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Abstract This paper offers a review of univariate and mul-
tivariate process capability indices (PCIs). PCIs are statistic
indicators widely used in the industry to quantify the capa-
bility of production processes by relating the variability of
the measures of the product characteristics with the admissi-
ble one. Univariate PCIs involve single-product characteris-
tics while multivariate PCIs deal with the multivariate case.
When analyzing the capability of processes, decision mak-
ers of the industry may choose one PCI among all the PCIs
existing in the literature depending on different criteria. In
this article, we describe, cluster, and discuss univariate and
multivariate PCIs. To cluster the PCIs, we identify three
classes of characteristics: in the first class, the characteris-
tics related to the information of the process data input are
included; the second class includes characteristics related
to the approach used to calculate the PCIs; and in the third
class, we find characteristics related to the information that
the PCIs give. We discuss the strengths and weaknesses of
each PCI using four criteria: calculation complexity, glob-
ality of the index, relation to proportion of nonconforming
parts, and robustness of the index. Finally, we propose a
framework that may help practitioners and decision makers
of the industry to select PCIs.
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1 Introduction

Today, organizations and enterprises carrying out their
activities in competitive environments are continuously try-
ing to achieve high levels of production and economy. Thus,
optimization of production processes based on failure pre-
vention, planing, and control is on focus of study [1–6].
The pioneer of optimization models of production processes
based on quality costs was Taguchi [7], whose principles
and theories are accepted as reference models due to the
revolution that they supposed to quality methods. In this
context, statistical process monitoring (SPM) is rated as a
very important area of process control [8], to ensure eco-
nomic productivity by detecting production failures such as
collision or tool wear [9], and is contributing to saving costs
in manufacturing [10].

Process capability indices (PCIs) are statistic indicators
widely used in the industry in SPM to quantify how well
a process can meet customer requirements by relating the
variability of the measures of the product characteristics
with the admissible one. A process is described as capable
if it is able to produce products within the specification lim-
its (SLs). Thus, PCIs are indicators of the goodness of the
process related to the position and the variability of the mea-
sures within the SLs and are extensively accepted and used
in the industry.

Originally, product quality was described considering
only one-product characteristic. Nowadays, due to the
continuous improvement of production processes, product
quality is analyzed by considering simultaneously sev-
eral product characteristics. Thus, univariate production
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processes are tending to become multivariate production
processes.

In capability analysis, it is possible to distinguish
between univariate and multivariate PCIs. On the one hand,
univariate PCIs can be used, independently, to calculate the
capability related to one single-product characteristic. On
the other hand, multivariate PCIs describe the capability of
a multivariate process by taking into account all product
characteristics in a global way.

In most companies, univariate PCIs are used to evalu-
ate the capability of multivariate production processes by
obtaining one univariate PCI for each product characteristic.
The usage of this methodology can lead to misinterpreta-
tion because the capability of each product characteristic is
analyzed independently, namely without taking into account
its influence over the other product characteristics of the
analyzed multivariate production process. In this context,
when analyzing the capability of multivariate production
processes, univariate PCIs need to be complemented with
multivariate PCIs, which consider simultaneously all prod-
uct characteristics. Multivariate PCIs have been introduced
in the literature to describe the entire production variability
derived from the multivariate case. Thanks to multivari-
ate PCIs, the capability of a multivariate process with v

product characteristics can be summarized with one single
index.

Taking a look at the available literature in this field,
there seems to be an agreement in the scientific commu-
nity to describe the capability of multivariate production
processes by using multivariate PCIs. However, the indus-
try has not adopted this kind of indicators when evaluating
multivariate production processes. For this reason, in this
article, we summarize and discuss univariate and multivari-
ate PCIs from the literature with the aim of giving a useful
and practical review to the industry.

To date, several reviews of PCIs have been published in
the literature. Kotz et al. [11] presented a review for the
development of PCIs during the period 1992 to 2000. Wu,
Pearn, and Kotz [12] discussed the developments between
years 2002 and 2008. Yum and Kim [13] presented a
bibliography of literature between years 2000 and 2009.
Although some PCIs have been presented recently in the
literature to deal with dependent processes (e.g., Pan, Li
and Chen [14] and Pan and Huan [15]) and linear and
non-linear regression profiles (e.g., Ebadi and Amiri [16],
Wang and Tamirat [17], and Guevara and Vargas [18]), in
this paper, we focus on univariate and multivariate PCIs
based on the traditional definition of capability introduced
by Kane [19] in 1986. In order to normalize the nomen-
clature of all the PCIs presented in this paper, each index
will be introduced using the same nomenclature criterion
even though the authors used a different nomenclature at
submission time.

The purpose of this paper is to offer a review of pro-
cess capability indices with three main objectives: first, to
describe the univariate and multivariate PCIs existing in the
literature, second, to cluster and discuss them critically, and
third, to present a framework to select PCIs. For this reason,
our review may help practitioners and researchers to have
an overview of the existing work related to this topic. The
rest of the paper has the following structure: In Section 2,
univariate PCIs existing in the literature are introduced. In
Section 3, multivariate PCIs existing in the literature are
presented. In Section 4, all univariate and multivariate PCIs
presented in this review are clustered and discussed. The
survey concludes in Section 5.

2 Univariate process capability indices

Univariate PCIs are statistic indicators used to quantify the
goodness of a process by relating the variability of the mea-
sures of a single-product characteristic with the admissible
one.

It is accepted that the measures of the product char-
acteristics obtained in the quality tests follow a normal
distribution in most of production processes (Montgomery
[20]). Thus, their width (variability) can be described with
the variance (σ 2) of the product characteristic distribution,
which is the expected value of the squared deviation from
the mean of the data. About 99.73% of the values drawn
from a normal distribution are within six sigma (σ ) away
from the mean (see Fig. 1).

Sullivan [21] introduced in the literature the univariate
PCIs Cp, CPU , CPL, k, and Cpk . Kane [19] introduced
various applications of these indices and discussed along
with statistical sampling considerations to evaluate produc-
tion processes.

Henceforth, two concepts are introduced: the process
region (PR) and the specification region (SR). These two
regions will help the reader to understand the differences
between the presented PCIs. The definition of both regions
will be adapted to the multivariate case in the next section
and will be also used to explain the multivariate PCIs.

Fig. 1 Width of normal distributed measures of a product characteristic
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The PR is defined as the interval that includes 99.73%
of values drawn from a normal distribution and which is
centered on the mean value of the measured product charac-
teristic. Thus, in the univariate case, the lowest point of the
PR is placed at μ − 3σ ; and the highest point at μ + 3σ .
The SR is defined as the interval limited by the lower
specification limit (LSL) and the upper specification limit
(USL).

2.1 The Cp index

The Cp index is an univariate PCI that shows if the ana-
lyzed process can be capable. With this index, the width of
SR (USL − LSL) and the width of the PR (6σ ) are com-
pared. Figure 2 shows both regions. The Cp index can be
calculated with this formula:

Cp = (USL − LSL)/6σ. (1)

Unfortunately, obtaining measures of the whole popula-
tion is usually difficult, if not impossible. Thus, many times,
it is not possible to describe the PR with its real variance
(σ 2). For this reason, many times, the variance is estimated
with the standard deviation (s) of a data sample (s = √

σ 2).
According to Tsai and Chen [22], it is possible to distin-

guish between several levels of capability when using the
Cp index: super excellent for Cp values higher than 2.00;
excellent for values between 1.67 ≤ Cp < 2.00; satisfac-
tory for values between 1.33 ≤ Cp < 1.67; capable for
values between 1.00 ≤ Cp < 1.33; inadequate for values
between 0.67 ≤ Cp < 1.00; and poor for Cp values smaller
than 0.67.

The Cp index only takes into account the width of the
PR, but it does not consider its position within the SR. If the
PR is not centered on the SR, it would be possible to have a
substantial percentage of products with characteristics out-
side the SL although the Cp value is high. In order to solve
this problem, the CPU , CPL, k, and Cpk indices were also
introduced.

Fig. 2 Process and specification regions

2.2 The CPU and the CPL indices

The CPU index describes the relation between the upper
half of the SR (USL − μ) and half PR (3σ ). The CPL

index describes the relation between the lower half of the
SR (μ − LSL) and half PR. Hereafter, the formula of both
indices is introduced:

CPU = (USL − μ)/3σ (2)

CPL = (μ − LSL)/3σ. (3)

As in the case of the Cp index, the variance of the popu-
lation can be estimated with the standard deviation of a data
sample. In this case, the mean of the population (μ) can be
estimated with the mean value (x̄) of a data sample. These
estimations are valid for each index presented henceforth.

2.3 The Cpk and the k indices

The Cpk index considers the minimal distance between the
midpoint of the PR and its closer SL. This index is the min-
imal value between the CPU and the CPL indices. This
index is widely used in the industry because of its easy usage
and interpretation. Hereafter, the formula of the Cpk index
is introduced:

Cpk = min{CPL, CPU}. (4)

The k index describes the distance between the target of
the product characteristic (T ) and the mean value of the
product characteristic:

k = |T − μ|
USL−LSL

2

. (5)

When the target value is the midpoint of the SR, the Cpk

and the k indices are related by the following expression:

Cpk = Cp(1 − k). (6)

If the mean value of the product characteristic is exactly
in the middle of the SR, the Cpk and the Cp indices have the
same value. If the Cpk index is bigger than 1, the process is
defined as capable. However, many companies are specify-
ing Cpk goals of 1.33 (Bothe [23]). In Fig. 3, the upper half
of the PR as well of the SR are represented.

2.4 The Cpm index

Chan, Cheng, and Spiring [24] introduced the Cpm index
(8). This index also considers the possibility that the target
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Fig. 3 Relation between the upper half of the SR and the upper half
of the PR

value is not the middle point of the SR. For this reason, in
Chan, Cheng, and Spiring [24], a modification of the PR is
proposed. The modified PR is the interval [T −3σ ′, T +3σ ′]
where

σ ′ =
√∑n

i (xi − T )2

n − 1
. (7)

The modified PR includes 99.73% of values drawn from
a normal distribution which is centered on the target value
and has an estimated variance (σ ′2) that is calculated by
taking into account the distance between the product char-
acteristic and the target value.

Cpm = min(USL − T , T − LSL)

3σ ′ (8)

Figure 4 shows an example of the original and modified
PR as well as the SR. In the case of this figure, μ + 3σ ′ and
T + 3σ ′ overlap.

2.5 The Cpmk index

Pearn, Kotz, and Johnson [25] introduced the Cpmk index
(9). It is a combination of the Cpk and the Cpm indices. This

Fig. 4 PR and modified PR according Chan, Cheng, and Spiring [24]

index considers the position of the mean value of the product
characteristic within the SR and also supposes that the target
value is not centered on the SR.

Cpmk = min(USL − μ,μ − LSL)

3σ ′ (9)

The modified PR’ used in the Cpmk index is the interval
[μ − 3σ ′, μ + 3σ ′]. It has the same width as the modified
PR in the Cpm index but it is centered on the mean value
of the measures as the PR in the Cpk index. Figure 5 helps
to understand the differences in the value of the Cpk , Cpm,
and Cpmk indices, using the same example as in Fig. 4. It
is easy to see that not only the width of the modified PR
but also its position have an influence on the value of the
index, and thus, in capability analysis. In the case of Fig. 5,
the upper half of the SR is smaller than the upper half of the
modified PR’. Thus, the Cpmk index is smaller than one and,
consequently, the process is not capable. However, the Cpm

and the Cpk indices are higher than 1 and, consequently,
regarding these indices, the process is capable.

2.6 Other univariate PCIs

Hereafter, we introduce other univariate PCIs from the liter-
ature. The following PCIs provide a different point of view
when analyzing the capability of production processes, and
thus, the inclusion of these indices gives value added to this
literature review.

2.6.1 The maximal allowable standard deviation

González and Sánchez [26] introduced the Cn index. Con-
sidering that the measured data follows a normal distribu-
tion, X ∼ N(μ, σ), with this index, it is possible to compare
the standard deviation of the measured product characteris-
tic (s) with the maximal allowable one (smax). The maximal
allowable standard deviation is the maximal standard devi-
ation that the measured product characteristic could have in

Fig. 5 Modified PR’ according Pearn, Kotz, and Johnson [25]
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order to verify that the probability that a measure of this
product characteristic is located inside the SR is the mini-
mal acceptable one (Pmin): P(LSL ≤ X ∼ N(μ, smax) ≤
USL) = Pmin. The Cn index can be calculated with the next
formula:

Cn = smax

s
. (10)

As it can be seen, a process is capable (Cn values higher
than 1) if the variability of the measured product char-
acteristic (s) is smaller than the maximal allowable one
(smax).

2.6.2 The window of opportunity

Veevers [27] introduced the concept of viability (Vr ) of a
process by describing its window of opportunity (w). The
window of opportunity is the interval in which the center
of the PR can be placed with the condition that the PR is
inside the SR. Taking it into account, the viability is defined
as follows:

Vr = w

USL − LSL
. (11)

If the measures of the product characteristic follow a
normal distribution, the window of opportunity can be
approximated to the following:

w = USL − LSL − 6σ. (12)

Imagine that we want to analyze a process that generates
outputs whose product characteristics follow a normal dis-
tribution, X ∼ N(μ, σ). In order to define the window of
opportunity, we have to define two auxiliary processes with
the same σ value and centered on the extreme values of the
window of opportunity.

Figure 6 shows both auxiliary processes: on the left side,
there is a process N1(μ1, σ ), whose 0.135% of the data is
under the LSL (μ1 − 3σ = LSL); and on the right side,

Fig. 6 Window of opportunity as stated in Veevers [27]

there is a process N2(μ2, σ ), whose 0.135% of the data is
over the USL (μ2 + 3σ = LSL). The distance between μ1

and μ2 is the window of opportunity.
As it can be seen, a process is capable if the mean value

of the measured data is within the window of opportunity.

2.6.3 Loss-based PCIs

Another way to tackle the problem of the capability anal-
ysis is to describe the goodness of a process by estimating
its loss. The loss of a process is defined as the cost arising
from the production of nonconforming parts. In this context,
Johnson [28] suggested using another dimensionless indi-
cator to describe the capability of production processes and
defined Le as the ratio of the expected quadratic loss, which
has been also discussed in Tsui [29]:

Le =
∫ ∞

−∞

[
(X − T )2

USL−LSL
2

]
dF(X) = σ 2 + (μ − T )2

USL−LSL
2

. (13)

Pearn, Chang, and Wu [30] criticized the indicator of
Johnson [28] because it does not take into account the case
with asymmetric tolerances and suggested modifying the Le

index and introduced a new L′
e index. Both approaches have

been discussed in Abdolshah [31], where it is concluded that
the loss-based PCIs are more realistic and suitable tools to
measure the capability of a process than the traditional ones.
However, both approaches have not been extended to the
multivariate case.

Eslamipoor and Hosseini-nasab [32] suggested using the
signal-to-noise ratio derived from the loss function concept
from Taguchi [7] as a practical tool for PCIs. This approach
unifies the Cp, Cpk , Cpm, and Cpkm indices but it is not
extended to the multivariate case.

2.6.4 A dynamic approach

Up to here, all PCIs are useful to describe the capability
of controlled processes but none pays attention to the out-
of-control period, where the nonconforming rate is higher
than that in the in-control period. Thus, Lupo [1] introduced
a new univariate PCI, which is related to the proportion of
nonconforming parts over a process functioning cycle (dur-
ing the in-control and out-of control periods) through the
cumulative density function.

2.6.5 PCIs for non-normal measures

Up to here, it has been supposed that the measured data
follows a normal distribution. However, this is not always
the case in real production processes. Thus, some PCIs
have been also proposed to deal with non-normal processes.
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Zwick [33] proposed using PCIs although the product char-
acteristics do not follow a normal distribution by using the
CNpx indices. The x means that this method is valid for each
univariate PCI (CNp, CNpk , CNpm, CNpmk). For example,
the CNp can be calculated by following the next formula:

CNp = USL − LSL

P0.99865 − P0.00135
= SR

PR
, (14)

where P0.99865 and P0.00135 are the 99.865 and the 0.135
percentiles of nonconforming data.

Yang et al. [34] showed that the interval defined by 0.135
and 99.865 percentiles may not include the highest prob-
ability density interval when dealing with non-symmetric
distributions. Yang et al. [34] suggest describing the PR for
non-normal distributions as the interval [Ph1, Ph2] that sat-
isfies Eq. 15 and f (Ph1) = f (Ph2), where f (x) is the
probability density function. Figure 7 illustrates the inter-
vals defined by Zwick [33] and Yang et al. [34] with a
non-symmetric probability density function.

∫ Ph2

Ph1

f (x)dx = 0.9973 (15)

Piña-Monarrez, Ortiz-Yañez, and Rodrı́guez-Borbón
[35] used the approach explained in Zwick [33] and pro-
pose a methodology to calculate the CNp and CNpk indices
when the measures follow Weibull and lognormal distribu-
tions.

3 Multivariate process capability indices

Multivariate PCIs are statistic indicators used to quantify the
goodness of a multivariate process with a single index by
relating the variability of the measures of multiple product
characteristics with the admissible one. Several multivariate
PCIs have been introduced in the literature.

Fig. 7 Definition of the proposed PR in Zwick [33] and in Yang et al.
[34]
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Fig. 8 Representation of the PR main axes

Henceforth, the PR and the SR are extended to the mul-
tivariate case. As in the univariate case, it is accepted that
the measures of the product characteristics usually follow a
normal distribution. Considering that in the univariate case,
the PR is the region that includes 99.73% of the values
drawn from a normal distribution and which is centered on
the mean value of the data sample, in the bivariate (and
v-multivariate) case, the PR is described as the surface
(v-dimensional shape) that includes 99.73% of the values
drawn from a binormal (or v-multinormal) distribution and
which is centered on the mean value of the data sample. This
region is mathematical represented by the following:

(X − μ)��−1(X − μ) = c2, (16)

where μ and � are the mean vector and the variance-
covariance matrix, and c2 depends on v (e.g., for v = 2,
c2 = 11.83). Usually, it is accepted that (X −μ)��−1(X −
μ) = c2 (as function of the measured product characteris-
tics) follows a χ2

v distribution with v degrees of freedom.
About 99.73% of the values drawn from a χ2

v distribution
with v degrees of freedom are within the region delimited by
Eq. 16. The SR is the parallelepiped region whose vertices
are delimited by the SLs. Figure 8 shows the distribution of
a sample of data for two-product characteristics, the PR and
the SR.

Before introducing the multivariate PCIs, it is neces-
sary to understand the influence of the correlation between
product characteristics when analyzing the capability of
multivariate production processes. In the multivariate case,
the correlation between the measured product character-
istics plays an important role: the ellipsoidal shape that
represents the PR is more—or less—inclined depending on
the value of the correlation between the analyzed product
characteristics. If there is no correlation between the mea-
sures, the axes of the PR are parallel to the Cartesian’s axes.



Int J Adv Manuf Technol (2017) 92:1687–1705 1693

Figure 8 also shows the main axes of the ellipsoidal PR for
a bivariate sample. Thus, only if correlation is taken into
account, it is possible to describe properly the PR and, con-
sequently, to evaluate properly the capability of production
processes in the multivariate case.

Hereafter, multivariate PCIs from the literature are intro-
duced and classified into two groups. On the one hand, there
are multivariate PCIs that do not take into account the corre-
lation between the measured product characteristics and that
are obtained through the derivation from univariate PCIs.
On the other hand, other multivariate PCIs do take this cor-
relation into account whether through the description of the
ellipsoidal shape by its principal component axes, through
the comparison between process and specification regions,
or through the usage of the cumulative distribution function.

Although in each contribution the authors used their own
nomenclature to name the presented PCIs, in this survey,
all PCIs are named following the MCpx criteria: M means
that it is a multivariate PCI and Cpx differentiates between
MCp (the multivariate PCI only takes into account the size
of the PR), MCpk (the multivariate PCI does not only take
into account the size of the PR but also its position within
the SR), and MCpm (the multivariate PCI also takes into
account the position of the target value).

3.1 Multivariate PCIs that do not take into account
the correlation between product characteristics.
Derivation from univariate PCIs

In this group, we find multivariate PCIs obtained through
the derivation from univariate PCIs. Thus, they do not take
into account the correlation between the measured product
characteristics.

An example is the multivariate PCI presented in Hubele,
Montgomery, and Chih [36]. It is the arithmetical mean
of the univariate PCIs that describe the capability of each
single-product characteristic. If the quantity of sample data
of each product characteristic is the same, the presented PCI
is the mean value of all univariate PCIs. This method is valid
for each univariate PCI (Cp, CPU , CPL, Cpk , k, Cpm, and
Cpmk).

Veevers [27] extended the concept of viability to the mul-
tidimensional case by describing the window of opportunity
as a volume in order to compare it with the volume of the
SR:

Vrn = vol.(window of opportunity)

vol.(specification region)
. (17)

Due to its definition, the window of opportunity can be
either positive, null, or negative. For this reason, it is nec-
essary to distinguish between the case in which at least one
univariate window of opportunity is negative, and the case
in which all univariate windows of opportunity are positive.

Plante [37] proposed calculating multivariate PCIs as the
geometrical mean of all univariate PCIs that describe the
capability of each single-product characteristic.

Ch’ng, Quah, and Low [38] used the weighted sum of the
univariate Cpm indices to obtain a multivariate PCI:

MCpm =
m∑

i=i

eiCpm. (18)

Ŝiman [39] introduced a new methodology to obtain
the capability of multivariate processes by following a
directional approach, which is an intuitive method valid
for all kind of convex SR (not only valid for rectangular
SR). Ŝiman [39] suggested using the unidimensional PCIs
Cp, Cpk , Cpm, and Cpmk in an infinite number of directions
with the goal of achieving the most critical one. In practice,
it is not possible to work with infinite number of directions.
Thus, Ŝiman [39] suggested using equispaced directions (or
using parametric programming).

3.2 Multivariate PCIs that do take into account
the correlation between product characteristics

In the literature, there are several multivariate PCIs that do
consider the influence of the correlation between the mea-
sured product characteristics. In order to classify this kind
of multivariate PCIs, three groups are proposed:

– Multivariate PCIs based on principal component analy-
sis.

– Multivariate PCIs based on the relation between PR and
SR.

– Multivariate PCIs based on the inverse function of the
cumulative distribution function.

3.2.1 Multivariate PCIs based on principal component
analysis

Wang and Chen [40] proposed using the principal compo-
nent analysis (PCA) built on Tong’s theorem [41] in order
to obtain multivariate PCIs. Thanks to the PCA method,
it is possible not only to obtain the main axes (eigenvec-
tors) of the PR (ellipses, ellipsoids, ellipsoidal shapes) but
also to obtain a diagonal variance-covariance matrix that
describes the PR by eliminating the correlation between the
measured product characteristics. Therefore, the modified
product characteristics derived with PCA are uncorrelated.

Figure 9 shows the eigenvectors (ui) that describe the
main axes of the ellipse in a two-dimensional case. Both
axes are orthogonal and uncorrelated.

Thus, the multivariate PCIs presented in Wang and Chen
[40] (MCp, MCpk , MCpm, and MCpmk) can be calculated
by obtaining the axes of the PR and by calculating the uni-
variate PCIs (Cp, Cpk , Cpm, and Cpmk) in the direction of
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each axis. Afterwards, the multivariate PCIs can be obtained
by calculating the geometrical mean of all the univariate and
uncorrelated PCIs.

In order to calculate the PCIs corresponding to each
principal component, Wang and Chen [40] proposed trans-
forming the SR and the target values by using Eqs. 19 to
21.

LSLPC = U · LSL (19)

USLPC = U · USL (20)

TPC = U · T , (21)

where LSLPC = (LSLPC1, ..., LSLPCv ), USLPC =
(USLPC1, ..., USLPCv ), and TPC = (TPC1 , ..., TPCv ) are,
respectively, the vectors of the lower and upper specification
limits and the target values corresponding to each princi-
pal component. LSL = (LSL1, ..., LSLv) and USL =
(USL1, ..., USLv) and T = (T1, ..., Tv) are, respectively,
the vectors of the lower and the upper specification limits
and target values corresponding to each product character-
istic. U is the rotation matrix with the eigenvectors of the
variance-covariance matrix.

It is important to notice that the rotation of the PR also
involves a rotation of the SR. However, the method pro-
posed in Wang and Chen [40] only rotates the SR vertices
(LSR and USR) by using the midpoint of the PR as the fix
rotation point. Thus, the adapted SR remains parallel to the
Cartesian’s axes. Although the elimination of the correla-
tion between product characteristics, this method generates
problems related to the rotation of the SR because of the
modification of its size [42].

Wang and Du [43] improved the approach in Wang and
Chen [40] by reducing the number of necessary eigenvectors
that must be taken into account to describe the capabil-
ity of a multivariate process. Wang and Du [43] proposed

selecting the eigenvectors that contribute to most of the
process variability by considering the ratio of each eigen-
value to the summation of the eigenvalues, which describes
the proportion of variability associated with each principal
component variable. The eigenvector reduction is possible,
thanks to the Jackson’s theorem [44] that checks if each
eigenvector must be taken into account.

Wang [45] proposed weighting the uncorrelated PCIs by
using the weighted geometric mean, where the eigenvalues
that correspond to each component are the weights (λi):

MCpx =
(

v∏
i=1

Cpx;PCi

) 1∑v
i=1 λi

. (22)

Shinde and Khadse [42] showed that the modified SR
proposed in Wang and Chen [40] was not correct. As it has
been stated, Wang and Chen [40] proposed a modification
of the SLs but the SR remained parallel to the Cartesian’s
axes. However, a correct rotation of the SR must generate an
inclined SR. Figure 10 shows the correct rotation of the SR
proposed in Shinde and Khadse [42] and the SR proposed
in Wang and Chen [40].

In order to solve the problem related to the rotation of the
SR, Shinde and Khadse [42] introduced two new multivari-
ate PCIs: the Mp1 and the Mp2 indices (analog to the MCp

and MCpk indices). If the Mp1 index is bigger than (or equal
to) 0.9973, the process is potential capable. If Mp2 is bigger
than (or equal to) 0.9973, the process is actually capable.
In order to calculate these indices, Shinde and Khadse [42]
proposed an empirical approach using two Monte Carlo
generations of data.

González and Sánchez [26] proposed another multivari-
ate PCI obtained by using the PCA method. With this
approach, it is possible to calculate a multivariate PCI that
represents how much can increase the standard deviation
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Fig. 10 Rotated PR and SR
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before the process is not capable by considering the maxi-
mal standard deviation of the diagonal variance-covariance
matrix. It is interesting to point out that the logic used in this
multivariate PCI is the same as the used in the univariate Cn

index.
In this regard, Perakis and Xekalaki [46] introduced a

multivariate PCI which was also valid for unilateral specifi-
cation limits.

Tano and Vännman [47] introduced a multivariate PCI
that not only uses the PCA method (with the correct incli-
nation of the SR) but also normalizes the original sample by
modifying and adapting it to the interval [-1, 1]. The diag-
onal variance-covariance matrix of the normalized sample
is calculated in order to obtain its eigenvalues and eigen-
vectors. In order to obtain this multivariate PCI, Tano and
Vännman [47] affirmed that only the biggest eigenvalue
(σPCA1) is necessary because in this approach, only the
width of the PR is taken into account.

Last but not the least, Dharmasena and Zeephongsekul
[48] introduced a multivariate PCI based on the PCA
method by generalizing some existing multivariate indices
based on the PCA method proposed by several authors.

3.2.2 Multivariate PCIs based on the relation between
process and specification regions

The PR and SR can be represented with ellipsoidal and par-
allelepiped shapes, respectively. The proposed multivariate
PCIs in this section compare the size of these shapes con-
sidering their original or modified representations presented
in different articles.

Relation between original PR and original SR Chen [49]
presented a multivariate PCI by comparing the sizes of the
original PR and SR. This multivariate PCI only gives infor-
mation of the PR size in comparison with the size of the SR
but it does not consider the position of the PR within the SR.

Das and Dwivedi [50] introduced a multivariate PCI
valid for non-normal and correlated product characteristics
assuming multivariate g-and-h distributions. However, the
problem using g-and-h distributions is the high computation
that is required.

Ciupke [51] introduced a multivariate PCI that com-
pares the size of the original PR and SR and which allows
to analyze the capability of both normal and non-normal
product characteristics. Taking into account that the PR of
non-normal multivariate product characteristics cannot be
described by Eq. 16, Ciupke [51] suggested using one-side
models to determine the PR shape.

Relation between original PR and modified SR In this
group, we find all methods that compare the size of the orig-
inal PR and a modified SR using Eq. 23. If the sample data

follows a normal distribution, the original PR is described
by Eq. 16.

MCpx = vol.(modified SR)

vol.(original PR)
(23)

Chan, Cheng, and Spiring [52] proposed using an ellip-
soidal shape to represent the SR. Taam, Subbaiah, and Liddy
[53] improved the approach presented in Chan, Cheng, and
Spiring [52] and described the modified SR as the biggest
ellipsoid (parallel to the Cartesian’s axes) that can be fitted
into the original SR and which is centered at the target value
(see Fig. 11). We can see that the modified SR is tangential
to the original rectangular one.

Braun [54] took into account the effect of the correlation
between product characteristics while modifying the SR. In
this contribution, the modified SR is an ellipsoidal shape
centered on the midpoint of the original SR, tangential to
the rectangular SR and parallel to the main axes of the PR.
Braun [54] proposed a PCI considering both, the size of the
PR and its position within the SR. Thus, a correlation coef-
ficient, which depends not only on the position of the PR
but also on the middle point of the SR, was also presented.
This approach is focused in the case in which the target
value is the midpoint of the SR. Shaoxi et al. [55] improved
the approach presented in Braun [54] by proposing a new
correlation coefficient.

Pan and Lee [56] also suggested considering the existing
correlation between the measures of the product character-
istics in order to obtain a MCpm index. Here, a modified
SR, which is also inclined but it is now centered in the target
value (which cannot be the center of the SR), is proposed.
The approach in Pan and Lee [56] is extended to the non-
normal case in Pan, Li, and Shih [57] by using a weighted
standard deviation method to approximate the original prob-
ability density function with segments from 2v multivariate
normal distributions.
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Fig. 11 SR and modified SR as described in Chan, Cheng, and Spiring
[52] and in Braun [54]
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Jalili, Bashiri, and Amiri [58] introduced another multi-
variate PCI, which is also valid for unilateral specification
processes. In Jalili, Bashiri, and Amiri [58] the PR is
divided into two different parts: the part that is within the
specification region (CV) and the part that is without the
specification region (NCV). Then, the relation between CV
and NCV is used to obtain a multivariate PCI. With this
method, not only the volume of the PR but also its position
within the SR are taken into account. However, the relation
between the proportion of nonconforming parts (NCP) and
the PCI is not the one obtained per definition through the
cumulative distribution function (see Castagliola [59]).

Relation between modified PR and original SR Shahri-
ari, Hubele, and Lawrence [60] introduced a multivariate
process capability vector that can be calculated with (24) by
comparing the original SR with a modified PR.

MCpx = vol.(original SR)

vol.(modified PR)
(24)

The modified PR proposed in Shahriari, Hubele, and
Lawrence [60] is a parallelepiped shape which is tangential
to the original PR and parallel to the Cartesian’s axes (see
Fig. 12).

The process capability vector has three components: the
first component (CpM ) gives information of the relation
between the sizes of the original SR and the modified PR,
the second component (PV) is a p value computed to test
the null hypothesis μ = μ0 that gives information of the
relative location of the PR within the SR, and the third com-
ponent gives additional information about the location of the
modified PR within the SR.

Niavarani, Noorossana, and Abbasi [61] developed the
approach from Shahriari, Hubele, and Lawrence [60] and

LSL1 USL1μ1

LS
L 2

U
SL

2
μ 2

Product characteristic 1 

Pr
od

uc
t c

ha
ra

ct
er

is
tic

 2

Fig. 12 PR and modified PR as described in Shahriari, Hubele, and
Lawrence [60]

suggested using a modified PR parallel to the ellipsoid axes
to calculate the first component of the capability vector.

Relation between modified PR and modified SR Grau
[62] proposed a new method to calculate the capability of
multivariate processes. This method considers the possibil-
ity that the target value and the midpoint of the PR are not
the same point. This contribution introduces four different
shapes to represent the modified SR and PR in order to
calculate the following multivariate PCIs:

MCp =
(

V AT

V N

) 1
v

(25)

MCpk =
(

V Aμ∗
V AT ∗

) 1
v

MCp (26)

MCpm =
(

V AT

V N ′

) 1
v

(27)

MCpmk =
(

V Aμ∗
V AT ∗

) 1
v

MCpm. (28)

V N is the original PR. V AT is the maximal homoth-
etic ellipsoidal shape which is centered on the target value
and that fits (tangential) within the original SR. V Aμ∗ is
the maximal homothetic ellipsoidal shape which is centered
on the PR mean and that fits (tangential) within the origi-
nal SR. V AT ∗ is the maximal homothetic ellipsoidal shape
which is centered on the target and that is tangential to the
same specification limit as V Aμ∗. V N ′ is the ellipsoidal
shape that is centered on the process output characteristic
mean and whose variance-covariance matrix can be calcu-
lated with (29) where Q(μ) is a mathematical function that
also takes into account the position of the target value. All
this shapes are represented in Fig. 13.

�Q = � + Q(μ)Q(μ)� (29)
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Fig. 13 Modified shapes in Grau [62]
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3.2.3 Multivariate PCIs based on the inverse function of
the cumulative distribution function

All multivariate PCIs included in this group use the alter-
native definition for the Cpk index proposed in Castagliola
[59]. This definition takes into account the relation between
the proportion of nonconforming parts (NCP) of the ana-
lyzed process and the value of the Cpk index in Kane
[19]. The proportion of nonconforming parts under the LSL

(pLSL) can be calculated using the CPL index (3) and
the cumulative distribution function (�) of the standardized
normal distribution N(0, 1):

pLSL = �

(
LSL − μ

σ

)
= �(−3CPL). (30)

Inverting the cumulative distribution function, the rela-
tion between the CPL index and pLSL can be obtained:

CPL = −1

3
�−1(pLSL). (31)

This logic can also be used by considering the propor-
tion of nonconforming parts above the USL (pUSL). Then,
the relation between the Cpk index and the proportion of
nonconforming parts can be described by the following:

Cpk = 1

3
min{−�−1(pLSL),−�−1(pUSL}. (32)

Bothe [23] introduced a MCpk index based on this
premise. In order to calculate it, first, it is necessary to
obtain for each product characteristic, namely i, the proba-
bility that a measure of the product characteristic is within
the specification limits (pi). After it, it is necessary to obtain
the total proportion (ptotal) of conforming parts with the
following:

ptotal =
n∏

i=1

pi. (33)

Then, the total proportion of nonconforming parts
(ptotal,NCP) can be obtained with the following:

ptotal,NCP = 1 − ptotal. (34)

With the inverse cumulative normal distribution func-
tion, �, it is possible to transform the total proportion of
nonconforming parts into a multivariate PCI.

If many product characteristics are considered simulta-
neosuly, the total proportion of conforming parts (ptotal)
tends to be null. In order to avoid it, Bothe [23] also pre-
sented a normalized version of this approach. However,
this approach is valid only if all output characteristics are
uncorrelated.

Pearn et al. [63] suggested calculating the total propor-
tion of nonconforming parts with (35) and then, transform-
ing it to a MCpk index by using the relation between the

proportion of nonconforming parts and the Cpk index in
Castagliola [59].

ptotal,NCP =
v∏

i=1

(1 − CPi) (35)

The good point of the approaches in Bothe [23] and in
Pearn et al. [63] is that given a MCpk value, the expected
proportion of nonconforming parts can be estimated. Nev-
ertheless, both approaches do not take into account the
correlation between the product characteristics, and thus,
the ptotal,NCP is not properly estimated. In order to trans-
form the approach proposed in Bothe [23] and in Pearn et
al. [63] into a valid method to analyze correlated product
characteristics, the MCpk index for the bivariate (BCpk)
and correlated case was presented in Castagliola and Garcia
Castellanos [64]. Castagliola and Garcia Castellanos [64]
followed the nomenclature of the PCA method in order to
obtain the main axes of the ellipse that represents the PR.
These two axes (see Fig. 14) divide the PR into four areas
(A1, A2, A3, and A4). The probability that the measures of
the product characteristics are within one of these areas is
the same for each one (P(X ∈ Ai) = 1/4).

The Ai areas are also divided into two differentiated
sub-areas. On the one hand, Q1, Q2, Q3, and Q4 are the
sub-areas that are within the SR. On the other hand, P1, P2,
P3, and P4 are the sub-areas that are outside the SR. The
probabilities that the measures of the product characteristics
are within one of this areas (Qi and Pi) are called qi and pi :

pi = 1

4
− qi. (36)

The total proportion of nonconforming parts is the sum of
all single pi probabilities (ptotal,NCP = p1 + p2 + p3 + p4).

Q1

Q2

Q3

Q4

P1

P2

P3

P4

Product characteristic 1 

Pr
od

uc
t c

ha
ra

ct
er

is
tic

 2

Fig. 14 Process region sub-areas as stated in Castagliola and Garcia
Castellanos [64]
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Then, the multivariate PCI can be calculated with the
inverse cumulative normal distribution function:

BCpk = 1

3
min{ −�−1(2p1),−�−1(2p2),

−�−1(2p3),−�−1(2p4) }. (37)

If the four probabilities (p1, p2, p3, and p4) are equal,
the total proportion of nonconforming parts is minimal. In
this case, the BCpk is maximal.

The method presented in Castagliola and Garcia Castel-
lanos [64] is extended to the v-variate case in Shiau et al.
[65]. Here, the PR ellipses have v axes and are divided into
2v Euclidian shapes. The proposed MCpk index of Shiau et
al. [65] is as follows:

MCpk = 1

3
min{ −�−1(2v−1p1),−�−1(2v−1p2),

. . . , −�−1(2v−1p2k ) }. (38)

In order to obtain p1, p2,..., p2k , Shiau et al. [65] sug-
gested using Monte Carlo replications. Furthermore, in
Shiau et al. [65], the approach presented in Castagliola
and Garcia Castellanos [64] was criticized because it is not
scale-invariant. Thus, Shiau et al. [65] proposed scaling the
sample data and the specification limits. With this modifi-
cation, it is possible to calculate not only a MCpk but also a
MCp index.

Abbasi and Niaki [66] also suggested using the inverse
cumulative normal distribution function but to describe the
capability of non-normal multivariate production processes.
First, it is necessary to transform the measures by using a
root transformation technique. Then, a Monte Carlo simu-
lation method has to be used to estimate the proportion of
nonconforming parts of the process. However, the approach
suggested in Abbasi and Niaki [66] does not consider the
smaller-the better or unilateral case.

Gu et al. [67] suggested that a capability index for
evaluating the performance of multivariate processes must
be yield-based. In other words, a PCI must have a clear
relationship with the process yield. Indices, such as the
Cpk , describe the process yield by considering only the
nonconforming parts of a process in one direction. How-
ever, it does not represent the real-process yield. Taking
it into account, Gu et al. [67] introduced two new PCIs:
the ECpk for univariate processes and the MECpk for
multivariate processes. Both indices use the original def-
inition of the Cpk index and adapt it by obtaining the
process yield through the cumulative distribution function.
This approach requires some accurate high-precision cal-
culation techniques to compute the multivariate cumulative
distribution function.

Last, de-Felipe et al. [68] also introduced a multivariate
PCI (MCpk) based on the relation between the propor-
tion of nonconforming parts and the Cpk in Castagliola

[59] but suggested using the multivariate normal cumula-
tive distribution function to calculate the total proportion of
nonconforming parts.

4 Clustering and discussing univariate
and multivariate PCIs

In this section, all PCIs introduced in this article are clus-
tered in order to obtain an overview. To cluster all the
explained PCIs, Table 1 is proposed. It may help the reader
to summarize the important characteristics of each PCI.
The rows show all contributions, which are in chrono-
logical order. In the columns, we can distinguish three
classifications.

The first classification gives information of the type of
process data input that can be analyzed with each PCI. It
is important to differentiate not only between univariate
and multivariate processes but also between processes with
normal and non-normal distributed product characteristics.

The second classification gives information of the calcu-
lation approach that the authors used in order to calculate the
PCIs. On the one hand, there are univariate and multivariate
PCIs that use the traditional definition of univariate PCIs,
namely without taking into account the correlation between
the product characteristics. On the other hand, there are mul-
tivariate PCIs that do consider the correlation between the
measures of the product characteristics and that are obtained
by three different ways: first, there are multivariate PCIs
based on the PCA method, second, there are multivariate
PCIs based on the comparison between modified and origi-
nal SR and PR, and third, there are multivariate PCIs based
on the transformation of the proportion of nonconforming
parts of the analyzed process into a PCI with help of the
inverse function of the cumulative distribution function.

The third classification shows the information that the
PCIs give. First, there are PCIs that give information about
the width of the PR in comparison with the width of the SR.
Second, there are PCIs that also consider the position of the
PR within the SR. Third, there are PCIs that also consider
the position of the target value. Finally, there are PCIs that
also prognosticate the proportion of nonconforming parts of
the process.

4.1 Discussion: univariate PCIs

In this section, we are going to discuss critically the univari-
ate PCIs that have been introduced in this article. Univariate
PCIs were introduced in the literature to analyze the capa-
bility of production processes with only one-product charac-
teristic. From all the existing PCIs, the Cpk index is widely
used in the industry. For this reason, particular attention has
been paid to this univariate PCI.
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Table 1 Overview of univariate and multivariate PCIs

Hereafter, we use two different cases of study (see
Fig. 15) to discuss critically some univariate PCIs presented
in this article. In the first case, the measures of the product

characteristic follow a normal distribution which is not cen-
tered on the target value (μ = 0.21875, σ = 0.20830) In
the second case, the measures of the product characteristic
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Fig. 15 Discussion of univariate PCIs using two cases of study

follow a normal distribution centered on the target value
(μ = 0, σ = 0.20830). For both cases of study, LSL = −1,
USL = 1, and T = 0.

Table 2 summarizes for both cases of study the follow-
ing univariate PCIs: Cp, CPU , CPL, k, Cpk , Cpm, Cpmk ,
Vp, and Cn. It is possible to see that depending on the PCI
used, we can obtain different values of the capability of the
process.

In the first case, the original PR, the modified PR, and
PR’ have different widths because of the non-centered posi-
tion of the PR within the SR. Thus, the values of the Cp,
Cpk , Cpm, and Cpmk indices (see Table 2) are different. In
the second case, the original PR, the modified PR and PR’
have the same width and are placed on the same position.
Thus, there is no difference between these univariate PCIs.

Thanks to this example, it is possible to understand the
benefits of using PCIs that take into account the position
of the PR within the SR. If the PR is not centered in rela-
tion to the SR, the capability of the process is not properly

Table 2 Comparison of univariate PCIs

Case 1 Case 2

Cp 1.60 1.60

CPU 1.25 1.60

CPL 1.95 1.60

k 0.22 0.00

Cpk 1.25 1.60

Cpm 1.10 1.60

Cpmk 0.86 1.60

Vr 0.38 0.38

Cn 1.60 1.60

described with indices that do not take into account the
mean value of the measures. For example, if we look at
Table 2, we can see that in both cases, the Cp value is the
same although the PR is not placed in the same place. Nev-
ertheless, the Cpk in the first case suggests that the PR is
not centered within the SR. As we can also see, the Vr and
the Cn indices do not describe the capability of off-centered
processes (in both cases, the value of both indices is the
same). Thus, taking only into account the Cp, Vr , or Cn

indices, a process with product characteristics outside the
SR can be described as capable although it does not comply
with the capability requirements. In this example, it is also
possible to see that depending on the PCI used to describe
the capability of a process (see for example the Cpk and
the Cpmk indices in case 1), a process can be described as
capable or non-capable.

4.2 Discussion: multivariate PCIs

In this section, we discuss critically the multivariate PCIs
introduced in this article in order to identify strengths and
weaknesses of each PCI (see Table 1) and to identify mul-
tivariate PCIs useful for the industry. In our discussion,
we are going to focus on the following criteria: calculation
complexity, globality of the index, relation to proportion of
nonconforming parts, and robustness of the index.

The calculation complexity is defined as the way used
to calculate the multivariate PCI. As we have seen, it is
possible to distinguish between four different calculation
approaches: derivation from univariate PCIs, elimination
of the correlation through the usage of the PCA method,
comparison between shapes, and usage of the cumulative
distribution function. We accept that obtaining multivariate
PCIs through the derivation from univariate PCIs is an easy
way to calculate multivariate PCIs. Nevertheless, the other
three methodologies are not so straightforward to calcu-
late because they are based on high complex mathematical
functions.

The globality of the index is defined as the ability to
synthesize the capability of multiple-product characteristics
with a single index. We have seen that multivariate PCIs
are on focus of research field, and lots of approaches and
methods are presented recently in the literature. It seems to
be a huge interest on evaluating production processes with
multiple-product characteristics in a global way by summa-
rizing the capability relating several product characteristics
with a single index. Thus, all the contributions related to
multivariate PCIs discussed in this survey are dealing with
this topic.

The third criterion is the relation between the value of
the multivariate PCI and the proportion of nonconforming
parts of the analyzed production process. Establishing rela-
tionship between process capability indices and proportion
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of nonconformance has been studied extensively in the
literature [69]. From our point of view, trying to find a
methodology to represent the capability of multivariate pro-
cesses in a global way, sometimes, the original objective of
the PCIs is being dismissed: PCIs were introduced in the lit-
erature to describe the capability of a process, or in other
words, to estimate the ability of a process to produce out-
puts within the SL. Thus, if univariate PCIs, such as the
Cpk index, are indirectly indicators of the proportion of con-
forming and nonconforming parts of production processes,
multivariate PCIs must deal with the same goal. Taking a
look to Table 1, it is possible to see that the authors that are
thinking in terms of proportion of nonconforming parts are
those who are proposing approaches based on the inverse
function of the cumulative distribution function.

By robustness of the index is meant the consistence of
the value of the multivariate PCI when analyzing a pro-
cess. Some approaches, such as the ones sampling using
Monte Carlo, present inconsistency of the values because
different values are obtained depending on the Monte Carlo
simulation.

Hereafter, we discuss the multivariate PCIs presented in
this article taking into account these four criteria.

First, we focus on the multivariate PCIs obtained through
the derivation from univariate PCIs. Thanks to this method-
ology, multivariate PCIs are obtained directly from the
univariate ones through easy computation methods such
as geometrical and arithmetical means. Thus, these indices
present robust behaviors and describe the capability of the
process in a global way with a single index. Nevertheless,
there is no relation between these indices and the pro-
portion of nonconforming parts of the analyzed process.
Imagine a multivariate production process with some prod-
uct characteristics that present good capability behaviors
and other product characteristics that present poor capabil-
ity behaviors. Using the mean value of the univariate PCIs
to calculate a multivariate PCI, this index would be an inter-
mediate value that may suggest that the capability of the
process is acceptable, although some product characteris-
tics are not capable. If we accept that processes that have
non-capable product characteristics must be described as
non-capable processes, using this methodology may lead to
misunderstandings.

Second, we focus now on the methods based on the rela-
tion between PRs and SRs. Authors that suggest comparing
the sizes of these regions, are just testing if the PR can be
fitted within the SR but the multivariate PCIs that they are
suggesting do not give information about the position of the
PR within the SR, and thus, about the proportion of non-
conforming parts of the process. For example, we can take
the proposed index in Chen [49], which suggests compar-
ing the sizes of the original PR and SR. Imagine that the
variability of the measured data is really small, and thus,

we have a really small PR in comparison with the SR. In
this case, when comparing the sizes of the PR and the SR,
we will obtain a rate higher than one, and thus, we will
believe that the process is capable. But, actually, with this
approach, the position of the PR within the SR has not been
taken into account. Following with this example, if the small
PR is centered on the middle of the SR, the proportion of
nonconforming parts is going to be really small; but if the
PR is off-centered, the proportion of nonconforming parts is
going to be higher. The multivariate PCI in Chen [49] does
not distinguish between these two situations (one with a low
rate of nonconforming parts and another one with a huge
rate of nonconforming parts), and thus, it is not an effective
indicator of the proportion of conforming and nonconform-
ing parts of a production process. In order to deal with this
problem, several authors suggested modifying either the PR
or the SR. With these modifications, they are trying to solve
this problem but they are forgetting the original objective
of the PCIs: to describe the proportion of conforming and
nonconforming parts of the process. By modifying these
regions, the information obtained with the ratio between
modified PR and SR does not describe the real proportion
of nonconforming parts of the process analyzed.

Third, we focus now on the multivariate PCIs based on
the PCA method. As we have seen, authors that suggest
using the PCA method to transform the original variance-
covariance matrices, which describe the original PR, into a
diagonal—and uncorrelated—matrix are dealing with elimi-
nating the correlation between the measured product charac-
teristics. With this approach, the whole problem is ”moved”
to a new system of coordinate axes defined by the eigenvec-
tors [70]. Once the product characteristics are uncorrelated,
these authors suggest combining univariate PCIs to cal-
culate the capability of each direction described by each
eigenvector. Using this method, each direction is studied
individually, and afterwards, the capability of each direction
is weighted to obtain the global capability of the process.
Thus, with this method, a global ratio (comparison of uncor-
related PR and SR) is obtained. However, this ratio is not
related to the proportion of nonconforming parts of the pro-
cess, as with the PCIs of the first group (derivation from
univariate PCIs). Moreover, while calculating PCIs in the
directions of the eigenvectors, these authors encounter dif-
ficulties because they are forced to rotate the SR and the
rotation of the SR is not straightforward to calculate. Fur-
thermore, the rotation of the PR leads to modifications of the
SR, and this leads to the same problem as in the methods of
the second group (relation between PRs and SRs): by mod-
ifying these regions, the information obtained with the ratio
between PR and SR does not describe the real proportion of
nonconforming parts of the analyzed process.

Finaly, we discuss now the multivariate PCIs based on
the inverse function of the cumulative distribution function.
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Using the alternative definition for the Cpk index proposed
in Castagliola [59] is possible to relate the proportion of
nonconforming parts of a process with a multivariate PCI.
The difficulties in this methodology are related to the way to
calculate the proportion of nonconforming parts of the pro-
cess. While Bothe [23] and Pearn et al. [63] introduced this
method to evaluate the capability of multivariate production
processes with uncorrelated product characteristics, Shiau et
al. [65] and de-Felipe et al. [68] dealt with the case in which
the v product characteristics are correlated. On the one hand,
Shiau et al. [65] calculated the proportion of nonconforming
parts of a process by replicating the measured sample using
Monte Carlo. This methodology deals with inconsistence
of the value of the multivariate PCI because different val-
ues are obtained depending on the Monte Carlo simulation
used. The approach in de-Felipe et al. [68] solved this prob-
lem by calculating the proportion of nonconforming parts
using the multivariate normal cumulative distribution func-
tion. Moreover, it is also important to point out that while
the method proposed in Shiau et al. [65] describes the pro-
portion of nonconforming parts in the critical 2v-Euclidian
shapes described by the eigenvectors of the PR, the MCpk

in de-Felipe et al. [68] describes the proportion of noncon-
forming parts above and under the SL. Thus, the MCpk in
de-Felipe et al. [68] uses the same logic (relation between
PCI and proportion of nonconforming parts above or under
the SLs) as in the Cpk index in Kane [19].

Table 3 condenses the discussion of this section. The
groups of multivariate PCIs according the calculation
approaches used in Table 1 are compared through the crite-
ria adopted in this section by using scores.

To sum up, on the one hand, we can say that multivariate
PCIs obtained through the derivation from univariate PCIs,
as well as the ones based on the relation between PRs and
SRs or the ones based on the PCA method try to describe
the capability of multivariate processes in a global way
(with a single index), but present weaknesses when estimat-
ing the proportion of nonconforming parts of the analyzed
processes. On the other hand, multivariate PCIs obtained
through the alternative definition for the Cpk index pro-
posed in Castagliola [64] deal with both topics, and thus,
are more effective multivariate versions of the univariate

UnivariateUnivariate or 
mul�variate 

process

Select 
approach

Mul�variate

Table 3

Table 1

Table 1

Select PCI

Fig. 16 Flowchart: using Tables 1 and 2 to select PCIs

PCIs. Nevertheless, these indices are calculated using high
complex mathematical equations, and furthermore, some of
them present non robust behaviors because of the sampling
using Monte Carlo.

4.3 Selecting PCIs in capability analysis

In this section, we want to help the reader to understand
how to use the information of this article to select PCIs for
capability analysis. With this objective in mind, we use the
flowchart in Fig. 16.

Starting with Table 1, we suggest analyzing the data that
we want to analyze in the capability analysis and distinguish
between univariate and multivariate processes. In the case
of univariate processes, we can select one PCI from Table 1
by taking into account criteria such as the normality of the
data or the information that is needed (output). In the case of
multivariate processes, we need to go to Table 3 and select
one approach by taking into account the four criteria (cal-
culation complexity, globality of the index, relation to NCP,
and robustness). Once the approach has been selected, we
suggest going back to Table 1 and selecting one multivari-
ate PCI by taking into account criteria such as normality of
the data or the information that is needed (output).

Table 3 Comparison of
multivariate PCIs Calculation Globality of Relation Robustness

complexity the index to NCP

Derivation from univariate PCIs + + − +
PCA − + − +
Relation between shapes − + − +
Cumulative distribution function − + + +a

aNot all multivariate PCIs in this group are robust
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5 Conclusions and future lines of research

In this article, we described, clustered, and discussed uni-
variate and multivariate PCIs from the literature, giving a
useful and practical review for the industry. The review has
been focused on those univariate and multivariate PCIs that
relate process and specification regions of a given process
following the process capability definition introduced in the
seminal paper Kane [19].

All univariate and multivariate PCIs presented in this arti-
cle have been clustered. To cluster the PCIs, we defined
three classes of characteristics of PCIs: in the first class, the
characteristics related to the information of the process data
input are included, the second class includes characteris-
tics related to the calculation approach used to calculate the
PCIs, and in the third class, we find characteristics related
to the information that the PCIs gives.

Regarding univariate PCIs, we have seen that many indi-
cators have been presented in the literature to deal with
different kinds of processes (such as normal/non-normal,
with target values centered/not-centered on the specification
region, etc.). However, we have seen that not all univari-
ate PCIs defined in the literature describe properly the
capability of the analyzed process.

Regarding multivariate PCIs, we have seen that it is pos-
sible to distinguish between four different kinds of calcula-
tion approaches: derivation from univariate PCIs, elimina-
tion of the correlation through the usage of the PCA method,
comparison between shapes, and usage of the cumulative
distribution function.

We proposed four criteria to discuss multivariate PCIs:
calculation complexity, globality of the index, relation to
proportion of nonconforming parts, and robustness of the
index. We discussed the strengths and weaknesses of the
PCIs in each calculation approach taking into account the
four proposed criteria. We found that all multivariate PCIs
present strengths and weaknesses. The results have been
summarized. We could see that all calculation approaches
present globality of the index, that a large majority present
robustness and that only the approach based on the cumu-
lative distribution function is related to the proportion of
nonconforming parts.

We proposed a framework to select PCIs depending on
the characteristics of the monitored process. We introduced
this framework with the aim of helping practitioners and
decision makers of the industry to select multivariate PCIs
among all the PCIs presented in this article.

Taking into account the above conclusions, we propose
several opportunities for future research work in this field:
first, to extend beyond the three classes in Table 1 provid-
ing a far more options that might be encountered, second,
to use the multivariate PCIs existing in the literature in real-
life applications and comparing the results obtained, and

third, to use multivariate PCIs in monitoring of multivari-
ate production processes and in decision making. Thus, a
clear and unequivocal capability criterion for the multivari-
ate case must be defined while describing the capability of
multivariate processes with a single index.
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