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Abstract Tool wear monitoring system is of vital impor-
tance for the guarantee of surface integrity and
manufacturing effectiveness. To overcome the weaknesses
of neural networks, a new tool wear estimation model
based on Gaussian mixture hidden Markov models
(GMHMM) is presented. Nine types of time-domain fea-
tures are extracted from the milling force signals which
are obtained under four sorts of tool wear state. Besides,
the sensitive features which can indicate the tool wear
states accurately are selected out by correlation analysis.
To test the effectiveness of the presented model, the se-
lected sensitive features serve to identify the tool wear
states by utilizing GMHMM and back-propagation neural
network (BPNN), respectively. Moreover, the identifica-
tion performance of GMHMM under the combinations of
various numbers of Gaussian mixtures and various lengths
of observation sequence is analyzed to verify the practi-
cability of the presented tool wear model. The experimen-
tal results show that the GMHMM-based model can iden-
tify the tool wear states effectively and GMHMM outper-
forms the BPNN model in accuracy and stability. This
method lays the foundation on tool wear monitoring in
real industrial settings.

Keywords Tool wear monitoring .Milling force signals .

Correlation analysis . GMHMM .BPNN

1 Introduction

Tool wear degree is of vital importance for surface quality and
dimensional tolerances of the workpieces during manufactur-
ing process. Severe tool wear or tool breakage may lead to not
only scrapped components but also possible damage to the
machine tool. In addition, tool failure leads to at least 20%
of unscheduled downtime in modern manufacturing systems
[1]. However, false judgment of tool failure is of frequent
occurrence since tool wear is a complex phenomenon which
increases non-linearly. It is highly desirable to develop a reli-
able and effective monitoring system which can recognize the
tool wear states real-timely so as to guarantee product quality
and simultaneously reduce unexpected downtime.

There are mainly two methods for tool wear monitoring:
direct and indirect methods. Direct methods [2, 3] mostly de-
pend onmachine vision which directly measures the tool wear
value or area. Indirect methods [4, 5] are the most widely used
techniques which perform wear estimation by establishing the
corresponding models between tool wear and the related mon-
itoring signals obtained from cutting process, such as cutting
forces [6, 7], vibrations [8, 9], and acoustic emission [10–12].
The decision-making support systems, such as neural net-
works [13], SVM [14–17], and cluster analysis, are then uti-
lized to recognize tool wear states. In the classification
methods, neural networks (NNs) are the most widely used
methods, such as artificial neural network (ANN) [18], fuzzy
neural network (FNN) [19], dynamic Bayesian network
(DBN) [20], multi-layer perceptron (MLP) [21], and self-
organizing map (SOM) [22]. However, successful utilization
of NN-based monitoring system depends heavily on proper
selection of network structure and their accuracies are limited
to some extent due to the connatural limitations of NNs, such
as over-fitting, local minimum value, and poor generalization.
D.F. Shi and N.N. Gindy [14] employed least squares support
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vector machines (LS-SVM) to monitor the tool wear value
during broaching process. The results showed that the predict-
ed tool wear obtained from the predictive model had a good
agreement with the experimental measurement. D.D. Kong
et al. [15] utilized v-support vector regression (v-SVR) to
achieve tool wear monitoring during turning process, and
the results showed that the presented tool wear predictive
model outperformed the back-propagation neural network
(BPNN) model. Moreover, the standard SVM belongs to bi-
nary classifier which makes it especially suitable for monitor-
ing tool breakage [16]. However, the standard SVM shows
some limitations in multi-classification of tool wear states
since the penalty factor and kernel parameter are hard to be
determined due to the large optional range [17]. And the fine
distinctions of similar features between contiguous states are
hard to distinguish when the tool wear state changes from one
to the next.

In this paper, a GMHMM-based monitoring system is uti-
lized for the multi-classification of tool wear states. Hidden
Markov models (HMMs) have been widely utilized in speech
recognition where the signals are inherently non-stationary
[23]. The application of HMMs in tool wear monitoring has
made headway since the monitoring process is analogous to
speech recognition in which the signal features are classified
into corresponding states. Wang et al. [24] achieved the tool
state detection (for sharp and worn tools) in turning process
using discrete HMMs based on vibration signals and the av-
erage recognition rate reached up as high as 97%. N.N. Bhat
et al. [25] utilized texture analysis and HMM technology to
classify sharp, semi-dull, and dull tool in turning, with an
average of 95% accuracy. C. Scheffer et al. [26] compared
the performance of NNs and modified HMMs for continuous
estimations of tool wear in turning. However, the estimation of
a large number of parameters in the modified HMMs needs
large-scale training data which make it unpractical in industry
application. Cetin and Ostendorf [27] applied multi-rate
HMMs to realize identification of the three states of tool wear
by the vibration signal in milling process. T. Boutros and M.
Liang [28] also detected correctly the state of the tool (sharp,
worn, or broken) by using discrete HMM and the acoustic
signal in milling. A. A. Kassim et al. [29] successfully recog-
nized four distinct states of tool condition by the utilization of
HMM based on the surface textures in milling. But the influ-
ence of cutting fluid limits the further promotion of this meth-
od in industry. H. M. Ertunc [30] and P. BARUAH [31] ap-
plied GMHMM in drilling tool monitoring and well expressed
the progressive process of tool wear. However, they did not
pay attention to the effect of the number of Gaussian mixtures
on the performance of the model. Past research application of
HMM in tool wear monitoring mainly focused on discrete
HMMs or semi-continuous HMMs and achieved binary or
three classification of tool wear states. In discrete HMMs,
the continuous signals are converted into discrete sequences

by vector quantization which will lead to loss of information
[23]. Hence, previous application of HMMs does not make
full use of the advantages of the method and are not suitable to
the problem in this study.

The continuous HMMs has obvious advantage than the
discrete HMMs in fault diagnosis since the continuous vary-
ing multi-dimensional signal features can be approximated by
several probability density functions [32]. In this work, the
sensitive features under four tool wear states are directly uti-
lized to train the corresponding GMHMMmodel. The number
of Gaussian mixtures in GMHMM determines whether the
fitting of training data is sufficient. In addition, the length of
observation sequence influences the identification accuracy of
GMHMM for tool wear states. The identification accuracy of
GMHMM under different combinations of various numbers
of Gaussian mixtures and various lengths of observation se-
quence is analyzed to verify the practicability of the presented
tool wear model and seek out the suitable combination.

The objective of this study is to identify the tool wear states
in milling process by utilizing the GMHMM-based method.
The paper is organized as follows. The experimental setup,
data collection, and related theoretical methods are presented
in Section 2. Analysis of the GMHMM method and experi-
mental results are given in Section 3. Finally, Section 4 con-
cludes this paper.

2 Materials and methods

2.1 Experimental setup and data collection

2.1.1 Experimental setup

This study focuses on the correlation between milling force
signals and tool wear states for milling of titanium alloy (Ti-
6AI-4V). The cutting tests are carried out on a CNC milling
machine (Mikron UCP800Duro). The tool inserts (Walter
SPMT1204AEN-WSP45) are connected to the machine spin-
dle through a tool holder (Walter F2233.B.080.Z06.07). The
experimental setup for the monitoring system is shown in
Fig. 1. The signal acquisition devices consist of dynamometer
(Kistler 9257A), charge amplifier (Kistler 5070A), data acqui-
sition card (Kistler 5697A), and the DynoWare package
(Kistler 2825A). The milling force signals are acquired by
utilizing the dynamometer with sampling rate at 5 kHz and
displayed via the DynoWare software. The cutting parameters
selected from the recommended range for the inserts are listed
in Table 1.

The tool flank wear is measured by using the video mea-
suring system (VMS-1510G) which comprises a CCD camera
and a 2D measurement software (QIM1008). Three tool in-
serts in all are symmetrically installed on the tool holder in this
work. The average value VB = 1/3(VB1 + VB2 + VB3) of tool
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flank wear of the three inserts is adopted as the final tool wear
value and utilized to assess tool wear state which includes four
types: initial wear, normal wear, severe wear, and breakage as
shown in Table 2. The inserts are detached to measure the tool
flank wear by the video measuring system after each cutting
process until broken. Tool wear value of the new inserts will
exceed 0.1 mm when the inserts cut into workpiece due to the
existence of greater impact in milling process. Besides,
0.3 mm is adopted as the threshold to determine whether the
tool inserts are broken since the CNC machine will produce
larger vibration once the average wear value exceeds 0.3 mm.
Tool wear value of the three inserts and the corresponding tool
wear states are listed in Table 3. Tool wear morphologies
under four tool wear states are illustrated in Fig. 2.

2.1.2 Data collection

Signal features of the force signals change gradually with the
variation of tool wear state from sharp to broken. Previous
studies have shown that many time-domain features can be
taken as indicators of tool wear states [33]. In this study, nine
types of time-domain features are extracted from the milling
force signals. The mathematical description of these features
is shown in Table 4. For each cutting process, there are three
mutually perpendicular milling force signals (Fx, Fy, Fz) which
are collected from the dynamometer as shown in Fig. 1. There
are 27 time-domain features in all could be extracted from the
milling force signals. Notice that not all the extracted features
can be used to identify tool wear state effectively. Besides, the

insensitive features will impact the performance of classifier.
Therefore, feature selection should be performed before send-
ing the extracted features to the monitoring system so as to
remove irrelevant features and improve the prediction accura-
cy. In this work, sensitive features that correlate well with tool
wear are selected out by using correlation coefficient method
expressed by Eq. (1),

ρxy ¼
1

N
∑
N

i

xi−μx

σx
� yi−μy

σy

� �
ð1Þ

where μx and μy are the mean value of x and y, respectively. σx
and σy are the standard deviation of x and y, respectively. ρxy
reflects the degree of linear correlation between x and y, 0
< |ρxy| < 1. A larger absolute value |ρxy| represents x has a
higher correlation with y.

Firstly, feature extraction is performed from the three sets
of experiment as listed in Table 1. Then, correlation analysis
between the extracted features and the corresponding tool
wear value is conducted in each set of experiment, respective-
ly. The selected sensitive features (in italic) ranked in terms of

average correlation coefficients ρxy
�� �� > 0:72

� �
are listed in

Table 5. The correlation analysis intuitively reveals the linear
dependence of the signal features and tool wear degree. Note
that all the signal features should be normalized to [−1, 1], so
as to eliminate the mutual influence of different orders of
magnitude. Spatial distribution of the selected features is illus-
trated in Fig. 3. It can be seen that the selected features show a

Notebook with DynoWareCharge Amplifier Data Acquisition System

Video Measuring System

VB
Workpiece

Dynamometer

Insert

Fx

Fz

Fy

Fig. 1 The experimental setup

Table 1 Experimental cutting
parameters Test No. Cutting speed (m/min) Feed (mm/z) Cutting depth (mm) Cutting width (mm)

1 45 0.18 0.5 75

2 60 0.14 0.5 75

3 60 0.18 0.5 75
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certain degree of clustering which provides effective informa-
tion for tool wear estimation. It is also explained that correla-
tion analysis can help to select out the sensitive features.

2.2 Tool wear estimation based on GMHMM

2.2.1 The fundamentals of GMHMM

Symbols

The standard HMMs mode

O = {o1, o2, ⋯ , oT} the observation sequence

I = {i1, i2, ⋯ , iT} the state sequence

N the number of hidden states in the model

M the number of observable symbols in each state

π = {πi} initial state probability vector

A = {aij} state transition probability matrix

B = {bj(k)} observation probability matrix

λ = (π, A, B) the complete description for an HMM

Hidden Markov models (HMMs) are an extension of
Markov chains [34]. The HMMs is a double-layered stochas-
tic process: one is the transition from one state to another state
which is invisible, the other is the output symbol generated at
each state which is observable. There are three basic problems
for HMMs:

1. Probability calculation for P(O| λ), given the model
λ = (π, A, B) and observation sequence O = {o1, o2⋯
oT}. The forward-backward algorithm is effective for this
problem.

2. Model estimation for λ = (π, A, B) so as to maximize
P(O| λ), given the observation sequence O = {o1, o2⋯
oT}. The Baum-Welch algorithm is the problem-solving
method.

3. Maximization of P(I|O), i.e., state sequence estimation,
given the model λ = (π, A, B) and observation sequence
O = {o1, o2⋯ oT}. The Viterbi algorithm is the common
solution.

HMMs can be classified as discrete HMMs and continuous
HMMs, depending on whether the observation sequences are
discrete or continuous. In the continuous HMMs, the contin-
uous probability density function for state j can be described
as a weighted sum of K Gaussian mixtures [23],

bj Oð Þ ¼ ∑
K

k¼1
cjkbjk Oð Þ ¼ ∑

K

k¼1
cjkN O;μjk ;Ujk

� �
ð2Þ

where O is the observation sequence being modeled, K is
the number of Gaussian mixtures for state j, cjk is the
weight coefficient for the kth mixture in state j, and
N(O, μjk,Ujk) is a Gaussian density function with mean
vector μjk and covariance matrix Ujk for the kth mixture
in state j. The weight coefficient cjk must satisfy the sto-
chastic constraints, i.e.,

cjk ≥0; 1≤ j≤N ; 1≤k ≤K ð3Þ

∑
K

k¼1
cjk ¼ 1; 1≤ j≤N ð4Þ

In this way, the Gaussian mixture hidden Markov
models (GMHMM) with a continuous output can be
expressed by λ = (π, A, cjk, μjk,Ujk). In this work, the mod-
el parameters λ in GMHMM need to be estimated and
trained, i.e., adjusting the GMHMM parameters λ so as
to maximize the probability of the observation sequence
P(O| λ). The model parameters λ can be estimated itera-
tively by the well-known Baum-Welch algorithm base on
the training data. Multiple observation sequences are uti-
lized for the training of GMHMM in this study. Assuming
that the training data contain S observation sequences of
length T, which is defined as {O1,O2, ⋯ ,OS}. Firstly, an
initial guess of a set of appropriate parameters λ for

GMHMM need to be carried out. The new parameters λ
for GMHMM are then calculated by iteration procedures
as following [35]:

�πi ¼ ∑
S

s¼1
∑
N

j¼1
εs1 i; jð Þ ð5Þ

aij ¼ ∑S
s¼1∑

T−1
t¼1 ε

s
t i; jð Þ

∑S
s¼1∑

T−1
t¼1∑

N
n¼1ε

s
t i; nð Þ ð6Þ

Table 3 Tool wear value of the three inserts and the corresponding tool
wear state (Test No. 1)

VB (mm) Initial wear Normal wear Severe wear Breakage

Insert 1 0.1330 0.2300 0.2850 0.3420

Insert 2 0.1460 0.2470 0.3040 0.3500

Insert 3 0.1410 0.2400 0.3030 0.3630

Average value 0.1400 0.2390 0.2973 0.3517

Table 2 Categories of tool wear state

Tool wear state Range of tool
wear value (mm)

Classification

Initial wear 0.1 ~ 0.2 1

Normal wear 0.2 ~ 0.25 2

Severe wear 0.25 ~ 0.3 3

Breakage >0.3 4

2856 Int J Adv Manuf Technol (2017) 92:2853–2865



cjk ¼ ∑S
s¼1∑

T
t¼1γ

s
t j; kð Þ

∑S
s¼1∑

T
t¼1∑

K
k¼1γ

s
t j; kð Þ ð7Þ

μjk ¼
∑S

s¼1∑
T
t¼1γ

s
t j; kð Þ∙ost

∑S
s¼1∑

T
t¼1γ

s
t j; kð Þ ð8Þ

Ujk ¼
∑S

s¼1∑
T
t¼1γ

s
t j; kð Þ∙ ost−μjk

� �
ost−μjk

� �0

∑S
s¼1∑

T
t¼1γ

s
t j; kð Þ ð9Þ

where εt(i, j) represents the probability of state i transfers to
state j at time t. γt(j, k) is the probability output of the kth
mixture component being in state j at time t, given the model
parameters λ and the observation sequence O, i.e.,

γt j; kð Þ ¼ αt jð Þβt jð Þ
∑N

j¼1αt jð Þβt jð Þ ∙
cjkN ot;μjk ;Ujk

� �

∑K
k¼1cjkN ot;μjk ;Ujk

� � ð10Þ

whereαt(j) and βt(j) are the forward and backward probability,
respectively.

The iteration procedures should be carried out continuously
until the increment meets the convergence condition which is

the final estimated model λ ¼ π;A; cjk ;μjk ;Ujk

� �
should sat-

isfy the inequality that |P(O| λi + 1) − P(O| λi)| < ε. Note that
initial guess of the model parameters λ is important for
obtaining a suitable GMHMM model since the Baum-Welch
algorithm only guarantees local optimal value.

2.2.2 Multi-classifier based on GMHMM

Supervised learning is made up of two aspects, i.e., learn-
ing of the labeled data and unlabeled data classification.
In this work, there are four tool wear states to be moni-
tored and each state is modeled by a separate GMHMM
model. The training data and test data for each tool wear
state are reorganized as the observation sequences. The
GMHMM-based monitoring process contains the follow-
ing two steps: Firstly, we need to build a GMHMM model
λi (i = 1, 2, 3, 4) for each tool wear state as shown in
Table 2. The model parameters λi = (π, A, ci, μi,Ui) need
to be estimated so as to maximize the probability output
P(O| λi) of the observation sequences that obtained from
the training data for the ith tool wear state. The Baum-
Welch algorithm is utilized to estimate the model param-
eters of GMHMM as shown in Section 2.2.1. Then, the
trained model {λ1, λ2, λ3, λ4} serves to identify the corre-
sponding tool wear states of the observation sequences in
test data. The observation sequence of test data is sent to
the four trained models {λ1, λ2, λ3, λ4} at the same time
and the log-likelihood probability output for each tool
wear model is computed. The model with the maximum
output is selected to be the corresponding tool state as
expressed by Eq. (11). The flowchart of GMHMM for
tool wear state identification is illustrated in Fig. 4.

i 0 ¼ arg max
1≤ i≤4

logP Ojλið Þ ð11Þ

3 Experimental results and analysis

This paper aims at constructing the theoretical models be-
tween tool wear states and feature signals that facilitates the
control of machining quality and makes full use of tool life.
The tool wear state is evaluated quantitatively by the mean
value of tool flank wear as shown in Tables 2 and 3. To reflect
the tool wear process as accurately as possible, nine types of
time-domain features under four sorts of tool wear state are
extracted from the milling force signals as listed in Table 4.
Besides, the correlation analysis is employed to select out the
sensitive features that correlate well with tool wear degree.
The selected time-domain features change gradually with the
worsening of tool wear degree. The 18 sensitive features as

Initial wear (0.133mm) Normal wear (0.23mm) Severe wear (0.285mm) Breakage (0.342mm)

Fig. 2 Tool wear morphologies under different tool wear states (Test No. 1: insert 1)

Table 4 Mathematical description of the time-domain features

Signal features Mathematical expression

Mean Fx; Fy; Fz
� �

μ = E(|xi|)
Maximum value (Max) xMax =max(|xi|)

Peak to valley (PV) xPV = xMax − xMin

Root mean square (Rms) xRms ¼ E x2i
� �	 
1=2

Standard deviation (Std) xStd = σ = {E[(|xi| − μ)
2]}1/2

Skewness (Ske) xSke = E{[(|xi| − μ)/σ]3}

Kurtosis (Kur) xKur =E{[(|xi| − μ)/σ]4}

Form factor (Fmf) xFmf = xRms/μ

Force ratio Fx=Fz; Fx=Fy; Fy=Fz
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listed in Table 5 and the corresponding 4 cutting parameters
make up the 22-dimension feature vectors which are
reorganized to be the observation sequences. Note that the
signal features in feature vectors need to be normalized to
[−1, 1] before sent to GMHMM in case that large order of

magnitude weakens the effect of small one. To analyze and
verify the reliability of the GMHMM-based model, 200 sam-
ple feature vectors are extracted from each tool wear state,
respectively. The extracted sample feature vectors are divided
into training data and test data which have the same size and

Table 5 The selected sensitive features

Signal features Fx Fy Fz Max_Fx Max_Fy Max_Fz PV_Fx PV_Fy PV_Fz
ρxy

0.8620 0.8975 0.8805 0.7982 0.8402 0.8515 0.7983 0.8369 0.7898

Signal features Rms_Fx Rms_Fy Rms_Fz Std_Fx Std_Fy Std_Fz Ske_Fx Ske_Fy Ske_Fz
ρxy 0.8675 0.8971 0.8797 0.8597 0.8365 0.8244 0.6220 −0.0648 −0.0262

Signal features Kur_Fx Kur_Fy Kur_Fz Fmf_Fx Fmf_Fy Fmf_Fz Fx=Fz Fy=Fz Fx=Fy
ρxy

0.1002 0.4226 −0.2649 0.7157 −0.7765 −0.5550 −0.8259 −0.1211 −0.8677
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do not contain each other. The observation sequences of the
training data under four tool wear states are utilized to train the
GMHMM-based model {λ1, λ2, λ3, λ4}, respectively. As
soon as the training stage is finished, the tool wear state esti-
mation model is produced and can be utilized to identify the
tool wear state of the observation sequence obtained from the
test data.

3.1 Determination of the GMHMM structure

There are diverse topology structures for HMMs [23]. The
left-right HMM is selected in this work since tool wear is
always increasing during the cutting process and cannot go
back. The tool wear starts from initial wear state, goes through
normal wear state and severe wear state, finally ends up in tool

The observation
sequence of test data

The trained 
GMHMM mode

Like ihood
computation

Too  wear state

The observation sequence of test data

1 3 42

GMHMM for 
tool state 1

GMHMM for 
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The observation
sequence of test data

The trained 
GMHMM models
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1P O 2P O 3P O 4P O

1 4
arg max log ii

i P O

Fig. 4 The flowchart of
GMHMM for tool wear
estimation
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Fig. 5 The training process of GMHMM under four sorts of tool wear state. (a) K = 2, T = 3; (b) K = 4, T = 3; (c) K = 6, T = 3; (d) K = 8, T = 3
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breakage. Therefore, the left-right HMM is especially suitable
for TCM since it can only transfer from the former state to the
later state and there is no leapfrog jump between states. Once
the topology of HMMs is selected, the number of hidden
states in HMMs also needs to be determined. Note that the
hidden states in HMMs and the tool wear states do not corre-
spond one-to-one. The hidden states in HMMs are only the
transition states within HMMs and lack clear physical mean-
ing [36]. There are no fixed criteria for the determination of
the number of hidden states in HMMs.

In this study, the visible contents of the tool wear state
transitions are bestowed upon the GMHMM-based model
for ease of understanding and reducing the complexity of the
model. Although π and A have an important influence on the
Markov chain, their initial value has little effect on the final
clustering results [37]. In this way, π and A can be randomly or
uniformly initialized. The uniform value is adopted for the
initialization of π and A in this work so as to guarantee the
stability of GMHMM. The initial state probability of the
GMHMM-based model is π ¼ 0:25 0:25 0:25 0:25½ �.
As for the state transition probability matrix A = {aij} of the

GMHMM-based model, aij are initialized as follows since the
insert will go through four sorts of tool wear state.

A ¼ aij
	 
 ¼

state1
0:5
0

state2
0:5
0:5

0 0
0 0

state3
0
0:5

state4
0
0

0:5 0:5
0 1

2
6664

3
7775

Another one is the number of Gaussian mixtures K.
Mixtures of Gaussians are utilized to model the output of
signal features in this study. The number of Gaussian mixtures
directly affects the accuracy of data fitting and the identifica-
tion rate for unknown data. The number of matrices (ci, μi,Ui)
contained in the Gaussian mixture model is (N + 1) ∙K + 1.
The computation load in training process for the GMHMM-
based model will increase gradually with the increment of the
number of Gaussian mixtures K. Less number of Gaussian
mixtures will lead to inadequate description of the training
data. Increasing the number of Gaussian mixtures is helpful
to improve the identification rate in the case of sufficient train-
ing samples. However, the computation load will also increase

Table 6 The consuming time for the training of the GMHMM-based model (s)

K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8

T = 2 6.900 12.209 18.673 24.460 26.080 35.298 35.769

T = 3 5.137 8.263 10.798 15.886 20.912 24.471 30.133

T = 4 3.798 6.608 8.855 13.932 14.848 17.461 20.875

T = 5 3.200 6.789 9.903 9.823 14.180 14.363 17.971

T = 6 2.691 3.996 7.314 9.571 10.332 13.600 16.039

T = 7 2.681 3.654 6.490 7.452 10.252 11.934 15.567

T = 8 2.402 4.666 4.614 6.723 7.476 9.935 10.426

Note: K represents the number of Gaussian mixtures; T represents the length of observation sequence

Table 7 Samples of log-likelihood output of the observation sequences in test data (Test No. 1)

Case No. Initial wear model λ1 Normal wear model λ2 Severe wear model λ3 Tool breakage model λ4 Actual state Predicted state

1 78.133 −14.494 −192.586 −561.031 1 1

2 78.894 −12.519 −188.158 −561.612 1 1

3 77.028 −3.429 −167.325 −513.630 1 1

4 43.220 71.070 −45.089 −322.500 2 2

5 40.370 71.789 −32.277 −342.084 2 2

6 35.434 75.385 19.418 −366.385 2 2

7 −61.108 61.907 73.459 −120.517 3 3

8 −60.973 58.840 78.333 −105.909 3 3

9 −96.551 54.377 79.005 −78.836 3 3

10 −493.881 −29.314 44.230 70.587 4 4

11 −619.266 −46.604 22.930 70.490 4 4

12 −763.058 −108.766 0.374 72.763 4 4

Note: the GMHMM-based models λ1; λ2; λ3; λ4
	 


are obtained under K = 3 and T = 3
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accordingly and the training process may not converge. Thus,
the selection of the number of Gaussian mixtures is of vital
importance for the GMHMM-based model.

Moreover, the length of observation sequence T also influ-
ences the identification rate of the GMHMM-based model.
The identification rate will inevitably increase with the
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Fig. 6 The identification rate of the GMHMM-based monitoring system
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increment in the length of observation sequence [38].
However, the shorter the length of observation sequence, the
less will be the time-cost of tool wear estimation. The moni-
toring system can detect tool breakage as soon as possible so
as to ensure machining quality and protect the manufacturing
system. The classification performance of the GMHMM-
based model under different combinations of various numbers
of Gaussian mixtures and various lengths of observation se-
quence need to be analyzed so as to select out the appropriate
combination of K and T.

3.2 GMHMM for tool wear estimation

The model parameters λi = (π, A, ci, μi,Ui) need to be es-
timated as soon as the structure of GMHMM is deter-
mined. The training and testing process are carried out
by using the Hidden Markov model (HMM) Toolbox for
Matlab [39]. There are four GMHMM-based models that
need to be trained as shown in Fig. 4 which corresponds
to four sorts of tool wear state, respectively. The training
for the GMHMM-based models {λ1, λ2, λ3, λ4} is carried
out by the Baum-Welch algorithm as presented in
Section 2.2.1. Parameter initialization is important for
obtaining a suitable GMHMM model since the Baum-
Welch algorithm only guarantees local optimal value.
The in i t ia l iza t ion of π and A are presented in
Section 3.1. In addition, the K-means method [40] is uti-
lized for the initial guess of the model parameters (ci, μi,
Ui) before the training. Maximum number of iterations
during the training process is set to 100. And the conver-
gence threshold ε = 0.0001 is set for the end of training.
Each GMHMM-based model λi is trained with its corre-
sponding observation sequences obtained from the train-
ing data. The training process of GMHMM under four
sorts of tool wear state are illustrated in Fig. 5. It is ob-
vious that when the length of observation sequence T is
fixed, the iteration steps show an increasing trend with the

increment of the number of Gaussian mixtures K. Besides,
time-cost of the training process also increases according-
ly due to the raise of single iteration time. The consuming
time for the training of the GMHMM-based model under
different combinations of K and T is listed in Table 6.

Once the training process is finished, the multi-
classifier based on GMHMM is produced and can be uti-
lized to identify the tool wear state of the observation
sequence obtained from the test data. The observation
sequences in test data are input to the four trained models

λ1;λ2;λ3;λ4

	 

and the log-likelihood for each model is

computed. The model with the maximum output is select-
ed to be the corresponding tool state as shown in Fig. 4.
The log-likelihood output of the observation sequences in
test data is listed in Table 7. The log-likelihood output in
italic represents the most probable tool state. The identi-
fication rate of the GMHMM-based monitoring system for
four sorts of tool wear state is shown in Fig. 6. When
there is only one Gaussian function to model the output,
GMHMM degenerate into Gaussian-HMM whose perfor-
mance is inferior to GMHMM as shown in Fig. 6(a). The
experimental results show that increment in the length of
observation sequence can guarantee the stability of the
monitoring system. However, longer observation se-
quence needs longer period for feature extraction which
is detrimental to real-time monitoring of tool wear. It can
be seen that the sequence of three observations (T = 3) is
enough to estimate the tool wear state effectively in ma-
chining process. Besides, the GMHMM with three
Gaussian mixtures (K = 3) is enough for the GMHMM-
based monitoring system considering the fitting effect of
training data and the training time. Consequently, the
combination of K = 3 and T = 3 is a better choice for the
GMHMM-based monitoring system so as to guarantee the
system performance and stability without sacrificing the
training time. A complete tool wear monitoring process
for test no. 1 is illustrated in Fig. 7. It can be seen that
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Fig. 7 A complete tool wear
monitoring process for Test No. 1
(K = 3, T = 3)
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when the tool is in a certain wear state, the log-likelihood
output of the corresponding wear model is maximum. The
maximum log-likelihood output fluctuates narrowly in the
four models {λ1, λ2, λ3, λ4}, which reveals the stability of
the GMHMM-based monitoring system. The result indi-
cates that the GMHMM-based tool wear estimation model
can identify the tool wear state effectively in machining
process.

The GMHMM-based monitoring system can also be ap-
plied to various combinations of tool inserts and materials
since the presented method is subject to the sensitive features
extracted from the milling process. Similarly, other machining
processes such as turning and drilling can also be monitored

by utilizing the GMHMM-based method, provided that the
corresponding sensitive features can be found.

3.3 Comparison with BPNN model

To demonstrate the advantages of the GMHMM model as
discussed above, back-propagation neural network (BPNN)
is adopted to identify tool wear states. Structure of the
BPNN model for tool wear estimation is illustrated in Fig. 8.
The network structure is specified as below. The linear and
sigmoid activation functions are designated for the hidden
layer and output layer, respectively. Twenty-five nodes are
designated in the hidden layer which is definitely determined

Initial wear Normal wear Severe wear Breakage
0

20

40

60

80

100

(c)

(b)

Id
en

tif
ic

at
io

n 
ra

te
 (%

)

Size of the training data: 400

(a)

Initial wear Normal wear Severe wear Breakage
0

20

40

60

80

100

Id
en

tif
ic

at
io

n 
ra

te
 (%

)

Size of the training data: 134

Initial wear Normal wear Severe wear Breakage
0

20

40

60

80

100

Id
en

tif
ic

at
io

n 
ra

te
 (%

)

Size of the training data: 80

 GMHMM

 BPNN

Fig. 9 Performance comparison of GMHMM and BPNN under different size of training data (K = 3, T = 3)

Fig. 8 Structure of the BPNN
model for tool wear estimation
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by trial and error. The gradient descent momentum is desig-
nated as the training algorithm in which the learning rate is set
to 0.05. The maximum number of iterations is set to 10,000.
The same sample data used in GMHMM are utilized in the
BPNN model. Training data is utilized to train the BPNN
model. Once the training process is finished, the trained
BPNN model can be utilized to identify the tool wear state
of test samples. Performance comparison of GMHMM and
BPNN under different size of training data is presented in
Fig. 9. It can be seen that the GMHMM-based model still
maintain a higher identification rate even if the size of training
data is sharply reduced. Besides, the variation range of
GMHMM is less than BPNN with the rapid reduction of
training data, which shows that the multi-classifier based on
GMHMM has stronger stability and robustness. Moreover,
the network structure of BPNN is difficult to determine and
the algorithm converges slowly. The determination of model
parameters in BPNN needs to be carried out by trial and error,
which will take a considerable amount of time in comparison
with GMHMM. It can be concluded that the GMHMM-based
monitoring system shows a significant superiority over BPNN
for tool wear estimation.

4 Conclusions

This paper presents a new tool wear estimation model based
on Gaussian mixture hidden Markov models (GMHMM). To
verify the practicability of the GMHMM-based model, 18
time-domain features that extracted from the milling force
signals are selected as the sensitive features to identify the tool
wear states. Both the number of Gaussian mixtures K and the
length of observation sequences T directly affect the perfor-
mance of the GMHMM-based model. The experimental re-
sults show that the combination of K = 3 and T = 3 is a better
candidate for the GMHMM-based model since both the sys-
tem performance and stability are guaranteed without sacrific-
ing the training time. The identification rate of the GMHMM-
based monitoring system for four sorts of tool wear state can
reach up to 100%. Comparison results show that GMHMM
outperforms the BPNN model in performance and stability.
Besides, the selection of network structure and determination
of model parameters for BPNN need to be carried out by trial
and error, which will take a considerable amount of time in
comparison with GMHMM. Consequently, the GMHMM-
based monitoring system shows great superiority over
BPNN for tool wear estimation. This method lays the founda-
tion on tool wear monitoring in real industrial settings.
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