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Abstract Computer-aided manufacturing technology is wide-
ly used in the sheet-forming industry to predict forming perfor-
mance. Strain-based forming limit criterion is popularly used
for this purpose. In incremental sheet forming, the forming
limit curve at fracture (FLCF) is a line from the equi-biaxial
strain-point to plane strain-point and is high in comparison with
those in conventional press forming methods. This study aims
to empirically define the FLCF, specifically the equi-biaxial
strain at fracture which has yet to be experimentally defined.
In addition, to confirm the experimental measurement results,
the finite element simulation by ABAQUS/Explicit was per-
formed wherein the fitted flow curve of the large-strain range,
accompanied with non-associated flow rule yield behaviour,
demonstrates good agreement with the experiment. A new
stress-strain equation is thus introduced to describe the flow
curve in a large-strain range.

Keywords Incremental sheet forming (ISF) . Forming limit
curve at fracture . Equi-biaxial strain . Non-associated flow
rule . Finite element simulation

1 Introduction

The first method of incremental sheet forming (ISF) with a
single point tool, called “dieless forming,” was patented by

Leszak in 1967 [1]. The concept of asymmetrical incremental
sheet forming (AISF) by computer numerically controlledma-
chine was subsequently published in 1992 [2] and has dramat-
ically improved upon as described in 2005 in the review paper
[3]. The deformation mechanisms of ISF is stretching and
shear in the plane perpendicular to the tool direction, with
shear in the plane parallel to the tool direction. Strain compo-
nents increase on successive laps, and the most significant
component of strain is shear parallel to the tool direction [4].

Unlike the forming limit diagram (FLD) in conventional
press forming expressed in terms of principal strain conditions
for the onset of localized necking, incremental sheet forming
is limited by fracture with suppression of necking [5]. The
forming limit curve at fracture (FLCF) in the incremental
forming process has much higher strain compared with the
classical FLD and shows a straight line having a negative
slope of the form ε1 = aε2 + b in the first quadrant. It is noted
that this straight line of FLCF of sheet material is very similar
to the shape of the FLC when the sheet thickness becomes
nearly zero. The slope of FLCF is concluded to be about −1 [3,
6, 7].

In recent papers, authors performedmany tests to define the
FLCF by pyramidal shape, cone shape and compared to the
values taken from bulge tests. The main conclusion is that the
FCLF is independent on strain path, and the experimental
slope of FCLF for 1.0-mm-thick AA1050-H111 sheet ranges
from −0.7 [8] and −0.86 [9, 10]. Another suggestion is that the
FLCF should be considered as mechanical properties of ma-
terial instead of FLD. The different slope of FLCF comes from
the different measurement methods of equi-biaxial strain at
fracture.

In several recent articles [8–10], the fracture strain mea-
sured at the corner of formed pyramidal shape is far from
equi-biaxial strain. A cross-arc groove tool path was subse-
quently introduced to perform the fracture at equi-biaxial state
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with the smaller 15-mm-diameter tool [11, 12]. In this test, the
fracture occurred at the outer groove terminal first, rather than
the cross-groove area and the strain was measured by grid
analysis with a grid size of 2 mm. However, the grid analysis
can only give a correct result when the ratio of tool diameter
and grid size is about 50. In addition, the 3D-DIC results
showed that these points are far from the equi-biaxial strain
[13]. This suggests that the equi-biaxial strain at fracture point
has not yet been defined.

In this study, we introduce an apparatus to define the frac-
ture limit line in ISF by three points: the plane strain point, the
equi-biaxial strain point and in-between these two points. The
measurement result is also confirmed by numerical simulation
by ABAQUS/Explicit using flow curve fitted by Kim-Tuan
equation and non-associated flow rule yield behaviour. The
mechanical properties of 0.8-mm-thick AL5052-O sheet ma-
terial are also clarified in advance.

2 Experiments

2.1 Material properties

To obtain the flow stress-strain relation for AL5052-O sheet, a
series of uniaxial tensile tests were performed following the
ASTM-8 standard procedure at a constant tensile speed of
20 mm/min with a gauge length of 50 mm. The laser cutting
method was applied to prepare the specimens in order to in-
crease the accuracy and reduce the effect of the cutting process
on the surface of the specimens.

To evaluate the anisotropic plasticity behaviour, tensile tests
were conducted in three different directions, at 0°, 45° and 90°,
with respect to the rolling direction. The material properties are
summarized in Table 1, including Young’s modulus (E), ulti-
mate tensile strength (UTS), and elongation (Δl). The initial yield
stress and the plastic strain ratios (R values) are also reported
respectively for the three directions (σ0, σ45, σ90, R0, R45, R90).

Figure 1 presents the true stress-true strain curves of the
studied material for three different orientations. As noted in

Table 1, the AL5052-O sheet is an anisotropic material,
expressed by the differences of both the initial yield stresses
and the plastic strain ratios in the three different orientations.
Furthermore, from Fig. 1, it is clear that the flow curves in
different directions are represented by different curvatures,
which are distinct in tensile strength, elongation, and necking
area.

Conventionally, either the Swift equation (power law) or
the Voce equation (exponent law) is applied to describe the
strain-hardening behaviour of sheet metals. However, using
these equations to predict the post-necking behaviour of sheet
metals remains questionable, as indicated in the work of
Coppieters [14]. Therefore, we propose a new hardeningmod-
el, the Kim-Tuan model [15], to model the stress-strain rela-
tion of AL5052-O sheet material with the aim of successfully
describing the material behaviour on both sides of the necking
point: pre-necking behaviour and post-necking behaviour.
The formulation of Kim-Tuan (K-T) hardening model is
expressed as follows:

σ ¼ σ0 þ KT εþ ε0ð Þm 1−exp−cεð Þ ð1Þ
where KT, m, and c are the parameters of the proposed equa-
tion, and m is the dependent parameter calculated by

m ¼ σ*

σ*−σ0
ε* þ ε0
� � ð2Þ

where (ε0, σ0) is the initial yield point of the true stress-true
strain curve and (ε∗ , σ∗) are plastic strain and stress in accor-
dance with maximum tensile force point. It is clear that param-
eter m is a dependent parameter whose value does not depend
on other parameter values. Therefore, the value of parameters
KT and c in the Kim-Tuan model can be found using the curve
fitting tool available on some optimization packages, such as
Excel or MATLAB. The Kim-Tuan equation can be easily
reduced to the Swift equation when σ0 is ignored and c is
infinity. Additionally, this equation can be simplified to the
Voce equation when the value of parameter m is zero.

Table 1 Mechanical properties of Al5052-O

Direction 0° 45° 90°

Young modulus (GPa) 73.2 71.2 64.1

Yield stress (MPa) 183.3 172.5 173.6

Ultimate tensile strength (MPa) 229.8 216.6 220.1

Elongation (%) 11.0 13.6 10.5

R value 0.758 0.646 0.863

KT 131.580 124.809 124.268

m 0.271 0.278 0.251

c 61.163 75.433 69.521

Fig. 1 Stress-strain curves of the of AL5052-O sheet for three different
orientations
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Figure 2 provides the curve fitting results for the AL5052-
O sheets using three different strain hardening models: the
Swift power law, the Voce exponent law, and the newly pro-
posed Kim-Tuan equation. In the three models, the Kim-Tuan
hardening model enforces the work-hardening rate or the
slope of stress-strain curve (dσ/dε) at the maximum tensile
force point of the fitted curve equal to that of the experiment.
This makes the proposed equation advantageous for studying
the post-necking behaviour of sheet metals without requiring
any other plasticity properties, except the stress-strain data
from the uniaxial tensile test.

The hydraulic bugle test was also performed to get the
biaxial stress-biaxial strain (σb , εb) data as the following
equation.

σb ¼ pRd

2td
; εb ¼ ln

td
t0

� �
ð3Þ

Therefore, biaxial stress and biaxial strain can be calculated
based on three measurable variables: the hydraulic pressure p
recorded by a pressure gauge, the bulge radius Rd., and the
polar thickness td determined using ARAMIS system (see
Fig. 3a).

The curve fitting result of the tensile test data in the rolling
direction by Kim-Tuan equation was compared with the
stress-effective strain curve obtained from the hydraulic bulge
test, as shown in Fig. 3b. It is clear that the strain hardening
curve obtained from the Kim-Tuan equation is well matched
with the experimental data from the bulge test in all ranges of
strain. As such, the Kim-Tuan equation provides an accurate
prediction for the post-necking behaviour of the AL5052-O
sheets. It is, thus, reasonable to conclude that the strain hard-
ening function based on the Kim-Tuan equation can be ap-
plied in the simulation process, as discussed in the next
section.

2.2 Forming limit curve at fracture in incremental sheet
forming

To define the FLCF, we performed experiments to measure
strain value at three points: the plane strain point, the equi-

biaxial strain point and in-between these two points.
Truncated pyramidal shapes with square base of
80 × 80 mm were formed to find the limited forming angle
and plain strain at fracture. In these tests, we employed the z-
level tool path as Fig. 4. The other forming parameters include
a tool diameter of 10 mm, vertical step of 0.4 mm, feed rate of
800 mm/min, spindle speed of 60 round/min and MoS2
lubrication.

The maximum forming angle can be achieved at 64° and
fracture occurs at 65° of wall angle for 0.8-mm-thick AL5052-
O material. Laser cutting was applied to cut the cross section
along the wall of pyramidal parts. The thickness distribution
along the wall of pyramids are measured as indicated in

Fig. 3 a Hydraulic bulge test set up. b Comparison of the results of the
Kim-Tuan hardening function and the effective stress-strain data from the
hydraulic bulge test for the AL5052-O sheet material

Fig. 2 Curve fitting results for the AL5052-O sheet in the rolling
direction Fig. 4 Tool path used for pyramidal part
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Fig. 5a. Figure 5b shows the minimum thickness locating at
the forming depth of 7 ÷ 11 mm, this value is significantly
lower than the value calculated by cosine law. The minimum
thickness for the safe part of 64° and fracture part of 65° are
0.245 and 0.224 mm, respectively. The thickness strain is
calculated, and this magnitude value is considered as major
strain because the pyramid wall can be considered to deform
in plane strain mode [16].

To perform equi-biaxial strain deformation, we introduced
a new tool path named four-wing-star. This new tool path is
performed for AL5052-O first and tested for some industrial
materials such as stainless steel STS 304, mild steel, and pure
titanium. The experiments were done for tool diameter of
10 mm. Before the test, 0.2-mm-pitch grids are marked to
roughly define the major and minor deformations.

The forming setup and tool path are shown in Fig. 6a, b.
The specimen with the size of 140 × 140 mm is clamped on
the plus-shape die. The plus-shape die is cut from chemical
wood in order to support the blank shoulder. The points
named A, B, C and D are located at the plane higher than

the initial sheet plane where the tool is not in contact with
the sheet metal. The tool moves in order of 1–2–3–4–5–6–
7–8 with downward distance of ΔZ in the centre area, and it is
repeated with a depth increment ΔZ of 0.25 mm.

When the tool continuously descends to the centre position,
fracture occurs at this area as shown in Fig. 7. In all experi-
ments, the fracture occurred in the centre area first and the
tests were stopped immediately. The grid marking shows that
the centre area is in an equi-biaxial strain state. Thus, the
thickness strain magnitude is double value of major and minor
strain.

With the same measurement method, the minimum thick-
ness distribution along the cross section was measured. For
AL5052-O specimen, the minimum thickness close to fracture

Fig. 6 a Forming set up for defining equi-biaxial strain. b Four-wing-star
tool path for equi-biaxial strain evolution

Fig. 5 aMicroscopic thickness measurement of pyramidal shape of 65°
(thickness at area close to fracture). b Thickness distribution of the wall in
pyramidal shape
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point is measured as 0.235 mm, approximately to the case of
the 65-degree pyramidal part. The thickness distribution along
the symmetric cross section is shown as Fig. 13 in the next
section.

Another tool path named two-wing star as a part of the
four-wing star tool path was introduced to define the fracture
locating between plane strain point and equi-biaxial point. In
this tool path, the tool moves from A to B and repeats with
downward distance of ΔZ in the centre area as Fig. 8a. After
the fracture occurred as shown in Fig. 8b, the grid analysis
method with grid size of 0.2 mm was used to measure the
strain pair around the fracture position. The strain evolution
was further clarified in the next section by numerical simula-
tion also.

The major and minor strain at fracture boundary between
the safety and failure zone is plotted in Fig. 9. The fitted FLCF
for AL5052-O material is as follows:

ε1 ¼ −1:04ε2 þ 1:24 ð4Þ
where ε1 and ε2 are the major and minor strains, respectively.

The same tool path was applied for some other industrial
materials with different tensile strength such as soft material
(Al3000-O), high strength material (STS304) and hard-to-
form material (pure titanium), as Fig. 9b–d.

To verify again the strain deformation for the new tool
paths, the numerical simulation was performed to clarify the
major and minor strain evolution. Thickness distribution was
also taken into consideration.

3 Finite element simulation

3.1 The non-associated flow rule with mixed hardening

The ISF is a slow process with cyclic and local plastic strain.
The finite element simulation is a great challenge. The main
challenge is to simulate thousands of increments along the
long forming time with small element in the small contact
area. The plastic deformation occurs around the tool contact
area while the rest of the area is under elastic deformation. To
describe the material behaviour, combined isotropic/ nonline-
ar kinematic hardening model showed the effectiveness [16,
17]. Another challenge is to accurately describe the material
flow curve up to large-strain range. As shown in the previous
section, the Kim-Tuan hardening equation is the best for
fitting the stress-strain curve in a post-necking range.
Regarding the integration strategy, many studies performed
the simulation by implicit and explicit solutions. The implicit
analysis gives favourable results compared to experiments in
the case of geometry and springback, but long computational
time is a drawback [3, 18]. On the other hand, the explicit
solution is using mass scaling and time scaling, which reduces
the simulation time and offers good accuracy [19].

In this study, AL5052-O sheet was used. It is undeniable
that AL5052-O is an anisotropic material due to both the mean
of tensile strength and the anisotropic plastic ratio [20]. From
this point of view, anisotropic functions should be used to
derive the plastic work behaviour of this material. Thus, in
this study, we considered two approaches in the field of plas-
ticity to describe the plastic work behaviours of the studied
material: the associated flow rule (AFR) and the non-
associated flow (NAFR).

In the first approach of associated flow rule, the material’s
plastic work behaviours involved the plasticity yield function
and the plasticity potential function are described by only one

Fig. 8 a Two-wing-star tool path. b Fracture happens for the two-wing-
star tool path

Fig. 7 Fracture at the centre area of the four-wing star specimen (bottom
view)
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function. For aluminium sheet metals, especially for AL5052-
O sheet, YLD2000-2D yield function has been proven as the
most accuracy yield function. In the other approach, non-
associated flow rule, the most important point is that the plas-
tic yield function and the plastic potential function are
expressed by two different functions. It is more complicated
when these two functions are formulated by different mathe-
matical forms. Therefore, to simplify the calculation process,
both plastic yield function and plastic potential function are
expressed in the form of Hill’s quadratic formulation [17].
However, the value of parameters of the yield function (F,

G, H, N) were calculated based on the stress terms (σ0, σ45,
σ90, and σb) while the value of parameters of potential func-
tion (F′,G’,H′,N′) were determined based on strain terms (R0,
R45, R90). Further formulation of the Hill’s quadratic function
can be found in reference. The parameters of these functions
are reported in Table 2.

The yield criterion, as function of all state variables, can be
written in a generic form as

F σ;α;σY� � ¼ f y σ−αð Þ−σY pð Þ ¼ 0 ð5Þ

Fig. 9 a FLCF of 0.8-mm-thick AL5052-O. b FLCF of 0.6-mm-thick AL3000. c FLCF of 0.5-mm-thick STS304. d FLCF of 0.5-mm-thick pure
titanium
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where fy(σ −α) is a continuously differentiable yield function;
α is a backstress tensor in the kinematic hardening model, and
if α is ignored, the yield criterion returns to isotropic harden-
ing model; p is the equivalent plastic strain; σY(p) is the work
hardening rule which is generally represented by Swift, Voce
or Kim-Tuan equation.

The evolution of the backstress tensor is modelled based on
the nonlinear kinematic hardening theory of the so-called
Armstrong-Frederick model (AF model):

dα ¼ C
f p

η−γα

 !
dp ð6Þ

in which tensor η is defined as η = (σ-α); C and γ are material
constants. For tested AL5052-O material, C and γ are taken
the values of 1118.26 MPa and 23.694, respectively.

Hill 1948 anisotropic yield function in the plane stress
condition:

f y ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gþ Hð Þη2x þ F þ Hð Þη2y−2Hηxηy þ 2Nη2xy

q
−
1

2
¼ 0 ð7Þ

σY is the yield stress in the reference direction and F, G, H
and N are constant characteristics of the anisotropy and are
defined as:

2G ¼ 1

σY
0

� �2 − 1

σY
90

� �2 þ 1

σY
Bð Þ2

;

2 F ¼ 1

σY
0

� �2 þ 1

σY
90

� �2 − 1

σY
Bð Þ2

;

2H ¼ 1

σY
0

� �2 þ 1

σY
90

� �2 − 1

σY
Bð Þ2

;

2N ¼ 1

σY
shear

� �2 ¼ 4

σY
45

� �2 − 1

σY
Bð Þ2

ð8Þ

where σY
0 , σ

Y
90, and σY

45 are tensile yield stresses in the rolling,

transverse and diagonal directions, σY
shear is the shear yield

stress and σY
B is the equi-biaxial yield stress.

The plastic potential function can be defined in the form of
Hill 1948 anisotropic function as follows:

f p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G

0 þ H
0� �
η2x þ F

0 þ H
0� �
η2y−2H

0
ηxηy þ 2N

0
η2xy

q
ð9Þ

In which the set of anisotropic coefficient, F′, G′, H′ and N′
are functions of the plastic strain ratios defined as follows:

G
0 ¼ 1

1þ R0
;H

0 ¼ R0

1þ R0
; F

0 ¼ R0

1þ R0ð ÞR90
;

N
0 ¼ 1þ 2R45ð Þ R0 þ R90ð Þ

2 1þ R0ð ÞR90

ð10Þ

Table 2 Parameters of material AL5052-O

Yield function Hill48-σ

F G H N

0.5144 0.3995 0.6005 1.8012

Potential function Hill48-R

F′ G′ H′ N′

0.4996 0.5688 0.4312 1.2244

Fig. 10 a Comparison of plastic work behaviours of the AL5052-O
sheets based on different approaches. b Normalized yield flow stress
predicted by different yield functions and experimental data. c R value
predicted by different potential function and experimental data
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Figure 10a shows a comparison of the plastic work behav-
iours of the AL5052-O sheet based on two approaches: the
non-associated flow rule with Hill’s quadratic function (la-
belled “Hill48-σ” for yield function and “Hill48-R” for poten-
tial function). Additionally, experimental data of yield loci of
AL5052-O obtained from uniaxial tensile tests and bulge test
are compared in this figure.

It is clear that the Hill48-σ yield function successfully de-
scribe the yielding behaviour of the selected material. Both of
these functions predict the experimental data of yield stress
obtained from the uniaxial tensile tests and bulge test.
However, the notable difference between the two functions
was seen at the plane strain mode. Furthermore, in NAFR
approach, the yield function and the potential function are
represented by two significantly different curvatures. It is re-
markable that these functions are represented by only one
curvature in the AFR approach.

Additionally, comparisons between predicted anisotropy
and experimental data of AL5052-O sheet are shown in
Fig. 10b, c. The applications of the Hill48-σ to predict nor-
malized yield stress and the Hill48-R to describe R value at
different orientations are in agreement with the experiment
data. However, using Hill48-σ to predict R value or applying
Hill48-R to predict normalized yield stress leads to a signifi-
cantly discrepant result with experiment data. The ability of
NAFR approach with Hill’s quadratic formulation on

Fig. 11 FEM model for four-wing stars tool path

Fig. 12 Fracture variable state (SDV11) comparison
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describing the plastic work behaviour of AL5052-O sheet
material is confirmed.

3.2 FEM model

The software ABAQUS version 6.14 is used for elastic-plastic
simulations of incremental forming process for defining equi-
biaxial strain described in the previous section.

The finite element model is shown in Fig. 11. The full
model is considered to ensure the correct results because the
symmetry condition does not correctly describe the mechani-
cal deformation of the sheet during forming process. The
AL5052-O sheet is meshed by square shape, S4R type with
a size of 0.5 mm, and is integrated by Gauss integration with 9
points in through-thickness direction. The outer boundary of
the sheet is constrained by 6° of freedom. The fixed die is
modelled as discrete rigid body and meshed by the R3D4
element. The tool with a diameter of 10 mm is modelled as
analytically rigid.

AVUMAT subroutine was developed accompanying with
flow curve of Kim-Tuan equation and NAFR Hill48 yield
function (NAFR-KT case) in the simulation of the four-wing
star test for the AL5052-O sheet. Other material models by
AFR and flow curve fitted by Voce equation (AFR-Voce) was
performed to compare the simulation prediction.

Additionally, the forming limit diagram criterion
(FLDCRT) is applied to predict the fracture phenomena dur-
ing the forming process [10, 11]. The FLCF for material
Al5052-O is described by the equation ε1 = − 1.04ε2 + 1.24.
In simulation, the fracture is considered to occur at one ele-
ment when its FLDCRT value, which is defined by the ratio of
the major strains (ε1Cal) and the FLC values (ε1FLCF) at the
same point for the minor strains (ε2), reaches to the unit value.

Fig. 13 Thickness distribution along the cross section

Fig. 14 aMajor and minor strain evolution of deleted element in case of
NAFR-KTmodel. b Strain rate ratio subjected to equivalent plastic strain
for one forming cycle Fig. 15 Strain evolution for the deleted elements in the simulation
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In this simulation, the FLDCRT value at elements in the centre
area is over the unit first, the elements are deleted (Fig. 12).

Figure 12 shows the FLDCRT value (SDV11) evolution for
NAFR-KT and AFR-Voce. In both cases, this value is always
the maximum in the centre area during the forming process.
Notable, however, the FLDCRT values for AFR-Voce case are
always higher than those in NAFR-KT case and the fracture
depth predictions are 6.25 and 6.0 mm for NAFR-KT and
AFR-Voce model, respectively, in comparison with 6.50 mm
in the experiment.

When the fracture occurred, thickness in the cross section is
measured for both AFR-Voce and NAFR-KTmodel (Fig. 13).
The thickness around the fracture area in NAFR-KTandAFR-
Voce models are 0.245 and 0.264 mm, respectively, compared
with 0.235 mm in the experiment. The thickness evolution
shows that in the small plastic strain area, the predictions by
AFR-Voce and NAFR-KT models are similar to the experi-
ment results. However, in the large plastic strain area (near
centre area), the NAFR-KT model gives the better result in
comparison with AFR-Voce model. The thickness distribution
gets the minimum value at the centre area (distance from cen-
tre of about 3 mm). In this area, the thickness can be consid-
ered to be homogenous.

Themajor andminor strain evolution for deleted element in
the centre area was plotted with the equi-biaxial line (major
strain = minor strain) (Fig. 14a). In this figure, the strain pair
evolution for one forming cycle in which the tool goes in the
order A–B–C–D as shown in Fig. 6b was magnified. When
the tool goes from A to B, the major strain tends to increase
faster than the minor strain and the element changes from
compression to tension. The trend is similar when the tool
goes from C to D with faster increment of the minor strain.
The strain rate ratio changes the sign repeatedly as shown in
Fig.14b. The process is repeated for many forming cycle. The
strain evolution is not absolutely equi-biaxial stretching but
the general trend deviates slightly from it.

The same simulation schemes were applied to simulate the
65-degree pyramid part and two-wing star tool path to predict
the fracture and the strain evolution for deleted elements for
each shape, as plotted in Fig. 15. This shows that the element
in the wall of pyramidal shape can be considered as plane
strain deformation. For the case of four-wing star tool path,
the strain pair ratio deviated lightly from the equal stretching
line. Finally, the strain evolution for the deleted elements in
the two-wing star tool path is in-between the plane strain and
equi-biaxial strain. This predicted fracture point is in good
agreement with the grid analysis result.

4 Conclusions

In this paper, we shortly summarized the basic concept of,
briefly synthesized literature on, FLCF. In addition, we

developed a new method and the associated apparatus to de-
fine FLCF, especially the equi-biaxial strain point at fracture.
By the four-wing-star tool path, the centre area is deformed as
the equi-biaxial strain state and reached to fracture first. By
two-wing-star tool path, the strain evolution is in-between
plane strain and equi-biaxial strain.

From this experimental works for some industrial material
with different yield strengths and crystal structures, the slope
of FLCF is defined about minus unit.

In the numerical simulation, the Kim-Tuan equation of-
fered the best fitting result for stress-strain curve at large-
strain range because the hardening rate at the maximum ten-
sile force point is taken into consideration. In addition, the
NAFR accompanied with the Hill 1948 yield function and
Kim-Tuan hardening equation is applied in simulation to ac-
curately predict the fracture occurrence as well as thickness
distribution.
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