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Abstract Based on third-order Newton interpolation polyno-
mial and direct integration scheme (DIS), this paper proposes
a method to generate stability lobe diagram in milling process.
The dynamic model of milling process with consideration of
regeneration effect is described by time periodic delay-
differential equation (DDE). Then, the DDE is rewritten as
state space equation by a transformation. After equally
discretizing the time delay into a series of small time intervals,
the state space equation of milling system is integrated on the
small time interval. Both the state term and delayed term are
interpolated by third-order Newton interpolation polynomial,
and the periodic-coefficient matrix is interpolated by first-
order Newton interpolation polynomial. The state transition
matrix which reflects the discrete mapping relation of dynam-
ic responses for current tooth pass period and immediate pre-
vious tooth pass period is obtained directly. The accuracy of
the proposed method is evaluated by comparing with bench-
mark methods in terms of the rate of convergence. The effi-
ciency of the proposed method is verified through the com-
parison of computational time with existing methods. The
proposed method is proved to be an accurate and efficient
method by the comparison results. The distinction between
up-milling and down-milling operations is also analyzed by
comparing the stability lobe diagrams for these two opera-
tions. Besides, according to the analysis of rate of conver-
gence, the number of substitutions, which are used to convert
the variables located out of the required range into the required

range, may affect the results of stability lobe diagrams.
Moreover, the stability lobe diagram cannot be generated by
using fourth-order updated full-discretization method.

Keywords Third-order Newton interpolation .Milling
stability . Full-discretization . Regenerative effect . Rate of
convergence

1 Introduction

With the rapid development of manufacturing industry, high-
speed milling technology has an increasing demand for high-
grade, precision and advanced products. However, regenerative
chatter often occurs during high-speed milling operations. As
many literatures mentioned, chatter is one of the most impor-
tant limitations on the productivity of milling process [1]. It is
detrimental to the formation of surface finish. Furthermore, it
may shorten the life of cutting tool, and even shorten the life of
machine tool. To gain high performance surface finish, chatter-
free parameters should be selected for milling operations.
Taking into account the regeneration effect, the dynamic model
of milling process can be described by DDE [2, 3]. By solving
the DDE, stability lobe diagram which indicates the relation
between the axial depth of cut and the spindle speed of the
machine tool can be obtained. The stability lobe diagram can
be used to choose the proper parameters (spindle speed and
axial depth of cut) for milling operations.

To our knowledge, a number of methods for chatter stabil-
ity prediction in milling have been proposed. The first inves-
tigation of machine tool chatter and instabilities appeared at
the beginning of the twentieth century as the result of metal
removal process improvement [4]. Then, after the extensive
works of Tlusty et al. [5] and Tobias [6], many attempts at
chatter avoidance have been reported. Altintas et al. [7]
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proposed a zeroth-order approximation (ZOA) method which
employs Fourier series components to approximate the time
varying dynamic cutting force coefficients. However, this
method is not suitable for low radial immersion conditions.
To make ZOA method applicable to low radical immersion
conditions, Merdol et al. [8] presented a multi-frequency
method which utilizes higher-order harmonics of the Fourier
series expansion to approximate the dynamic cutting force
coefficients. Shorr et al. [9] developed a symbolic closed form
solution for the analysis of dynamic stability of multiflute-end
milling. Li et al. [10] employed the ratio of the predicted
maximum dynamic cutting force to the predicted maximum
static cutting force as a criterion for chatter stability analysis.
They also considered the basic nonlinearity of the dynamic
cutting process. In the literatures [5, 7, 8], the authors did not
consider the nonlinear features of the milling system, therefore
the resulting system of equations is linear. As for the nonlinear
dynamics of milling process, Balachandran [11],
Balachandran and Zhao [12] and Zhao and Balachandran
[13] presented a unified-mechanics-based model, which al-
lows for the regenerative effects and loss-of-contact effects.
They also employed the reduced-order models to analyze the
partial-immersion and full-immersion operations.
Balachandran and Gilsinn [14] presented a mathematical
model to study non-linear oscillations of milling process. In
this model, the dependence of the time-delay effect on the feed
rate is explained. They also pointed out that nonlinear models
can be used to understand the nature of instability and post-
instability motions. When ignoring the post-instability mo-
tions, the linear models are sufficient for predicting the milling
stability, and they can be used to select proper machining
parameters.

Since the linear models are useful for predicting the
onset of chatter, there are a lot of researchers spending
their efforts to develop numerical algorithms for
predicting the milling stability. Bayly et al. [15] reported
the temporal finite element analysis method which can be
used to predict stability for arbitrary times in the cut.
Butcher et al. [16] suggested the Chebyshev collocation
method which utilizes the spectral differentiation matrix
to approximate the derivatives of state term. Insperger and
Stépán proposed the zeroth order semi-discretization
method (othSDM) [17] and first-order semi-discretization
method (1stSDM) [18] which respectively use the zeroth-
order and first-order piecewise constant function to ap-
proximate the delayed term. Jin et al. [19] proposed an
improved semi-discretization method to predict the stabil-
ity lobes for variable pitch milling process. Li et al. [20]
proposed a complete dicretization method for milling sta-
bility prediction. Xie et al. [21] developed an improved
complete dicretization method to predict milling stability.

In this method, most of the differential terms are
discretized with Euler’s method. Li et al. [22] proposed
a Runge-Kutta-based method which is on the basis of the
classical Runge-Kutta method and the complete
dicretization method. Ozoegwu [23] proposed the third-
order vector numerical integration method (3rdVNIM)
and high-order VNIM to generate milling stability lobe
diagrams.

Recently, Ding et al. [24] presented a full-discretization
method (FDM) on the basis of DIS, which is found to be an
efficient and widely used method. Then, different methods
based on the DIS are proposed. Ding et al. developed the
second-order full-discretization method [25] and numerical
integration method [26] to calculate the stability boundary
of the milling process. Liang et al. [27] reported an im-
proved numerical integration method and extended this
method to low radial immersion milling condition. Guo
et al. [28] suggested a third-order full-discretization method
which employs the third-order Newton interpolation poly-
nomial to predict milling stability. Then, Guo et al. [29]
modified the 3rdFDM to predict the stability lobes for
non-uniform helix milling tools. Ozoegwu et al. reported
the least squares approximation method [30] and hyper-
third order full-discretization methods [31] to obtain the
milling stability lobe diagrams. For the methods proposed
in refs. [19–20, 23–26], only the state term is interpolated
by higher-order interpolation polynomial. More recently,
Tang et al. [32] proposed a second-order updated full-
discretization method (2ndUFDM) for predicting milling
stability. In this method, both the state term and delayed
term are interpolated by second-order Lagrange interpola-
tion polynomial. This method is proved to be an accurate
and efficient method. Therefore, inspired by Tang’s work
[32] and Guo’s work [29], this paper employs the third-
order Newton interpolation polynomial to interpolate both
the state term and delayed term in order to develop an ac-
curate and efficient method for predicting milling stability.
The focus of our paper is to propose a numerical algorithm
for milling stability prediction to determine the onset of
chatter, and analyze the computational efficiency and the
rate of convergence of the proposed method.

The rest of this paper is organized as follows. In
“Section 2”, the mathematical model of milling dynamics is
introduced. In “Section 3”, milling stability analysis based on
third-order updated full-discretization method (3rdUFDM) is
presented. In “Section 4”, the rate of convergence of the pro-
posed method is analyzed by comparing with existing
methods. In “Section 5”, the stability lobe diagrams are gen-
erated, and the computational time of the proposed method is
compared with the benchmark methods. Conclusions are
drawn in “Section 6”.
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2 Mathematical model of milling process

In this section, the benchmark example for single degree of
freedom-milling model is illustrated. The mathematical
models of milling dynamics with consideration of the regen-
erative effect can be described by time periodic delay-
differential equation as [17]

€x tð Þ þ 2ζωnx tð Þ þ ω2
nx tð Þ ¼ −

aph tð Þ
m

x tð Þ−x t−τð Þð Þ ð1Þ

where ζ is the damping ratio,ωn is the angular natural frequency,
ap is the axial depth of cut, m is the modal mass, x(t) is the dis-
placement in the current period, x(t − τ) is the displacement in the
previous period, the time delay τ is equal to the tooth passing
period T, and the instantaneous chip thickness h(t) is defined as

h tð Þ ¼ ∑
N

j¼1
g φ j tð Þ
h i

sin
�

φ j tð Þ
� �

K tcos φ j tð Þ
� �

þ Knsin φ j tð Þ
� �h i

ð2Þ

where Kt, Kn are the tangential and the normal cutting force
coefficients, respectively, N is the number of cutter tooth. The
angular position of the jth tooth φj(t) is determined as

φ j tð Þ ¼ 2πΩ=60ð Þt þ j−1ð Þ2π=N ð3Þ

where Ω denotes the spindle speed in rpm.
The function g[φj(t)] is a window function which deter-

mines whether the tooth is in or out of cut. It is defined as

g φ j tð Þ
h i

¼ 1 if φst < φ j tð Þ < φex

0 otherwise

�
ð4Þ

where φst and φex are the start and exit angles of the jth cutter
tooth, respectively. For up-milling, ϕst = 0 and φex = arccos (1
− 2ae/D); for down-milling, φst = arccos (2ae/D ‐ 1) and
φex = π, D is the diameter of cutter, ae is the radial depth of
cut. When the angular position of the jth cutting flute φj(t) is
between φst and φex, the cutting flute is considered to be
engaged with the workpiece, otherwise, the cutting flute is
considered to be out of cut.

Byusingthetransformationx tð Þ ¼ x tð Þ½ mx tð Þ þ mζωnx tð Þ�,
Eq. (1) can be rewritten in the state space form as

x ̇ tð Þ ¼ A0x tð Þ þ B tð Þx tð Þ−B tð Þx t−τð Þ ð5Þ

where A0 ¼ −ζωn
1

m

�
m ζωnð Þ2−mω2

n−ζωn� is a constant

matrix, B tð Þ ¼ 0 0½ −aph tð Þ 0� is a periodic-coefficient ma-
trix with B(t) = B(t + T).

In order to solve Eq. (5) numerically based on DIS, the first
step is to divide the period T into n equal small time intervals

with the length of h, that is T = nh, where n is an integer.
Eq. (5) is integrated on the ith small time interval [ih, (i +
1)h], the result is

x tð Þ ¼ eA0 t−ihð Þx ihð Þ þ ∫tihe
A0 t−sð ÞB sð Þ x sð Þ‐x s‐Tð Þ½ �ds ð6Þ

Eq. (6) can be equivalently express as [25]

x ihþ hð Þ ¼ eA0hx ihð Þ þ ∫h0e
A0s

h
B ihþ h−sð Þ x ihþ h−sð Þ‐x ihþ h−s‐Tð Þ½ �ds ð7Þ

Then, third-order updated full-discretization method is de-
veloped to numerically solve Eq. (7) with the aim of generat-
ing more accurate milling stability boundary.

3 Third-order updated full-discretization method

In the third-order updated full-discretization method
(3rdUFDM), the state term x(ih + h − s) and delayed term
x(ih + h − s − T) are both interpolated by third-order Newton
interpolation polynomial. In the interpolation process, the
nodal values x(ih − 2h), x(ih − h), x(ih), and x(ih + h) denoted
as xi − 2, xi − 1, xi, and xi + 1, respectively, are employed to in-
terpolate x(ih + h − s); the nodal values x(ih − T), x(ih + h − T),
x(ih + 2h − T), and x(ih + 3h − T) denoted as xi − n, xi − n + 1, xi
− n + 2, and xi − n + 3, respectively, are employed to interpolate
x(ih + h − s − T). Tang et al. [32] pointed out that high-order
interpolation of periodic-coefficient matrix B(ih + h − s) has
no apparent effect on improving effectiveness and efficiency
compared to high-order interpolation of x(ih + h − s) and x(ih-
+ h − s − T). Hence, B(ih + h − s) is interpolated by one-order
Newton interpolation polynomial using the nodal values B(ih)
and B(ih + h), which are denoted as Bi and Bi + 1, respectively.

By using third-order Newton interpolation method, the
state term x(ih + h − s) can be obtained and expressed as

x ihþ h−sð Þ≈a1xi−2 þ b1xi−1 þ c1xi þ d1xiþ1 ð8Þ

where

a1 ¼ s
3h

−
s2

2h2
þ s3

6h3
; b1 ¼ −3s

2h
þ 2s2

h2
−

s3

2h3
; c1

¼ 3s
h
−
5s2

2h2
þ s3

2h3
; d1 ¼ 1−

11s
6h

þ s2

h2
−

s3

6h3
ð9Þ

The delayed term x(ih + h − s − T) is also obtained by third-
order Newton interpolation method and expressed as

x ihþ h−s−Tð Þ≈a2xi−n þ b2xi−nþ1 þ c2xi−nþ2

þ d2xiþnþ3 ð10Þ
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a2 ¼ s
3h

þ s2

2h2
þ s3

6h3
; b2 ¼ 1þ s

2h
−
s2

h2
−

s3

2h3
;

c2 ¼ −s
h

þ s2

2h2
þ s3

2h3
; d2 ¼ s

6h
−

s3

6h3

ð11Þ

The periodic-coefficient matrix B(ih + h − s) is interpolated
by first-order Newton interpolation method with the same
expression as [24]:

B ihþ h−sð Þ≈Biþ1 þ Bi−Biþ1ð Þs
h

ð12Þ

substituting Eqs. (8–12) into Eq. (7) yields

Mi;−2xi−2 þMi;−1xi−1 þ Mi;0 þ F0
� �

xi þ Mi;1−I
� �

xiþ1

¼ Mi;nxi−n þMi;n−1xi−nþ1 þMi;n−2xi−nþ2 þMi;n−3xi−nþ3

ð13Þ

where

Mi;−2 ¼ F2
3h

−
5F3
6h2

þ 2F4
3h3

−
F5
6h4

� 	
Biþ1

þ F3
3h2

−
F4
2h3

þ F5
6h4

� 	
Bi ð14Þ

Mi;−1 ¼ −3F2
2h

þ 7F3
2h2

−
5F4
2h3

þ F5
2h4

� 	
Biþ1

þ −3F3
2h2

þ 2F4
h3

−
F5
2h4

� 	
Bi ð15Þ

Mi;0 ¼ 3F2
h

−
11F3
2h2

þ 3F4
h3

−
F5
2h4

� 	
Biþ1

þ 3F3
h2

−
5F4
2h3

þ F5
2h4

� 	
Bi ð16Þ

Mi;1 ¼ F1−
17F2
6h

þ 17F3
6h2

−
7F4
6h3

þ F5
6h4

� 	
Biþ1

þ F2
h
−
11F3
6h2

þ F4
h3

−
F5
6h4

� 	
Bi ð17Þ

Mi;n ¼ F2
3h

þ F3
6h2

−
F4
3h3

−
F5
6h4

� 	
Biþ1

þ F3
3h2

þ F4
2h3

þ F5
6h4

� 	
Bi ð18Þ

Mi;n−1 ¼ F1−
F2
2h

−
3F3
2h2

þ F4
2h3

þ F5
2h4

� 	
Biþ1

þ F2
h

þ F3
2h2

−
F4
h3

−
F5
2h4

� 	
Bi ð19Þ

Mi;n−2 ¼ ‐F2
h

þ 3F3
2h2

−
F5
2h4

� 	
Biþ1

þ ‐F3
h2

þ F4
2h3

þ F5
2h4

� 	
Bi ð20Þ

Mi;n−3 ¼ F2
6h

−
F3
6h2

−
F4
6h3

þ F5
6h4

� 	
Biþ1

þ F3
6h2

−
F5
6h4

� 	
Bi ð21Þ

F0 is equal to eA0, I is the identity matrix. F1-F5 can
be obtained by the following recurrence relations.

F1 ¼ A−1
0 F0−Ið Þ ð22Þ

F2 ¼ A−1
0 hF0−F1ð Þ ð23Þ

F3 ¼ A−1
0 h2 F0−2F2
� � ð24Þ

F4 ¼ A−1
0 h3 F0−3F3
� � ð25Þ

F5 ¼ A−1
0 h4 F0−4F4
� � ð26Þ

In Eq. (13), xi − 2, xi − 1, xi, and xi + 1 represent the dynamic
responses in the current period, xi − n, xi − n + 1, xi − n + 2, and xi −
n + 3 represent the dynamic responses in the previous period. In
order to construct the one-to-one discrete mapping relation of
the dynamic responses between current period and the imme-
diate previous period directly, the number of the nodal values
used for interpolating x(ih + h − s) (i.e., Eq. (8)) and x(ih + h −
s − T) (i.e., Eq. (10)) should be the same. Additionally, in the
calculation process, all the variables ‘x’ should be in two ad-
jacent time periods (i.e., current period and the immediate
previous period). If some of the variables ‘x’ are located out
of the required range of the current and immediate previous
period, corresponding substitutions can be employed to con-
vert them into required range.

As for Eq. (13), when i = 1, the left variables xi − 2 and xi − 1

of Eq. (13) are equal to x−1 and x0, respectively. With the aim
of constructing discrete mapping relation of dynamic re-
sponses between current period and immediate previous peri-
od conveniently, the variables xn − n − 1 and xn − n can be used to
substitute x−1 and x0, respectively. Consequently, Eq. (13) can
be rewritten as

M1;0 þ F0
� �

x1 þ M1;1−I
� �

x2 ¼ M1;nx1−n þM1;n−1x2−n

þM1;n−2x3−n þM1;n−3x4−n

−M1;−2xn−n−1−M1;−1xn−n ð27Þ

2302 Int J Adv Manuf Technol (2017) 92:2299–2309



When i = 2, the left variable xi − 2 of Eq. (13) is equal to x0.
Similarly, the variable xn − n is used to substitute x0. Then,
Eq. (13) can be rewritten as

M2;−1x1 þ M2;0 þ F0
� �

x2 þ M2;1−I
� �

x3 ¼ M2;nx2−n þM2;n−1x3−n

þM2;n−2x4−n þM2;n−3x5−n

−M2;−2xn−n

ð28Þ

when i = n−1, the right variable xi − n + 3 is equal to x2.With the
substitution x2 = xn − n + 2, Eq. (13) can be rewritten as

Mn−1;−2xn−3 þMn−1;−1xn−2 þ Mn−1;0 þ F0
� �

xn−1

þ Mn−1;1−I
� �

xn−Mn−1;n−3x2¼ Mn−1;nxn−n−1

þMn−1;n−1xn−n þMn−1;n−2xi−nþ1

ð29Þ

when i = n, the right variable xi − n + 3 is equal to x3. With the
substitution x3 = xn − n + 3, Eq. (13) can be rewritten as

Mn;−2xn−2 þMn;−1xn−1 þ Mn;0 þ F0
� �

xn

þ Mn;1−I
� �

xnþ1−Mn;n−2x2−Mn;n−3x3

¼ Mn;nxi−n þMn;n−1xn−nþ1

ð30Þ

combining Eq. (13) and Eqs. (27–30), the discrete mapping
relation of the dynamic responses between current period and
the immediate previous period is obtained as

D1

x1
x2
⋮
⋮
xn
xnþ1

2
6666664

3
7777775
¼ D2

x1−n
x2−n
⋮
⋮
xn−n
xn−nþ1

2
6666664

3
7777775

ð31Þ

where

D1 ¼

I 0 0 0 ⋯ 0 0 0 0 0 0
M1;0 þ F0 M1;1−I 0 0 ⋯ 0 0 0 0 0 0
M2;−1 M2;0 þ F0 M2;1−I 0 ⋯ 0 0 0 0 0 0
M3;−2 M3;−1 M3;0 þ F0 M3;1−I ⋯ 0 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ Mn−2;−2 Mn−2;−1 Mn−2;0 þ F0 Mn−2;1−I 0 0
0 −Mn−1;n−3 0 0 ⋯ 0 Mn−1;−2 Mn−1;−1 Mn−1;0 þ F0 Mn−1;1−I 0
0 −Mn;n−2 −Mn;n−3 0 ⋯ 0 0 Mn;−2 Mn;−1 Mn;0 þ F0 Mn;1−I

2
66666666664

3
77777777775

D2 ¼

0 0 0 0 0 0 ⋯ 0 0 0 I
M1;n M1;n−1 M1;n−2 M1;n−3 0 0 ⋯ 0 ‐M1;−2 ‐M1;−1 0
0 M2;n M2;n−1 M2;n−2 M2;n−3 0 ⋯ 0 0 ‐M2;−2 0
0 0 M3;n M3;n−1 M3;n−2 M3;n−3 ⋯ 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 0 ⋯ Mn−2;n Mn−2;n−1 Mn−2;n−2 Mn−2;n−3
0 0 0 0 0 0 ⋯ 0 Mn−1;n Mn−1;n−1 Mn−1;n−2
0 0 0 0 0 0 ⋯ 0 0 Mn;n Mn;n−1

2
66666666664

3
77777777775

If D1 is a nonsingular matrix, the state transition
matrix ψ for the dynamic system over one period T is
written as

ψ ¼ D1ð Þ−1D2 ð32Þ

Then, the stability of the dynamic system can be deter-
mined according to Floquet theory, the decision criterion is
as follow:

max λ ψð Þj jð Þ
< 1 stable
¼ 1 critical stable
> 1 unstable

8<
: ð33Þ

4 Rate of convergence

With the aim of illustrating the rate of convergence of the
proposed method, the classical and widely used 1stSDM as
well as the newly proposed 3rdVNIM and 2ndUFDM is taken
as the benchmark method for comparing with the proposed
3rdUFDM.

The rate of convergence can be used to evaluate the local
errors between the absolute value of the maximal critical ei-
genvalues of the state transition matrix |μ(n)| and the exact
value μ0, where |μ(n)| is a function of discrete number of the
tooth passing period (i.e., n). μ0 is not a strictly exact value, it
is considered exact when the value of the parameter n is high
enough. In this paper, μ0 is determined by the 1stSDM with
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n = 200. To demonstrate the rate of convergence of the
3rdUFDM, the radial depth of cut ratio is set as ae/D=1 to
avoid intermit tent mil l ing, the spindle speed is
Ω = 5000 rpm, and the axial depth of cuts are chosen as
ap=0.1, 0.4, 0.7 and 1.0 mm, respectively.

The program is conducted usingMatlab 2010a software on a
computer with Intel (R) Core (TM) i3-3120 and 2 GB memory.
In this paper, most of the machining parameters are chosen as
the same as [17] to calculate the rate of convergence of different
methods. The parameters are the number of tooth N = 2, the
angle natural frequencyωn=2π × 922 rad/s, the relative damping
is ζ=0.011, the modal mass is m = 0.03993 kg, the cutting force
coefficients are Kt=6 × 10

8 N/m2, and Kn = 2 × 10
8, down mill-

ing. The rates of convergence for different methods with differ-
ent computational parameters n are illustrated in Fig. 1.

As shown in Fig. 1a, 3rdUFDM converges faster than
2ndUFDM, while in Fig. 1b–d, 2ndUFDM converges a little
faster than 3rdUFDM. It is indicated from Fig. 1 that 3rdUFDM
has a more apparent advantage with a smaller axial depth of cut.
Meanwhile, it is seen from Fig. 1c that the local errors calculated
by 3rdUFDM are smaller than that calculated by 2ndUFDM

when n is greater than 63. Similarly, according to Fig. 1d, the
local errors calculated by 3rdUFDM are smaller than that cal-
culated by 2ndUFDMwhen n is greater than 56. Therefore, it is
concluded that both the 2ndUFDM and 3rdUFDM have their
own advantages. Generally, these two updated methods con-
verge faster to a stable state than other methods.

In mathematical theory, the higher rate of convergence can
be obtained by using higher-order interpolation methods.
However, only in Fig. 1a, the 3rdUFDM converges faster than
2ndUFDM; in Fig. 1b–d, 2ndUFDM converges a little faster
than 3rdUFDM. This may be caused by the number of substi-
tutions which are used in calculation process to convert the
variables located out of the required range into the required
range. It is indicated from Eq. (31) that the required range of
dynamic response for current period is between x1 and xn + 1,
i.e., [x1, x2, ⋯, xn, xn + 1], and the required range of dy-
namic response for immediate previous period is between x1 −
n and xn − n + 1, i.e., [x1 − n, x2 − n, ⋯, xn − n, xn − n + 1]. In
2ndUFDM [32], the variables x0 and xn − n + 2 are located out
of the required range. With the aim of constructing discrete
mapping relation of the dynamic responses between current
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Fig. 1 Convergences of the critical eigenvalues with different
computation parameter n for 1stSDM, 3rdVNIM, 2ndUFDM, and the
proposed method. a ap = 0.1 mm, |μ0| = 0.7367633 (stable); b

ap = 0.4 mm, |μ0 | = 0.9917155 (stable); c ap = 0.7 mm,
|μ0| = 1.2196890 (unstable); d ap = 1 mm, |μ0| = 1.4039639 (unstable)
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period and immediate previous period, two substitutions, i.e.,
xn − n = x0, x2 = xn − n + 2, are used in the calculation process. In
3rdUFDM, the variables x−1, x0, xn − n + 2 and xn − n + 3 are lo-
cated out of the required range, and four substitutions, i.e., xn
− n − 1 = x−1, xn − n = x0, x2 = xn − n + 2 and x3 = xn − n + 3, are used
in the calculation process. These substitutions are useful for
constructing discrete mapping relations of the dynamic re-
sponses between current period and immediate previous peri-
od, but they may affect the result of state transition matrix ψ,
and thus affect the result of stability lobe diagram.

The authors also try to use the fourth-order Newton inter-
polation method to solve the DDE. The state term x(ih + h − s)
are interpolated by nodal values xi − 3, xi − 2, xi − 1, xi, and xi + 1,

and the delayed term x(ih + h − s − T) are interpolated by nod-
al values xi − n, xi − n + 1, xi − n + 2, xi − n + 3, and xi − n + 4. In the
calculation process, six substitutions xn − n − 2 = x−2, xn − n − 1 =
x−1, xn − n = x0, x2 = xn − n + 2, x3 = xn − n + 3, and x4 = xn − n + 4

are used to obtain the discrete mapping relations of the dy-
namic responses between current period and immediate pre-
vious period. However, the stability lobe diagrams cannot be
generated finally.

From Fig. 1b–d, it should be noted that the local errors
calculated by 3rdUFDM decrease with the increase of param-
eter n. The local errors calculated by 3rdUFDM are smaller
than that calculated by other methods when n is close to 100.
Therefore, it can be inferred from Fig. 1 that the influence of

Table 1 Stability lobe diagrams obtained by the 1stSDM, 3rdVNIM, 2ndUFDM and 3rdUFDM for down-milling operation

Methods ae/D = 0.1n = 30, ae/D = 0.5n = 40, ae/D =1n = 50,
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the number of substitutions used in calculation process on the
state transition matrix ψ and the results of stability lobe dia-
grams becomes smaller with the increase of parameter n.

5 Stability lobe diagrams

In order to illustrate the computational efficiency of the pro-
posed method, the stability lobe diagrams obtained by
3rdUFDM are compared with that obtained by 1stSDM,
3rdVNIM, and 2ndUFDM. The stability charts are calculated
over 100 × 100 sized equidistance grid with the spindle speed
ranging from 5 × 103 to 10 × 103 rpm, and the axial depth of
cut ranging from 0 to 0.01 m. The radial immersion ratio ae/D
is set as 0.1, 0.5, and 1, and the corresponding parameter n is

chosen as 30, 40, and 50 to generate stability lobe diagrams,
respectively. The stability lobe diagrams calculated by
1stSDMwith n = 100 is taken as the ideal ones. In the stability
charts, the ideal stability lobe diagrams are denoted with red
line curves, and the actual stability lobe diagrams are denoted
with blue line curves. In this work, the stability lobe diagrams
for both down-milling and up-milling operations are obtained.
The stability lobe diagrams obtained by 1stSDM, 3rdVNIM,
2ndUFDM, and 3rdUFDM for down-milling operation are
listed in Table. 1.

It is seen from Table 1 that the stability lobe diagrams
obtained by 3rdUFDM for down-milling operation are almost
identical to that obtained by 2ndUFDM. Both 2ndUFDM and
3rdUFDM can generate the stability lobe diagrams which are
much closer to the ideal curves than 1stSDM and 3rdVNIM.

Table 2 Stability lobe diagrams obtained by 1stSDM, 3rdVNIM, 2ndUFDM, and 3rdUFDM for up-milling operation

Methods n = 30, ae/D = 0.1 n = 40, ae/D = 0.5 n = 50, ae/D = 1
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The computational time of 1stSDM, 3rdVNIM, 2ndUFDM,
and 3rdUFDM for obtaining stability lobe diagrams with dif-
ferent radial immersion ratios are also listed in Table 1. It can
be seen from Table 1 that the computational time of 1stSDM
with n = 30, n = 40, and n = 50 for different radial immersion
ratios is 100, 151, and 222 s, respectively. The corresponding
computational time of 3rdVNIM is 111, 166, and 241 s. For
the 2ndUFDM, the corresponding computational time is 25,
45, and 73 s. For the proposed method, the corresponding
computational time is 27, 51, and 81 s. The proposed
3rdUFDM takes less time than 1stSDM and 3rdVNIM to
generate stability lobe diagrams. The 2ndUFDM is proved
to be an efficient method to predict milling stability. As ob-
served in Table 1, according to the comparison in time cost
between 3rdUFDM and 2ndUFDM, it is found that the incre-
ment of computational time between 3rdUFDM and
2ndUFDM is very small. Therefore, the 3rdUFDM is also
an efficient method for stability prediction in milling.

The stability lobe diagrams for an up-milling operation are
different from the stability lobe diagrams for a down-milling
[11, 33]. In order tomake a distinction between up-milling and
down-milling operations, we also generate the stability lobe
diagrams for an up-milling operation with the same radial
immersion ratios and parameter n. The stability lobe diagrams
obtained by 1stSDM, 3rdVNIM, 2ndUFDM, and 3rdUFDM
for up-milling operation are listed in Table 2. We also get the

computational time of the 1stSDM, 3rdVNIM, 2ndUFDM,
and 3rdUFDM for up-milling operation. Because the compu-
tational time for up-milling operation is the same with that for
down-milling operation, it is not listed in Table 2.

From Table 1 and Table 2, it can be seen that the stable
range of axial depth of cut for up-milling is larger the stable
range of axial depth of cut for down-milling when the radial
immersion ratios ae/D is set as 0.1.When the radial immersion
ratios ae/D is set as 0.5, the stable range of axial depth of cut
for down-milling is a little larger that for down-milling.
Besides, the peaks of the stability lobe for these two opera-
tions appear toward to opposite directions. The stability lobe
diagrams for up-milling and down-milling are identical when
the radial immersion ratios ae/D is set as 1. For the partial
immersion condition (ae/D = 0.1 and ae/D = 0.5), the stability
lobe diagrams for up-milling and down-milling are different
because the feed directions of these two operations are differ-
ent. Accordingly, the start angle and the exit angle of cutter
tooth for these two operations are different. For the full im-
mersion condition (ae/D = 1), the start angle and the exit angle
of cutter tooth for up-milling and down-milling are the same,
therefore, the stability lobe diagrams of these two operations
are identical.

In order to demonstrate the predicted results of 3rdUFDM
with a large value of parameter n, the stability lobe diagram
obtained by the widely used 1stSDM with n = 200 is taken as

Table 3 Stability lobe diagrams of 3rdUFDM with n = 70, 80, 90, and 100
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the criterion-referenced lobe diagram. The stability lobe dia-
grams with n = 70, 80, 90, and 100 are generated, as shown in
Table 3.

It is seen from Table 3 that the stability lobe diagrams of
3rdUFDM with n = 70 are highly identical to that of 1stSDM
with n = 200, which means the proposed 3rdUFDM is much
more efficient than the widely used 1stSDM. The curves of
stability lobe diagrams generated by 1stSDM with n = 200 are
coved by that generated by 3rdUFDMwith n = 80, 90, and 100.

6 Conclusions

The focus of this paper is to propose a third-order update full-
discretization method for stability prediction in milling. The
following conclusions can be drawn.

(1) The mathematical model of a single DOF milling sys-
tem with consideration of regenerative effect is established.
The dynamic equation of milling process is represented as
DDE in state space form.

(2) The third-order Newton interpolation polynomials are
used to interpolate both the state term x(ih + h-s) and delayed
term x(ih + h-s-T), the first-order Newton interpolation poly-
nomials are used to interpolate the periodic coefficient matrix
B(ih + h-s). The state transition matrix ψ is obtained directly
by solving the DDE based on DIS. In order to demonstrate the
accuracy of the proposed method, the 1stSDM, 3rdVNIM,
and 2ndUFDM are taken as the benchmark for comparing
with the 3rdUFDM in terms of the rate of convergence. The
3rdUFDM has a more apparent advantage with a smaller axial
depth of cut. Besides, the 3rdUFDM converges faster to a
stable state than the benchmark 1stSDM and 3rdVNIM.

(3) By comparing 3rdUFDM with 2ndUFDM in terms of
rate of convergence, it is found that the results of stability lobe
diagrammay be affected by the number of substitutions which
are used to convert the variables located out of the required
range into the required range. When n is close to a large value,
it has little effect on the state transition matrix and the results
of stability lobe diagrams.

(4) The computational time of the 3rdUFDM is compared
with that of the 1stSDM, 3rdVNIM, and 2ndUFDM, the com-
parison results show that the 3rdUFDM takes less time to
generate stability lobe diagram than 1stSDM and 3rdVNIM.
In addition, the increment of computational time between
3rdUFDM and 2ndUFDM is very small. Therefore, the pro-
posed 3rdUFDM is proved to be an efficient method. The
distinction between up-milling and down-milling operations
is also analyzed by comparing the stability lobe diagrams of
these two operations.
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