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Abstract This paper presents a new method for tool wear
estimation in milling process by utilizing the hidden semi-
Markov model (HSMM). HSMM differs greatly from the
standard hidden Markov model (HMM) in state duration dis-
tribution. The model structure and corresponding parameters
of HSMM can be easily determined without optimization.
Two groups of experiments are carried out to prove the effec-
tiveness of the HSMM-based method by recurring to the
Gamma distribution. Five types of time-domain features that
characterize tool wear states are extracted from the cutting
force signals during milling process. The extracted signal fea-
tures are utilized to realize tool wear estimation by means of
HSMM and some other published methods, respectively. The
experimental and analytical results show that the HSMM-
based method can reach higher accuracy for tool wear estima-
tion. Besides, the consuming time of HSMM for the identifi-
cation of tool wear state is less than 0.05 s, which makes tool
wear monitoring in industrial environment become more real-
istic and operable.
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1 Introduction

High productivity and high machining accuracy have become
important benchmarking of the manufacturing level of a

country in intelligent manufacturing era. Severe tool wear
and breakage will lead to interruption of machining process,
useless products, and damage to the machine-tools. Twenty
percent or so machine downtime is caused by excessive tool
wear in the actual industrial processes [1]. Note that the latest
real-time monitoring technology for tool wear can effectively
improve the utilization rate of machine tools up to 50%, in-
crease productivity by 35%, and reduce production costs by
30% [2, 3]. Therefore, accurate estimation of tool wear states
is extremely significant for the guarantee of stable
manufacturing process and excellent product quality.

The complex non-linear phenomenon of tool wear makes
the precise monitoring of tool wear states rather difficult.
Neural networks [4, 5] and SVM [6, 7] have been the most
widely utilized methods to realize tool wear estimation.
Besides, hidden Markov model (HMM) is also applied to tool
condition monitoring (TCM) for various machining fields
such as turning [8–10], milling [11–13], and drilling [14,
15]. Rabiner [16] gives a detailed review on the theory and
evolution process of the HMMs. Although HMM has been
applied to TCM, there are still some weaknesses that deserve
to be taken seriously. Previous studies have shown that the
application of HMM in TCM needs to construct a correspond-
ing estimation model for each tool wear state [8–15]. There
are no unequivocal guidelines for the determination of the
number of hidden states and possible observations in the
HMM-based model. The number of hidden states and possible
observations are only themselves within HMM. They have no
specific relation with the actual tool wear states. So these
parameters in HMM have no clear physical meaning. And
inappropriate parameter selection will directly affect the pre-
diction accuracy of the HMM-based classifier [17].
Consequently, the determination of the HMM-based optimal
model usually requires a relatively long time. Generally, ini-
tialization of the parameters in each HMM-based model is
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randomly generated since no prior knowledge is available.
The acquisition of an optimal model may need several training
processes since the EM algorithm only guarantees local opti-
mum. The above shortcomings make it difficult to establish
optimal HMM-based models for TCM. Besides, previous
studies on the application of HMM in TCM were centralized
in two or three classification of tool wear states and so did not
take full advantage of the superiority of HMM.

State duration distribution of the standard HMM is expo-
nential duration density. This owes to the homogeneous
Markov assumption, i.e., state of any moment depends only
on the state of the previous moment. It indicates that the state
duration probability in HMM shows an exponentially decline
with time goes by. However, most of the practical applications
do not satisfy the condition of exponential duration which will
lead to inappropriate state duration modeling [18]. Hidden
semi-Markov model (HSMM) is an extension of HMM and
firstly proposed by Ferguson [19]. Yu [20] gives a complete
overview of HSMM, including modeling, inference, estima-
tion, and applications. “State duration” is a unique signature of
HSMM within which each state can generate a series of ob-
servations. So the states in HSMM have no self-transition
probabilities which are set to zero. This has greatly extended
the application ranges of HSMM, such as handwritten word
recognition [21], fault diagnosis [22, 23], and detection of
reproductive status for dairy cows [24, 25]. In this paper, a
HSMM-based monitoring system is utilized to estimate the
tool wear state in milling process. Two groups of experiments
are carried out to prove the effectiveness of the HSMM-based
method. The cutting force signals are collected at set intervals
under a complete tool wear process, i.e., initial wear, normal
wear, severe wear, and breakage. Five types of time-domain
features related to tool wear are extracted from the original
cutting force signals. The HSMM-based method is utilized
to construct the relationship between signal features and the
corresponding tool wear state so as to realize on-line tool wear
monitoring. It is noteworthy that the parameters in HSMM
have clear physical meaning and the initial guess of parame-
ters have certain rules to follow. Moreover, two kinds of state
duration distribution, i.e., non-parametric and Gamma distri-
bution are utilized together in the constructed HSMM-based
tool wear monitoring system. The experimental results show
that the HSMM with Gamma distribution has less iteration
steps in the training process and is higher in prediction accu-
racy than other published methods. The convenience of model
building, fast training speed, and high identification rate make
HSMM a better means for tool wear monitoring. Besides, the
identification of tool wear state can be implemented in less
than 0.05 s by recurring to HSMM, which is very encourag-
ing. This study provides a new method for tool wear monitor-
ing in the field of intelligent manufacturing.

This paper proceeds as follows. Conceptual framework of
HSMM and HSMM-based tool wear estimation model are

introduced in Section 2. The experimental setup and data col-
lection are presented in Section 3. Analysis of the HSMM-
based monitoring system and experimental results are given in
Section 4. Finally, Section 5 concludes this paper.

2 Hidden semi-Markov model

Similar to other monitoring methods, the HSMM technique
also consists of two parts: model training and state estimation.
Detailed procedure is as follows.

2.1 HSMM components

HSMM contains the following basic contents:
1. State. Assuming the set of all the possible states is
S = {q1, q2, ⋯ , qN}. N represents the number of possible
states in HSMM. The corresponding state of an ob-
served variable Xt at time t is defined as St ∈ S which
is unobservable.
2. Initial state probability vector π = [πi].

πi ¼ P S1 ¼ qið Þ; i ¼ 1; 2;⋯;N : ð1Þ

where πi represents the probability of being in state qi at time

t = 1 and satisfies the property ∑N
i¼1πi ¼ 1.

3. State transition probability matrix A = [aij].

aij ¼ P Stþ1 ¼ qjjSt ¼ qi
� �

; i ¼ 1; 2;⋯;N ; j ¼ 1; 2;⋯;N : ð2Þ

where aij represents the probability of transition from state qi
at time t to state qj at time t + 1 and satisfies ∑N

j¼1aij ¼ 1.

Besides, aii = 0 since the self-transition probabilities are non-
existent in HSMM.

4. Observation distributionB = [bi(xt)]. The observed variable
Xt at time t conditioned on the hidden state St is defined as
observation distributions, which are either probability functions
or probability densities [26]. In this study, multivariate normal
distribution is utilized to fit the signal features observed in the
machining process as following

bi xtð Þ ¼ f X t ¼ xtjSt ¼ qið Þ

¼ 1

2πð Þk=2 Σij j1=2
exp −

1

2
xt−μið ÞTΣi

−1 xt−μið Þ
� �

;

ð3Þ

where k is the dimension of feature vectors. μi and Σi repre-
sent the mean and covariance matrix of the observations,
respectively.
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5. State duration distribution Θ = [di(u)]. The probability
density of a stochastic process spends the sojourn time or run-
length u in a given state qi is defined as state duration distri-
bution. In HMM, the inherent duration probability in one state
is di uð Þ ¼ au−1ii 1−aiið Þ, which is geometrically distributed and
inappropriate for practical applications. State duration is
modeled explicitly in HSMM which differs greatly from the
HMM [26]. In this study, the non-parametric and Gamma [27,
28] distributions are utilized together to model the state
duration.

For convenience, the HSMM can be briefly expressed by
θ = (π,A,B,Θ). This set of model parameters θ needs to be
estimated in the training process so as to generate accurate
model.

2.2 HSMM model training

The signal features extracted from the milling process com-
prise the feature vectors, which further form the observation
sequences and are utilized to estimate the model parameters θ.
Supposing that the observed sequences O and the correspond-
ing state sequences I are given by O = (X1, X2, ⋯ , XT) and
I = (S1, S2, ⋯ , ST), respectively. In machining process, tool
wear will go through four states in turn, i.e., initial wear, nor-
mal wear, severe wear, and breakage, and cannot go back.
Tool breakagewill not terminate and can continue indefinitely.
Therefore, the time spent in the last state, i.e., tool breakage,
can be considered as right-censoring. Guédon [29] proposed a
new effective forward-backward algorithm to deal with the
right-censoring in HSMM, which is utilized in this work. A
brief introduction is as follows.

2.2.1 The EM algorithm

Complete data refers to (O, I) = (X1, X2, ⋯ , XT, S1, S2, ⋯ ,
ST). The complete-data likelihood function of the HSMM
can be expressed as

P O; I jθð Þ ¼ π1d1 u1ð Þ ∏
N−1

r¼2
a r−1ð Þrdr urð Þ

� �
a N−1ð ÞNDN uNð Þ ∏

T

t¼1
bSt xtð Þ; ð4Þ

di uð Þ ¼ P Stþuþ1≠i; Stþu−v ¼ i; v ¼ 0;⋯; u−2jStþ1 ¼ i; St≠ið Þ: ð5Þ

where ur represents the sojourn time spent in the state qr. Dj

uð Þ ¼ ∑v≥ud j vð Þ is the survivor function of the run-length in
the final visited state qj. The utilization of this survivor func-
tion has two major benefits, i.e., improvement of parameter
estimation and the guarantee of a more accurate prediction for
the final visited state [25].

The model parameters θ can be reestimated by solving the
maximum estimation of the incomplete-data log-likelihood
function L(θ) = log P(O| θ). The EM algorithm [30] is utilized

to deal with this maximization problem by iteration until con-
vergence. The specific steps are as follows:
1. Firstly, initial value θ(0) of the model parameters need to
be determined.
2. Secondly, the expectation of the complete-data log-likeli-
hood function needs to be calculated given the observed se-
quences O and the model parameters θ(l),

Q θ; θ lð Þ
� �

¼ EI log½ P O; I jθð ÞjO; θ lð Þ
i
¼ ∑

I
logP O; I jθð ÞP I jO; θ lð Þ

� �
: ð6Þ

3. Thirdly, the maximization of Q(θ, θ(l)) is conducted so as
to generate the reestimated parameters θ(l + 1),

θ lþ1ð Þ ¼ argmax
θ

Q θ; θ lð Þ
� �

: ð7Þ

4. The two steps above are iterated as required until
convergence,

L θ lþ1ð Þ
� �

−L θ lð Þ
� ���� ��� < ε: ð8Þ

2.2.2 Parameter reestimation

The reestimation for the model parameters θ = (π,A,B,Θ) of
HSMM can be implemented by maximizing each subset of
Q(θ, θ(l)), respectively. Specific operation process of the EM
algorithm for HSMM is summarized as following [24].

The E-step There are three items that need to be reestimated
in the E-step for HSMM. The probability of the process being
in state qi at time t given the observed sequences O and the
model parameters θ is denoted by

γt ið Þ ¼ P St ¼ qijO; θð Þ: ð9Þ

The probability of the process transfers from state qi at time
t to state qj at time t + 1 is denoted by

ξt i; jð Þ ¼ P St ¼ qi; Stþ1 ¼ qjjO; θ
� �

: ð10Þ

State duration is modeled explicitly in HSMM. The prob-
ability of the process continues for u sojourn time in state qi is
denoted by

ηiu ¼ η
0
iu þ η‵iu;

η
0
iu ¼ P Suþ1≠qi; Su−v ¼ qi; v ¼ 0;⋯; u−1jO; θð Þ ;

η
‵
iu ¼ ∑

T−1

t¼1
P St≠qi; Stþuþ1≠qi; Stþu−v ¼ qi; v ¼ 0;⋯; u−1jO; θð Þ:

ð11Þ
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The M-step The model parameters θ are reestimated in the M-
step, respectively. The initial state probabilities are reestimated as

π lþ1ð Þ
i ¼ γ1 ið Þ: ð12Þ

The state transition probabilities are reestimated as

a lþ1ð Þ
ij ¼ ∑T−1

t¼1 ξt i; jð Þ
∑i≠ j∑

T−1
t¼1 ξt i; jð Þ : ð13Þ

In this study, multivariate normal distributions are utilized
to fit the observed values as expressed by Eq. (3). The
reestimation [31] for the parameters of multivariate normal
distributions are given by

μ lþ1ð Þ
i ¼ ∑T

t¼1γt ið Þxt
∑T

t¼1γt ið Þ
; ð14Þ

Σ lþ1ð Þ
i ¼ ∑T

t¼1γt ið Þ xt−μið Þ xt−μið ÞT
∑T

t¼1γt ið Þ
: ð15Þ

2.2.3 State duration distribution

The state duration density also needs to be reestimated in
HSMM.Non-parametric andGamma distributions are utilized
together to model the state duration density explicitly in this
study. Firstly, the non-parametric state duration distribution in
the E-step can be given by

di uð Þ ¼ ηiu
∑vηiv

: ð16Þ

The estimation items ηiu are the outputs of the E-step for
duration distribution in state qi. To obtain a concise HSMM, a
parametric M-step in estimation procedure is utilized as a sub-
stitute for the non-parametric M-step of the EM algorithm [29].
In this way, the estimation items ηiu can be considered as the
iteration terms produced by a given parametric duration distri-
bution in state qi so as to devise a parametric M-step. Secondly,
the Gamma distribution with shape parameter αi and scale
parameter βi, which is defined byUt|St = i ~Γ(αi, βi), is utilized
to model the state duration distribution. Choi and Wette [28]
presented the detailed derivation process for the reestimation of

αi and βi. Supposing α ̂
i and β

̂
i represent the reestimation of αi

and βi that maximize the likelihood for the Gamma distribution,
the solution can be obtained by solving

log α̂ið Þ−ψ α̂ið Þ ¼ log ui
� �

−w;

ψ αið Þ ¼ d
d αið Þ Γ αið Þ;

ui ¼ ∑uηiu⋅u
∑uηiu

;

w ¼ ∑uηiu⋅log uð Þ
∑uηiu

:

8>>>>>>>>><
>>>>>>>>>:

ð17Þ

Equation (17) can be solved by utilizing the Newton-

Raphson method. Once the shape parameter α ̂
i is generated,

the scale parameter βi can be estimated by β ̂
i ¼ α ̂

i=ui.

2.3 HSMM-based tool wear estimation

Once the training process is accomplished, the trained model
parameters θ' = (π',A',B',Θ') of HSMM that maximizes L(θ)
are produced and can be employed to predict the state se-
quence of the new observed data. Strictly speaking, what we
actually care about is the probability of being in state qj at time
T, which is defined by

δt jð Þ ¼ max
S1;⋯;St−1

P Stþ1≠qj; St ¼ qj; S1;⋯; St−1;X 1;⋯;X t−1jθ
� �

; ð18Þ

δT jð Þ ¼ max
S1;⋯;ST−1

P ST ¼ qj; S1;⋯; ST−1;X 1;⋯;XT−1jθ
� �

: ð19Þ

The solution of the variable δ can be obtained via the
Viterbi algorithm [29] as follows:
1. Initialization. The probability of being in state qj at time
t = 1 is given by

δ1 jð Þ ¼ bj x1ð Þd j 1ð Þπ j: ð20Þ

2. Recursion. The probability of being in state qj at time
t = 2 , ⋯ , T − 1 is given by

δt jð Þ ¼ max ϑ
0
t jð Þ;ϑ‵t jð Þ

n o
;

ϑ
0
t jð Þ ¼ bj xTð Þ ∏

T−1

v¼1
bj xT−vð Þ

	 

Dj Tð Þ π j;

ϑ
‵

t jð Þ ¼ bj xtð Þ max
1≤u≤ t−1

∏
u−1

v¼1
bj xt−vð Þ

	 

d j uð Þmax

i≠ j
pijδt−u ið Þ
h i� �

:

ð21Þ

3. Termination. The probability of being in state qj at time
t = T is given by

δT jð Þ ¼ max ϑ
0
T jð Þ;ϑ‵T jð Þ

n o
;

ϑ
0
T jð Þ ¼ bj xTð Þ ∏

T−1

v¼1
bj xT−vð Þ

	 

Dj Tð Þ π j;

ϑ
‵

T jð Þ ¼ bj xTð Þ max
1≤u≤T−1

∏
u−1

v¼1
bj xT−vð Þ

	 

Dj uð Þmax

i≠ j
pijδT−u ið Þ
h i� �

:

ð22Þ

In this study, the optimal state corresponding to the obser-
vation sequence is considered as the actual state which is
denoted by

qj ¼ arg max
j

δT jð Þ: ð23Þ

The observed sequence of length T0(T0 ≤ T) can also be
considered as the right-censoring of the sojourn time.
Consequently, the optimal state of the observation at time T0
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is identified as arg max
j

δT0 jð Þ given the estimated model pa-

rameters θ'.

3 Experimental setup and data collection

The Experimental setup for tool wear estimation is illustrated
in Fig. 1. The cutting tests are carried out on the Mikron
UCP800Duro milling machine. The workpiece material is ti-
tanium alloy (Ti-6AI-4V (TC4)). Three inserts (Walter
F2233.B.080.Z06.07) are installed on the cutter body
(Walter SPMT1204AEN-WSP45) and symmetrically placed.
The monitoring system consists of dynamometer (Kistler
9257A), charge amplifier (Kistler 5070A), data acquisition
card (Kistler 5697A) and a laptop with DynoWare (Kistler
2825A). The DynoWare can visually display the variation of
milling forces. The milling force signals in three dimensions
(i.e., Fx , Fy , Fz) are collected at sampling rate of 5 kHz. The
machining parameters are listed in Table 1. The tool flank
wear is measured at set intervals in the machining process
by utilizing the Video Measuring System (VMS-1510G
(QIM1008)). The average of the three flank wear values are
utilized as the standard to identify the tool wear state as shown
in Table 2. The cutting tests will be continually conducted
until tool breakage.

The inserts will go through four kinds of tool wear
state in the machining process. The tool flank wear value
is measured and photographed simultaneously. Tool flank

wear appearances under four kinds of tool wear state are
illustrated in Fig. 2. The effective features related to tool
wear are extracted from the milling force signals so as to
describe the tool wear state accurately. The mathematical
representation of the extracted time-domain features is
listed in Table 3. Each type of feature corresponds to three
separate signal features (e . g., Mean_Fx, Mean_Fy,
Mean_Fz). Besides, the signal features need to be normal-
ized according to Eq. (24) so as to make them have the
same order of magnitude. Meanwhile, the normalized sig-
nal features are also classified into four categories accord-
ing to the tool wear state. Space distributions of these
normalized features are illustrated in Fig. 3. It is obvious
that the normalized features take on a certain degree of
clustering property which can offer accurate information
for tool wear estimation. The normalized signal features
make up the feature vectors, which further form the ob-
servation sequence.

x
0 ¼ x−�x

σx
ð24Þ

where �x is the mean value and σx is the standard deviation.

4 Experimental results and analysis

The utilization of HSMM for tool wear estimation is illustrat-
ed in this section. Two groups of experiments are conducted to

Dynamometer

Charge Amplifier Data Acquisition System

Video Measuring System

VB

DynoWare

Fx

Fz

Fy

Fig. 1 The experimental setup

Table 1 The machining parameters

Test No. Cutting speed
(m/min)

Feed (mm/z) Cutting depth
(mm)

Cutting
width(mm)

1 45 0.14 0.5 70

2 45 0.18 0.5 75

Table 2 Categories of tool wear state

Tool wear state Initial wear Normal wear Severe wear Breakage

VB (mm) 0.1~0.2 0.2~0.25 0.25~0.3 >0.3

Classification 1 2 3 4
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prove the effectiveness of the HSMM-based monitoring sys-
tem. In this study, each state in HSMM corresponds to one
tool wear state. Thus, the physical meaning of the states in
HSMM is clear (N = 4): State1 − initial wear, State2 − normal
wear, State3 − severe wear, and State4 − breakage. There are
altogether 15 signal features as listed in Table 3 that constitute
the feature vector which further makes up the observed se-
quence. The observation sequences that collected in each tool
wear state at set intervals are randomly divided into training
and testing samples, which have the same size and do not
contain each other.

The tool wear in the machining process begins with the
initial wear, undergoes normal wear and severe wear and ter-
minates at tool breakage. Thus, the “left-right” topology is
selected for the determination of the HSMM structure since
the tool wear process cannot go back in theory. The initializa-
tion of the model parameters θ(0) = (π,A,B,Θ) needs to be
carried out before the training process. Parameter initialization
is of vital importance for the model fitness since the EM al-
gorithm only guarantee local optimal solution. The initializa-
tion of the model parameters θ(0) is as follows.

The init ial state probabil i ty vector should be
π = [1 0 0 0] since the tool wear starts from initial wear.
Each state in HSMM can generate a series of observations
and state self-transition is non-existent. Therefore, the
main diagonal elements in A should be set to zero. It is
noteworthy that the initial wear directly transfers to severe
wear or tool breakage in A is also permitted since tool
fracture may occur suddenly in machining process even
if the probability is very small. Besides, the turning back
of tool wear in A is also permitted since the emergence of

built-up edge may generate some observations belong to
initial wear or normal wear, although the probability is
comparatively small. The state transition probability ma-
trix is set as

A ¼ aij
� � ¼

state1
0

0:05

state2
0:90
0

0:05 0:05
1=3 1=3

state3
0:05
0:90

state4
0:05
0:05

0 0:90
1=3 0

2
6664

3
7775

As for the parameters of observation distribution μi and
Σi(i = 1, 2, 3, 4), they are initialized according to the corre-
sponding observations of training data in each state. The mean
of the feature vectors in the observation under four kinds of
tool wear state are listed in Table 4. The covariance matrixΣ1

of the observation under the initial wear state is listed in
Table 5. Σi(i = 2, 3, 4) are no longer shown due to space
limitations.

The unique feature of HSMM lies in the state duration
which makes it greatly different from a standard HMM.
State duration is modeled explicitly in HSMM. In this study,
the non-parametric and Gamma distributions are utilized to-
gether to model the state duration. The parameters in the non-
parametric distribution can be denoted by a matrix [di(u)]M ×N

in which each element (u, i) corresponds to a probability di(u).
M represents the maximum sojourn time of one state in the
machining process. N represents the number of tool wear
states. A uniform distribution which covers the starting and
ending time of each state is a good initial guess for the non-
parametric distribution when there is no heuristic knowledge.

Initial wear  (0.138mm) Normal wear (0.213mm) Severe wear (0.2895mm) Breakage (0.3245mm)

Fig. 2 Tool flank wear appearances under four kinds of tool wear state (Test No. 1: insert 3)

Table 3 Mathematical representation of the time-domain features

Type Signal features Mathematical expression

Mean Mean_Fx ,Mean_Fy ,Mean_Fz μ = E(|xi|)

Maximum (max) Max_Fx , Max _Fy , Max _Fz xMax =max(|xi|)

Peak to valley (PV) PV_Fx , PV_Fy , PV_Fz xPV = xMax − xMin

Root mean square (RMS) RMS_Fx , RMS_Fy , RMS_Fz xRMS = {E(xi
2)}1/2

Standard deviation (Std) Std_Fx , Std_Fy , Std_Fz xStd = {E[(|xi| − μ)2]}1/2
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Supposing that the maximum state sojourn time M = 200, the
initialization for [di(u)]M ×N is given by

Θ ¼ di uð Þ½ �M�N ¼

state1
0:005
0:005

state2
0:005
0:005

⋮ ⋮
0:005 0:005

state3
0:005
0:005

state4
0:005
0:005

⋮ ⋮
0:005 0:005

2
6664

3
7775
200�4

As mentioned in Section 2.2.3, a parametric M-step in es-
timation procedure is utilized as a substitute for the non-
parametric M-step of the EM algorithm. To obtain a concise
HSMM, the uniform distribution di(u) with a reasonable range
of values is utilized as the initial guess for the Gamma distri-
bution since reasonable starting parameters are not available
[25].

The training for the HSMM model can be implemented
when the initialization of the model parameters θ(0) = (π,
A, B,Θ) is finished. The training process is implemented
by utilizing the “mhsmm” package [32]. The iteration stop
condition ε is set as 0.0001. The training procedures for
HSMM under the Gamma distribution are illustrated in
Fig. 4. The convergence of the EM algorithm for
HSMM under the Gamma distribution requires only 29
iterations. The training time of HSMM under the

Gamma distribution for Test No. 1 and Test No. 2 are
0.386 and 0.356 s, respectively. The estimated initial state
probability vector and state transition probability matrix
for the two groups of experiments are as follows:

π
0 ¼ πi½ � ¼ 1 0 0 0½ � ;

A
0 ¼ aij

� � ¼
state1
0
0

state2
1
0

0 0
0 0

state3
0
1

state4
0
0

0 1
1 0

2
6664

3
7775

It is obvious that the training results basically agree with
the changing process of tool wear states, which also proves the
feasibility of HSMM. The estimated model parameters of the
Gamma distribution in HSMM are listed in Table 6. This
parametric state duration distribution makes the HSMMmore
concise. The estimated parameters of the observation distribu-

tion μ
0
i and Σ

0
i are almost unchanged in comparison with μi

and Σi since the initial values are calculated from the corre-
sponding observations.

The trained HSMMmodel θ' that maximizes L(θ) is gener-
ated when the training process is accomplished and can be
utilized to predict tool wear status. Prediction of tool wear

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

 Initial wear
 Normal wear
 Severe wear
 Breakage

St
d_

Fz

PV_Fz

(c)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0  Initial wear
 Normal wear
 Severe wear
 Breakage

M
ea

n_
Fx

RMS_Fx

(d)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-2

-1

0

1

2

3 Initial wear

Normal wear

Severe wear

Breakage

x
F
_
x
a

M

Mean_Fx

(a)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
Initial wear

Normal wear

Severe wear

Breakage

y
F
_

S
M

R

Std_Fy

(b)

Fig. 3 Space distribution of the normalized features under four kinds of tool wear state (Test No. 1)
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states in machining process is carried out based on the Viterbi
algorithm as introduced in Section 2.3. The observed se-
quence of length T0(T0 ≤ T) can also be considered as right-
censoring. Consequently, the optimal state of the observation
at time T0(T0 ≤ T) is identified as argmax

j
δT0 jð Þ given the

estimated model parameters θ'. Monitoring process of the tool
wear state by utilizing HSMM under the Gamma distribution
are illustrated in Fig. 5. It is clear that the misclassified points
exist only in the transitions between consecutive states which
guarantees the stability of the monitoring process. The predic-
tion accuracy for four kinds of tool wear state in Test No. 1 and
Test No. 2 reach up to 99.43 and 98.39%, respectively. Besides,
the testing time of HSMM under the Gamma distribution for
Test No. 1 and Test No. 2 are 0.045 and 0.046 s, respectively.
High identification rate and fast identification speed make the
HSMM especially propitious to tool wear monitoring in in-
dustrial environment.

4.1 Comparison with other methods

To verify the reliability and effectiveness of the HSMM-based
monitoring system, some other published methods are tested
using the same set of training and testing data. C-support
vector classification (C-SVC) [33] and Back-Propagation neu-
ral network (BPNN) [7] are utilized to realize multi-class clas-
sification of tool wear states. In C-SVC, the One-Vs-One vot-
ing method is employed to achieve multi-classification.
Besides, radial basis kernel function (RBF) is adopted so as
to improve the model accuracy. The model parameters
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Fig. 4 The training procedures for HSMMunder the Gamma distribution
(M = 200)

Table 6 The estimated model parameters of the Gamma distribution in HSMM

α̂ i;β
̂
i


 �
State1 State2 State3 State4

Test No. 1 Shape : α̂ i 55,219.21 32,393.84 25,574.29 14,398.32

Scale : β ̂
i 0.002154727 0.002778300 0.003128181 0.004167146

Test No. 2 Shape : α̂ i 55,219.886 32,395.059 13,890.699 6710.162

Scale : β ̂
i 0.002154700 0.002778198 0.004247315 0.006110460
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Fig. 5 Monitoring process of the tool wear state by utilizing HSMM
under the Gamma distribution: (a) Test No. 1 and (b) Test No. 2

Int J Adv Manuf Technol (2017) 92:3647–3657 3655



(C, γ) ∈ [2−10, 210] × [2−5, 25] need to be optimized and are
determined via the grid-search method and 10-fold cross-val-
idation. In BPNN, the four kinds of tool wear state need to be
encoded as listed in Table 7. The linear and sigmoid activation
functions are selected as the hidden layer and output layer,
respectively. The hidden layer has 25 nodes which are deter-
mined by trial and error. The learning rate is set to 0.05. The
maximum number of iterations is set to 10,000. The identifi-
cation rate for four kinds of tool wear state by utilizing
HSMM, C-SVC, and BPNN are illustrated in Fig. 6. The
predicted results reveal that the HSMM-based model has bet-
ter prediction accuracy than C-SVC and BPNN.

The advantages of the proposed method have been appar-
ent in comparison with the above mathods: (a) higher predic-
tion accuracy, (b) the model structure is easy to be determined,
and (c) parameter optimization is not required. It can be con-
cluded that the HSMM-based monitoring system is ideally
qualified for tool wear estimation.

5 Conclusions

This paper presents a new tool wear monitoring system based
on hidden semi-Markov model (HSMM). The Gamma distri-
bution is utilized to model the state duration which is initial-
ized by a non-parametric distribution. Milling experiments are
carried out to prove the effectiveness of the proposed method.
Five types of time-domain feature related to tool wear are
extracted from the milling force signals and utilized to realize
tool wear estimation. The experimental results reveal that the
prediction accuracy of HSMM under the Gamma distribution
exceeds 98%. Comparison results reveal that the proposed

method has relatively higher prediction accuracy than C-
SVC and BPNN. High identification rate and fast identifica-
tion speed (less than 0.05 s) make the proposed method espe-
cially propitious to tool wear monitoring. Besides, the model
structure of HSMM is more easily determined and parameter
optimization is not required, which greatly reduce the time-
cost for practical application in industrial environment.
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