PIM) such as the packing pressure, the melt temperature,
and the cooling time have a direct influence on the product
quality. It is important to determine the optimal process pa-
rameters for high product quality. In addition to the product
quality, high productivity is required to plastic products. This
paper proposes a method to determine the optimal process
parameters in the PIM for high product quality and high pro-
ductivity. A constant packing pressure during the PIM is con-
ventionally used, but the variable packing pressure profile that
the packing pressure varies in the packing phase is adopted as
the advanced PIM. Warpage and cycle time are taken as the
product quality and the productivity, respectively. Then, these
are simultaneously minimized and the pareto-frontier between
them is identified. Numerical simulation in the PIM is so in-
tensive that a sequential approximate optimization using radial

basis function is adopted. It is found through the numerical
result that the variable packing pressure profile can improve
both the warpage and the cycle time, compared with the con-
ventional PIM approach. In order to examine the validity of
the proposed approach, the experiment is carried out. It is
confirmed through the numerical and experimental results that
the proposed approach is valid for minimizing the warpage
and the cycle time.

Keywords Plastic injectionmolding . Variable packing
pressure profile . Multi-objective optimization . Sequential
approximate optimization

1 Introduction

Plastic injection molding (PIM) is one of the important indus-
trial technologies to produce plastic products with high pro-
ductivity. Plastic products have several advantages, such as
light weight, high stiffness, and good appearance. In the
PIM, to smoothly flow melt plastic into the cavity, the mold
is heated. The melt plastic is then filled into the cavity with
injection pressure and is packed with high packing pressure
for the desirable shape. Finally, the melt plastic is cooled down
for solidification, and the solid plastic product is ejected. The
low injection pressure, the short injection time, and the low
mold temperature will easily lead to short shot that the melt
plastic is not filled into the cavity, and the low packing pres-
sure and the short cooling time will cause warpage that is one
of the major defects in the PIM. Cooling time has a significant
influence on not only the productivity but also the product
quality. Therefore, the process parameters in the PIM such
as the melt temperature, the injection pressure, the packing
pressure, and the cooling time should be adjusted and opti-
mized for high product quality as well as high productivity. To
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determine the process parameters for successful PIM, a trial
and error method is widely used. Due to the recent advance of
computer technology, computer-aided engineering (CAE)
coupled with design optimization is recognized as an alterna-
tive approach for determining the optimal process parameters.
In general, the numerical simulation of PIM is so intensive
that a response surface is valid. In particular, a sequential
approximate optimization (SAO) that the response surface is
repeatedly constructed and optimized is recognized as one of
the powerful tools available, and the general framework of the
process parameter optimization in PIM is well summarized in
Ref. [1]. Here, let us briefly review the representative papers
related to the process parameter optimization using response
surface.

Early work on the process parameters in the PIM can be
found in Ref. [2], in which the neural network was used for the
response surface and the genetic algorithm was applied for the
determination of the optimal process parameters. Kurtaran et
el. determined the optimal process parameters to minimize the
warpage of bus ceiling lamp base [3], in which they first
conducted the analysis of variance based on the numerical
simulations. After that, several significant process parameters

were selected and the response surface using the quadratic
polynomial was used to determine the optimal process param-
eters. Similar approach can be found in Ref. [4], in which the
neural network was used to approximate the warpage of PC
button base and the optimal process parameters were deter-
mined. Shen et al. also adopted the neural network and the
genetic algorithm to determine the optimal process parameters
for minimizing the sink mark of refrigerator top cover [5].
Unlike Refs. [2–4], the approximation by the neural network
and the optimization by the genetic algorithm were iterated till
a criterion was satisfied. Note that this approach does not
belong to the SAO. Gao and Wang adopted the SAO using
the Kriging to determine the optimal process parameters for
the warpage minimization of cellular phone cover [6]. They
also adopted the SAO to determine the optimal packing profile
and the optimal process parameters for warpage minimization
[7]. Though a constant packing pressure is so widely used in
other works [8–12], the variable packing pressure profile that
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Table 1 Material property of polyacetal resin

Melt density [g/cm3] 1.19

Solid density [g/cm3] 1.4

Eject temperature [°C] 135

Maximum shear stress [MPa] 56

Thermal conductivity [W/(m °C)] 0.336

Elastic module [GPa] 2.8

Poisson ratio 0.38

Specific heat [J/(kg °C)] 2503

Material characteristics Crystalline

Recommended mold temperature [°C] 60–120

Recommended melt temperature [°C] 180–210
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the packing pressure is varied in the packing phase is directly
optimized unlike others. After this work, Li et al. performed
the optimization of variable packing pressure profile for the
shrinkage evenness of a slab [13]. It is clear from Refs. [7, 13]
that not only the process parameters but also the packing pres-
sure profile have a significant influence on the product quality.
Note that the validity of the variable packing pressure profile
was discussed and the cycle time was not taken into account in
Refs. [6, 7, 13].

High dimensional accuracy is required to plastic products,
and the major concern is to minimize defects such as warpage,
sink mark, and volume shrinkage. In addition to these defects,
the high productivity is required in PIM. Zhao et al. mini-
mized the cooling time for the high productivity [14], in which
two objective functions (the cavity pressure for warpage min-
imization, and the temperature difference at the end of filling
for shrinkage minimization) were minimized. The weighted
sum was adopted to minimize all objective functions, and
pareto-optimal solutions were determined. Chen et al. mini-
mized (1) the maximum difference of the volume shrinkage,
(2) the total volume of runner system, and (3) the cycle time
[15], in which the cycle time was calculated by the sum of
injection time, packing time, and cooling time. The
pareto-frontier among three objective functions was then iden-
tified with the genetic algorithm. In general, long cooling time
and packing time lead to high product quality but result in
long cycle time. On the other hand, short cooling time and
packing time easily cause defects such as warpage and volume
shrinkage. Therefore, the trade-off between the product qual-
ity and the cycle time can be observed. When the injection
time, the packing time, and the cooling time are handled as the

process parameters, the cycle time should always be taken into
account.

Here, the main issues discussing in this paper are summa-
rized as follows:

1. High product quality is always required in the plastic
products. In the case of thin plastic product, the warpage
that is one of the major defects should be minimized.

2. In addition to the warpage minimization, the cycle time is
one of the crucial factors for the high productivity. In other
words, the cycle time should also be minimized for the
high productivity.

3. The variable packing pressure profile clearly affects the
warpage and the cycle time. In addition to the variable
packing pressure profile, several process parameters such
as the melt temperature and the cooling temperature of
coolant should be optimized.

4. It is important to examine the validity of the optimal pack-
ing pressure profile through both the numerical simulation
and the experiment.

In this paper, a multi-objective optimization of variable
packing pressure profile and process parameters for minimiz-
ing warpage and cycle time is performed. In general, the nu-
merical simulation in PIM is so intensive that the SAO is
adopted for the optimization. One of the authors has al-
ready developed the SAO using a radial basis function
(RBF) network [16, 17], and this is used as a design
optimization tool. Based on the numerical result, the
validity of the proposed approach is examined through
the experiment (GL30-LP, Sodick).
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The rest of this paper is organized as follows: In Section 2,
the numerical simulation model considering in this paper is
described. In Section 3, the multi-objective design optimiza-
tion is formulated. The design optimization procedure is also
described in this section. Numerical simulation using the SAO
using RBF network is carried out and the result is shown in
Section 4. Based on the numerical result, the experiment is
carried out. Moldex3D (R13) is used for the numerical simu-
lation. See the Appendix about the SAO system using the
RBF network.

2 Numerical simulation model

The target plastic product is shown in Fig. 1, and the detailed
dimensions are shown in Fig. 2. The thickness is 1 mm, the
height of the product is 25 mm, and the width is 29.7 mm. The
overview of the molding die and the cooling channel is shown
in Fig. 3, where two inlets and outlets are equipped and the

diameter of cooling channel is set to 8 mm. In the numerical
simulation, the mold temperature is set to 90 °C. The
polyacetal resin (POM) is used, and its material property is
listed in Table 1.

3 Multi-objective optimization for minimizing
warpage and cycle time

3.1 Multi-objective optimization

In general, a multi-objective optimization (MOO) problem is
formulated as follows [18]:

f 1 xð Þ; f 2 xð Þ;⋯; f K xð Þð Þ→min
xLi ≤xi≤x

U
i i ¼ 1; 2;⋯; n

g j xð Þ≤0 j ¼ 1; 2;⋯; ncon

9=
; ð1Þ

where fi(x) is the ith objective function to be minimized, K
represents the number of objective functions, xi denotes the ith
design variable, xi

L and xi
U are the lower and upper bounds of

the ith design variable, n represents the number of design
variables, gj(x) denotes the jth design constraint, and ncon
represents the number of design constraints.

3.2 Design variables

In this paper, the variable packing pressure profile and four
process parameters (the melt temperature (Tmelt), the injection
time (tinj), the cooling temperature of coolant (Tc), and the
cooling time (tc)) are taken as the design variables. Let us
explain about the variable packing pressure profile using
Fig. 4, in which the horizontal axis represents the time, and
the vertical one the pressure, respectively. Figure 4a shows the
conventional packing pressure profile during the PIM process,
fromwhich it is found that a constant packing pressure is used.
In the conventional approach, the packing pressure (Pp) and
the packing time (tp) should be optimized. Therefore, in this
case, the design variables are x = (Tmelt, tinj, Pp, tp, Tc, tc)

T.
Next, let us explain about the proposed packing pressure

profile shown in Fig. 4b, from which it is clear that the pres-
sure profile varies according to the time unlike the conven-
tional one. Unlike Refs. [6, 7, 13], the proposed packing pres-
sure profile consists of six parameters (the packing pressure
Ppi and the packing time tpi (i = 1,2,3) at points A, B, and C in
Fig. 4b). Therefore, in this case, the design variables are
x = (Tmelt, tinj, Pp1, Pp2, Pp3, tp1, tp2, tp3, Tc, tc)

T.
Note that it is possible to handle the injection pressure as

the design variables. However, it is difficult to set up the
injection pressure exactly in the experiment. Inappropriate
injection pressure easily leads to short shot. In order to avoid
the short shot, a constant injection pressure (200 MPa) is used
in both the numerical simulation and the experiment.
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3.3 Objective functions

As described in Section 1, the short cycle time is always im-
portant in the PIM for the high productivity. In this paper, the
cycle time is taken as the first objective function f1(x) and is
simply calculated as follows:

a. In the case of conventional packing pressure profile

f 1 xð Þ ¼ tinj þ tp þ tc→min ð2Þ

b. In the case of proposed packing pressure profile

f 1 xð Þ ¼ tinj þ tp1 þ tp2 þ tp3 þ tc→min ð3Þ

Next, the warpage is taken as the second objective function
f2(x) for the high product quality. In the case of the box-type
plastic product, as shown in Fig. 5, the warpage is evaluated as
the maximum deformation. Therefore, the maximum distance
between the cavity and the product after eject is taken as the
second objective function.

3.4 Sequential approximate optimization
for multi-objective optimization

In this paper, two objective functions (cycle time and warp-
age) are minimized. Therefore, the objective is to identify the
pareto-frontier between the cycle time and the warpage. The
SAO system using the RBF network proposed by one of the
authors is used to identify the pareto-frontier with a small
number of simulations. In this section, the procedure is briefly
described. In the Appendix, the key points in the SAO system
using the RBF network are described.

(STEP 1) The Latin hypercube design (LHD) is used to
generate some initial sampling points (LHD).

(STEP 2) Through the numerical simulation using
Moldex3D (R13), the objective functions (cycle time and
warpage) are numerically evaluated at the sampling points.

(STEP 3) All functions are approximated by the RBF net-
work. Here, the approximated objective functions are denoted

as ~f i xð Þ (i = 1 , 2 , ⋯ ,K).
(STEP 4) The pareto-optimal solutions of response surface

are determined by using the weighted lp norm method formu-
lated as follows:

∑K
i¼1 αi~f i xð Þ
� �ph i1=p

→min ð4Þ

where αi(i = 1 , 2 , ⋯ , K) represents the weight of the ith
objective function, and p is the parameter. In this paper, p is
set to 4. In order to obtain a set of pareto-optimal solutions,
various weights are assigned.

(STEP 5) If terminal criterion is satisfied, the SAO algo-
rithm will be terminated. Otherwise, the pareto-optimal solu-
tions are added as the new sampling points. As a result, the
number of sampling points is updated.

(STEP 6) The density function is constructed and mini-
mized. The optimal solution of the density function is added
as a new sampling point. This step is repeated till a terminal
criterion is satisfied. See the Appendix for the detail of the
density function.

(STEP 7) Return to STEP 2.
Figure 6 shows the flow of the SAO algorithm for MOO.

For better understanding, let us describe the density function
part in Fig. 6. The density function is repeatedly constructed
and minimized, as shown in Fig. 6 where the parameter count
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Table 2 Comparison of cycle time between points A, X, and Y

tinj [s] tp [s] tc [s] fi(x)

Point A 0.25 2.78 4.08 1.41 6.83 15.35

Point X 0.37 12.67 1.70 14.74

Point Y 0.64 7.49 10.80 18.93
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is introduced in this phase. This parameter controls the num-
ber of sampling points with which the density function is
constructed. Thus, in the algorithm, the number of sampling
points by the density function varies according to the number
of design variables. If the parameter count is less than int(n/2),
this parameter is increased as count = count + 1. The terminal
criterion in this part is given by int(n/2), where int() represents
the rounding-off. We expect that iterative use of the density
function will yield a uniform distribution of sampling points.
As the terminal criterion in STEP 5, the error at the
pareto-optimal solutions is handled. The error at the
pareto-optimal solutions in STEP 4 is within 5%; the SAO
algorithm will be terminated.

4 Numerical and experimental results

First, the numerical simulation is carried out in order to iden-
tify the pareto-frontier. After that, the experiment based on the
numerical result is carried out. The lower and upper bounds of
the design variables in each case are set as follows:

a. In the case of conventional packing pressure profile

180≤Tmelt≤210
�
C
� �

0:1≤ tinj≤1:0 s½ � 50≤Pp≤100 MPa½ �
1:0≤ tp≤20:0 s½ � 40≤Tc≤90

�
C
� �

1:0≤ tc≤40:0 s½ �
ð5Þ

b. In the case of proposed packing pressure profile

180≤Tmelt≤210
�
C
� �

0:1≤ tinj≤1:0 s½ � 50≤Pp1;Pp2;Pp3≤100 MPa½ �
1:0≤ tp1≤10:0 s½ � 1:0≤ tp2; tp3≤5:0 s½ � 40≤Tc≤90

�
C
� �

1:0≤ tc≤40:0 s½ �
ð6Þ

Fifteen initial sampling points are generated in the case of
the conventional packing pressure profile, whereas 20 initial
sampling points are generated in the case of the proposed one.
Then, the pareto-frontier is identified. In order to identify the
pareto-frontier, 42 simulation runs are required in both cases.
The pareto-frontier is shown in Fig. 7, in which the black
circles denote the pareto-frontier by the proposed packing
pressure profile, and the black triangles the one by the con-
ventional packing pressure profile, respectively. It is clear
from Fig. 7 that the trade-off can be observed between the
warpage and the cycle time. In particular, the trade-off curve
of the proposed packing pressure profile is improved, com-
pared with the one of the conventional one. With the proposed
packing pressure profile, the improvement of 26% can be
achieved in the cycle time and the improvement of 14% can
be achieved in the warpage. Let us compare the deformation at
points A and X where the cycle time is almost the same. The
deformation is shown in Fig. 8, from which it is found that the
improvement of 33% is achieved in the warpage. The packing
pressure profile is shown in Fig. 9, in which the solid line
denotes the packing pressure profile at point A and the dashed
line the one at point X. At point A, the high packing pressure
is applied and the packing pressure gradually decreases.
Finally, the packing pressure slightly increases and the pack-
ing phase is terminated. High packing pressure helps keep the
temperature of melt plastic high, and the melt plastic is grad-
ually cooled down with decreasing the packing pressure. As a
result, the warpage reduction can be achieved. On the other
hand, the packing time at point X is long, but the cycle time
between points A and X is almost the same. Then, we check
the cycle time at these points, which is shown in Table 2. It is
found from Table 2 that the cooling time at point X is much
short. This indicates that the melt plastic is rapidly cooled
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down and this leads to the large warpage. Next, let us compare
the cycle time at points A and Y where the deformation is
almost the same. The packing pressure profile at point Y is
also shown in Fig. 9 with the dashed line. The packing time at
point Y is shorter than the proposed one at point A, but the
shorter cycle time is obtained with the proposed packing pres-
sure profile. The pareto-optimal solution at point Y is then
compared, which is listed in Table 2. It is found from
Table 2 that the injection time and the cooling time at point
A are shorter than those at point Y. As a result, the cycle time
at point A is improved. Let us compare the packing pressure
profiles at points A, B, and C, which are shown in Fig. 10. It is
found from Fig. 10 that the packing pressure profiles at these
points are similar.

Finally, the accuracy of response surface of the proposed
approach is shown in Fig. 11, from which it is found that
highly accurate response surface can be obtained. This indi-
cates that highly accurate experimental result will be obtained.

In order to examine the validity of the numerical result, the
experiment is carried out at six points shown in Fig. 7 (points
A, B, C, X, Y, and Z). The PIMmachine (GL30-LP, Sodick) is
used in the PIM experiment. The result is shown in Fig. 12, in
which the white circles denote the experimental results with
the proposed packing pressure profile, and the white triangles
the ones with the conventional packing profile. Figure 13
shows one of the proposed packing profiles in the experiment,
from which it is clear that the proposed packing pressure is

well controlled in the experiment. In addition, it is found from
Fig. 12 that the experimental result well agrees with the nu-
merical result. Through numerical and experimental results,
the validity of the proposed approach has been confirmed.

5 Conclusions

In this paper, themulti-objective optimization of packing pres-
sure profile and process parameters for minimizing warpage
and cycle time is performed. As the advanced PIM, the pack-
ing pressure profile that the packing pressure varies in the
packing phase is adopted and optimized. In addition to the
packing pressure profile, the melt temperature, the injection
time, the cooling temperature of coolant, and the cooling time
are taken as the process parameters and optimized. The nu-
merical simulation in PIM is so intensive that a sequential
approximate optimization using radial basis function is
adopted. Through the numerical result, the pareto-frontier be-
tween the warpage and the cycle time is identified. In order to
examine the validity of the numerical result, the experiment is
carried out. The experimental result well agrees with the nu-
merical result. Through numerical and experimental results,
the validity of the proposed approach for minimizing the
warpage and the cycle time has been confirmed.

Appendix

Radial basis function network

The RBF network is a three-layer feed-forward network. Let
{xj, yj} (j = 1 , 2 , ⋯ ,m) be the training data, where m repre-
sents the number of sampling points. The response surface is
given by

ŷ xð Þ ¼ ∑m
j¼1wjK x; x j

� � ð7Þ

where K(x, xj) is the jth basis function, and wj denotes the
weight of the jth basis function. Gaussian kernel given by
Eq. (8) is generally used in this paper.

K x; x j
� � ¼ exp −

x−x j
� �T

x−x j
� �

r2j

 !
ð8Þ

In Eq. (8), xj represents the jth sampling point, and rj is the
width of the jth basis function. The response yj is calculated at
the sampling point xj. In the RBF network, the following
equation is minimized:

E ¼ ∑m
j¼1 y j−ŷ x j

� �� �2
þ ∑m

j¼1λ jw2
j→min ð9ÞFig. 13 Variable packing profile in experiment (GL30-LP, Sodick)
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where the second term is introduced for the purpose of the
regularization. It is recommended that λj in Eq. (9) is sufficient
small value (e.g., λj = 1.0 × 10−2). The necessary condition of
Eq. (9) results in the following equation.

w ¼ HTH þΛ
� �−1

HTy ð10Þ

where H, Λ, and y are given as follows:

H ¼
K x1; x1ð Þ K x1; x2ð Þ ⋯ K x1; xmð Þ
K x2; x1ð Þ K x2; x2ð Þ ⋯ K x2; xmð Þ

⋮ ⋮ ⋱ ⋮
K xm; x1ð Þ K xm; x2ð Þ ⋯ K xm; xmð Þ

2
664

3
775 ð11Þ

Λ ¼
λ1 0 ⋯ 0
0 λ2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 0 λm

2
664

3
775 ð12Þ

y ¼ y1; y2;⋯; ymð ÞT ð13Þ

The width in the Gaussian kernel plays an important role
for good approximation. We have proposed the following
simple estimate about the width [16]:

r j ¼ d j;maxffiffiffi
n

p ffiffiffiffiffiffiffiffiffi
m−1n

p j ¼ 1; 2;⋯;m ð14Þ

where rj denotes the width of the jth Gaussian kernel,
and dj,max denotes the maximum distance between the
jth sampling point and the other sampling points.
Equation (14) is applied to each Gaussian kernel indi-
vidually and can deal with the non-uniform distribution
of sampling points.

Density function using RBF network

In the SAO, it is important to find out the unexplored region
for global approximation. In order to find out the unexplored
region with the RBF network, we have developed a function
called the density function [16]. The procedure to construct
the density function is summarized as follows:

(D-STEP 1) The following vector yD is prepared at the
sampling points.

yD ¼ 1; 1;⋯; 1ð ÞTm�1 ð15Þ

(D-STEP 2) The weight vector wD of the density function
D(x) is calculated as follows:

wD ¼ HTH þΛ
� �−1

HTyD ð16Þ

(D-STEP 3) The density function D(x) is minimized.

D xð Þ ¼ ∑m
j¼1w

D
j K x; x j
� �

→min ð17Þ

(D-STEP 4) The point minimizing D(x) is taken as the new
sampling point.

Figure 14 shows an illustrative example in one dimension,
and the black dots denote the sampling points. It is found from
Fig. 14 that local minima are generated around the unexplored
region. By adding the optimal solution of the density function,
the uniform distribution of sampling points can be achieved.
Note that the RBF network is basically the interpolation be-
tween sampling points and points A and B in Fig. 14 are the
lower and upper bounds of the design variables of the density
function.
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