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Abstract In this paper, an automatic recognition system of
welding seam type based on support vector machine (SVM)
method is presented. The hardware of the proposed system
consists of an industry robot with six degrees of freedom,
a vision sensor, and a computer. The system has two parts
including input feature vector computation and model build-
ing. In the input feature vector computation part, the depth
values of a series of points of the welding joint are taken as
feature vector, which are determined by four steps including
main line extraction of the laser stripe, normalization of the
laser stripe, selection of the left and right edge points of the
welding joint, and normalization of feature vectors. In the
model building part, SVM-based modeling method is used
to achieve welding seam type recognition. At first, RBF ker-
nel function is employed for classification of welding seam
types. Then, the parameters of RBF are determined by a
grid search method using cross-validation. After the opti-
mal parameters of RBF being determined, the SVM model
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is built, and it could be used to predict welding seam type.
Finally, a series of welding seam type recognition experi-
ments are implemented. Experimental results show that the
proposed system can achieve welding seam type recogni-
tion accurately and the computation cost can be reduced
compared with previous methods.

Keywords Welding seam type recognition -
Structured-light vision - SVM method - Feature extraction

1 Introduction

At present, more and more industrial robots have been
widely applied in welding processes. However, most of
them used in factory belong to the teach-and-playback
robots. These robots have some fatal weakness. At first, they
require a lot of time to be taught in advance that leads to
low working efficiency. In addition, they cannot self-rectify
deviations during the welding process. That means any devi-
ation of the weld joint from the ideal condition may cause
poor weld quality. What is more, the seam position is often
disturbed by distortion, ways of spreading heat, and vari-
ability of gap, so the quality of welding forming will be
affected.

In order to solve these problems, many seam tracking
systems have been used in welding processes. One distinct
feature of automated seam tracking systems is that they can
sense the seam information by some kinds of sensors. In the
last decades, many different sensors have been developed
and used in welding robots including acoustic sensors [1],
inductive sensors [2], ultrasonic sensors [3], and arc sen-
sors [4]. Recently, vision sensors have gotten more and more
attention due to their features of non-contact, high-precision
and huge information [5-17]. Among them, structured-light
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vision sensors are widely used in welding process due to the
monochromaticity and robustness of the laser light. Many
seam tracking systems have been designed with structured-
light vision sensors. In the welding production, according
to the groove form and the different ways of connection,
welding seam types are the following: symmetric V groove,
left and right side V groove, I groove, and left and right
lap joint groove [19]. Structured-light stripe images of the
different welding seam types are different from each other.
Thus, specific image features extraction algorithm is devel-
oped according to the welding seam type. At the same time,
in the robot welding, the welding speed, voltage, current
and other parameters need to be adjusted according to the
welding seam type. However, most of the developed vision
systems need to enter the welding seam type manually
before welding. Thus, it seriously reduced the adaptability
and automation level of the welding robot. In recent years,
some researchers have carried out some researches on the
automatic recognition of welding type. Qian et al. [18] pro-
posed an automatic recognition method of welding seam
type based on structured-light. This method achieves weld-
ing seam type recognition using two steps. In the first step,
the location of laser stripe was searched. In the second step,
welding seam type recognition was achieved. However, this
method achieves the recognition of welding seam type based
on lots of determination of relative relationship of the coor-
dinate values of these feature points. So this method is more
complex. Li et al. [19] presented a method to identify the
welding seam type based on the Hausdorff distance. This
method matches laser stripe pattern with the entire templates
in the reference model library, so the computation cost is
huge and it will affect real-time performance. Therefore, it
is urgent to develop a high accurate and fast welding seam
type recognition algorithm, which is the premise of welding
automation.

As an intelligent machine learning method, support vec-
tor machine (SVM) method has gotten more and more
attention because it not only has a rigorous theoreti-
cal background but also can find global optimal solu-
tions. This method is especially suitable for problems with
small training samples, high dimension and non-linearity
[20, 21].

In this paper, a welding seam type recognition system
is designed based on SVM method, which has three distin-
guish characteristics. Firstly, most of noises from arc lights
and splashes can be filtered out by using a narrow band opti-
cal filter and “min operation”, that is the prerequisite for
welding seam type recognition. Secondly, SVM-based mod-
eling method is used to utilize input feature vectors to build
a model that achieve welding seam type recognition accu-
rately. Thirdly, the computation cost of welding seam type
recognition based on the proposed methods in this paper
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can be reduced compared with previous methods. There-
fore, during the welding process of a number of different
welding seam types of workpieces, the welding seam type
of each workpiece can be determined accurately and fast
before welding using the proposed system. Thus, the cor-
responding image feature point extraction algorithm of this
welding seam type can be automatically selected to achieve
seam tracking of this work-piece in the following welding
process.

The rest of the paper is organized as follows. Section 2
describes the system configuration. The input feature vector
computation is discussed in detail in Section 3. The SVM
model building is presented in Section 4. In Section 5, the
experiments and results are provided to verify the perfor-
mance of the proposed recognition system of welding seam
type. Finally, the paper is concluded in Section 6.

2 System configuration
2.1 Hardware of recognition system

As shown in Fig. 1, the recognition system is composed
of three parts: the robotic system, the vision sensor, and
the computer. The robotic system is an industry robot with
six degrees of freedom made by YASKAWA Corporation.
The vision sensor device is composed of a charge-coupled
device (CCD) camera, a stripe laser, and an optical filter.
The camera is mounted ahead of the welding torch by a
fixed distance. Its viewing direction is the same as that of
the torch. The laser emitter forms a laser plane in the front
of the camera. It intersects with the workpiece and forms a
structured laser stripe. A narrow band optical filter is placed
in front of the focus lens. The computer, which is an indus-
trial computer, runs the image processing, welding seam
type recognition algorithm, and acts as the interface for this
system.

2.2 Vision sensor system design

Vision sensor system is an important part of the welding
seam type recognition system. It will directly affect the
accuracy of welding seam type recognition. If the image
acquired by vision sensor is not perfect, it will make the
welding seam type recognition very difficult. In this paper,
the design of laser vision sensor is shown in Fig. 2, which is
composed of a CCD camera, a stripe laser, and a filter. The
CCD camera is the most important component because it
has direct and significant influence on the quality of image
acquisition. A HV-1351UM-M industrial camera with a 16-
mm focal length is used. In addition, a 635-nm stripe laser
and a narrow band optical filter with pass band centered at
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Fig.1 The schematic diagram
of the recognition system
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635 nm are adopted. In this way, most of the noises from arc
lights would be filtered out.

3 Input feature vector computation
3.1 Welding seam type classification

In the welding production, according to the groove form
and the different ways of connection, welding seam types
are the following: symmetric V groove, left and right side
V groove, I groove, and the left and right lap joint groove.
The structured-light images of different welding seam types
during welding are as shown in Fig. 3.

It is shown that the laser stripe is composed of a series
of piecewise linear segments. The laser stripe is generally
straight on both sides of the surface of the work piece, and
the specific shape is formed in the welding joints, such as
groove deformation or step jump.

CCD camera

Lens Stripe laser

Optical
filter

Fig. 2 The laser vision sensor

3.2 Laser stripe extraction

In order to determine the input feature vector of the classi-
fication model, center profile of the laser stripe needs to be
extracted firstly, because the shapes of laser stripes formed
by different welding seam types are different. In the follow-
ing sections, three steps are designed to extract the center
profile of the laser stripe: (1) image pre-processing, (2) ROI
computation, and (3) center line extraction.

3.2.1 Image pre-processing

Although the welding seam type needs to be determined
before welding, the structured-light images could be pol-
luted by the ambient arc lights and splashes, because there
may be two more welding robots working together in the
same workshop. Since most of noises from arc lights would
be filtered out by using a narrow band optical filter as shown
in Fig. 3, the purpose of the image pre-processing is to elimi-
nate the influence of the splashes. Due to the instantaneity of
the splashes, most of splashes last for less than one sample
period, while the laser stripe in the image is stable. Based on
this fact,the influence of these disturbances can be removed
by the following “min operation” between the last image
and current image [13, 17]:

I(,j,t)=min[I(, j,t = 1), I, j, ), (1)

where I (i, j, t) is the gray value of the pixel (i, j) in current
time 7, and i and j are the rows and columns of the image.
Meanwhile, there exist some other noises due to the non-
uniformity of surface. The median filter is used to eliminate
them. After the image pre-processing, most of the noises can
be removed.
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Fig. 3 The structured-light
images of different welding
seam types during welding. a
The structured-light image of
symmetric V groove. b The
structured-light image of left V
groove. ¢ The structured-light
image of right V groove. d The
structured-light image of 1
groove. e The structured-light
image of left lap groove. f The
structured-light image of right
lap groove

3.2.2 ROI computation

During the image processing, an image with large size gen-
erally not only brings expensive computational burden to
the image processing but also sacrifices the real-time perfor-
mance. In order to reduce the computational cost in image
processing and improve the real-time performance, the ROI
is used in this paper. Since the laser stripe is approxi-
mately parallel with the u axis of the image, the ROI can
be determined by projecting the gray value onto v axis. The
projection operation is carried out every row with Eq. 2, and
the projection result is shown in Fig. 4.

L) =) 1G.j) (=12 h), 2

j=1
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where J, (i) is the projection value of i-th row of pixels on
v axis, and w and h are the width and height of the image
respectively.

The ROI of the laser stripe in the image is computed with
Eq. 3:

3

[X1min, Ximax] = [1, w]
[Yimin, Yimax] = [ve — Ay, ve + Ay],

where [X1min, XImax] a0d [Yimin, Yimax] are the x-range and y-
range of the ROI of the laser stripe, Ay is the threshold value
for computing the y-range, and v, is the row index with the
greatest projection value.
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Fig. 4 The projection result of gray value in each row

3.2.3 Center profile extraction

In order to extract the center profile of the laser stripe, the
upper border and lower border of the laser stripe should
be detected firstly. The upper border and lower border of
laser stripe is detected by computing the greatest and least
gradient gray value in each column as follows [22]:

Pu(j) = argmaixG()  (j=1.2.-- . w) )

Pu(j) = argminG()  (j=1.2.-,w) 5)
k+2 k—1

Gl =Y kst lG. )~ Y cikpal G ). (6)
i=k i=k—3

where Py, (j) is the upper border point in j-th column, Py (j)
is the lower border point in j-th column, G (k) is the gra-
dient gray value in k-th point of j-th column, 7 (7, j) is the
gray value of pixel point (i, j), w is the width of the ROI
of image, and «;(i = 1,2, 3) are the coefficients of the
gradient operator. Then, the center profile of laser stripe is
computed using Eq. 4:

Pie(j) = P+ Pu(GN /2 (G=12,---,w). (7

The center profile extraction results of laser stripes of
different welding seam types are as shown is Fig. 5.

3.3 Input feature vector computation

From the above methods, the center profile of the laser stripe
is extracted. Then, the input feature vectors are determined
by four steps including main line extraction of the laser
stripe, normalization of the laser stripe, selection of the left
and right edge points of the welding joint, and normalization
of feature vectors.

3.3.1 Main line extraction of the laser stripe

After the center profile of laser stripe is computed by previ-
ous methods, Hough transform is applied to extract the main
line of the laser stripe. The angle from the v axis to a line
is represented with 6. The distance from the origin of image
coordinates to the line is defined as p. Thus, the line param-
eters are expressed as (p, 6) in the polar coordinates. The
resolution of parameter 6 is set to 0.5°. Since the laser stripe
is approximately parallel with the u axis of the image, the
range of 6 is set as [70, 110] in the polar coordinates. If the
distance from a point on the center profile to the main line
obtained by Hough transform is less than a preset threshold
dr, it is accepted as an inner point. Then, least square fit-
ting technique is applied to these inner points to compute
the accurate main line of the laser stripe. Suppose the main
line of the laser stripe is

v =kx +b, ®)

where k and b are the slope and intercept of the laser
stripe respectively. The least square line fitting equation is
expressed with Eq. 9:

n
D Xiyi —nxy
’I;’l — i=1
i x2 —nx% ©
l
~ i=1_
by=y—kx

where k; and b; are the parameters of fitted laser stripe,
(xi,¥i)@ = 1,2,---,n) are the inner points, n is their
number, and (¥, ¥) are the average coordinates of the inner
points.

3.3.2 Normalization of the laser stripe

According to the angle from the u axis to the extracted main
line, the rotation transformation is carried out the center pro-
file of laser stripe and the main line is transformed into the
direction paralleling to the u axis using Eq. 10:

cosd —sinf

sinf cosf (10)

Ly(i) = [ :|mh(i),
where my, (i) is coordinates of the i-th point on the center
profile of laser stripe and Ly (i) is coordinates of the i-th

point the center profile of laser stripe after normalization

3.3.3 Selection of the left and right edge points of the
welding joint

Due to rich information of the deformation part of the laser
stripe, which is produced at the welding joint, we only focus
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Fig. 5 The laser stripe
extraction images of the
different welding seam types. a
The laser stripe extraction image
of symmetric V groove. b The
laser stripe extraction image of
left V groove. ¢ The laser stripe
extraction image of right V
groove. d The laser stripe
extraction image of I groove. e
The laser stripe extraction image
of left lap joint. f The laser
stripe extraction image of right
lap joint

on the laser stripe at the welding joint. Thus, the left and
right edge points of the welding joint are determined firstly.
Searching for points on the center profile of laser stripe from
left to right, when all the distances from some continuous
points on the center profile of laser stripe to the main line
are more than a preset threshold d;, the first point among
these continuous points is regarded as the left edge point of
the welding joint. In the same way, searching for points on
the center profile of laser stripe from right to left, the right
edge point of the welding joint can be determined.

3.3.4 Normalization of feature vectors
After the left and right edge points of the welding joint

are determined by previous methods, feature vectors can be
determined as follows. As shown in Fig. 6, suppose the left
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edge point of the welding joint is P;, and right edge point of
the welding joint is P;. P; and P; are the i-th point and j-th
point on the center profile of laser stripe. Then, nine feature
points can be determined using Eq. 11:

{1=Li+%(k—m

11
FPh=P(k=12,---.,9), (i

where P; is [-th point on the center profile of laser stripe
and F Py is the k-th feature point. Then, the distances
hi (k =1,2---9) between these points and the main line of
the laser stripe are calculated, respectively. Finally, the nor-
malization is used to decrease the influence of large value
data, which is computed using Eq. 12:

_ h
By = — X

=—(k=1,2,---,9).
max{hk}( )

12)
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Main line

Fig. 6 Input feature vector computation method

Then, the feature vector is expressed as [ 1, ha, -+ - Eg]r.

To verify the effectiveness of the proposed input feature
vector computation method, many structured-light images
of different welding seam types have been tested. Since the
processing procedure is the same for six different welding
seam types, so we take symmetric V groove as example. The
processing procedure and feature vector extraction result for
one image is shown in Fig. 7. It is seen that the image feature
vector can be accurately extracted by using the proposed
image processing method.

4 SVM model building
4.1 Procedure of SVM-based modeling method

The whole procedure of SVM modeling method is shown
in Fig. 8. At first, the structured-light image is captured by

Fig. 7 The procedure of the
feature vector computation of a
structured-light image. a Main
line extraction of the laser stripe.
b Normalization of the laser
stripe. ¢ Selection of the left and
right edge points of the weld
joint. d Normalization of feature
parameters

the CCD camera. Second, the obtained image is processed
and input feature vectors are determined. Third, the input
feature vectors are used to build SVM model by deciding
kernel function and optimizing its parameters. When the
SVM model meets the accuracy requirements of welding
seam type identification, it is used to predict the sampling
data online. The input feature vectors have been determined
using the above method. Then, the SVM model building is
described in detail.

4.2 SVM modeling

As shown in Fig. 9, SVM is a binary classifier, and it tries
to find an optimal hyper-plane w’ ¢ (x) + b = 0 that maxi-
mizes the margin between the feature vectors of all samples
data in two classes. Essentially, the building of SVM model
is to obtain an optimal hyper-plane. One way of obtaining
this is by solving the optimization problem with Eq. 13:

min 5 |w|
w,b (13)
s.t. Y (wai—l—b) >1,G6=12,---,m).

The assumption here is that there exists a function
f(x) = wT x+b that makes all samples correctly classified.
However, this may lead to over fitting. In order to overcome
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Fig. 8 Procedure of the SVM modeling method

this problem, the slack variables &; are introduced. The
formulation can be restated with Eq. 14:

: 1 2 m
min 5|w|“+C)» ;&
w.b.E 2“ ” Zl—l %_1

S.t.y;i (wai +b) >1-§ (14)
El 209(i=1725"'5m)5

where C is a regularization parameter and controls the trade-
off between maximizing the margin and minimizing the
training error. Too small C leads to under fitting and too
large C leads to over fitting. To make the training process
stable, C should be set large enough [23]. In the previous

Fig. 9 The schematic diagram of SVM classification method
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discussion, the training samples are considered to be lin-
early separable. However, there may not be a hyper-plane
that can classify all the samples correctly. In order to solve
this problem, SVM maps the training patterns from the
input space X to a high-dimensional feature space F, which
makes samples linearly separable in the feature space. This
is represented with Eq. 15:

fx)=wl¢x) +b, (15)

where ¢ : X — F:is a nonlinear map from the input space
to the feature space. The optimization formulation can be
restated with Eq. 16:

min 3wl +C YL &
s.t.yi (wT¢(xi) + b) >1-§ (16)
£>0,=12,---,m).

In order to solve this optimization problem, the dot product
given by ¢ (x;)T ¢ (x j)needs to be computed. However, it is
difficult to calculate the dot product directly. Thus, this is
usually obtained by computing the kernel function. The ker-
nel k(x;, x;) is given by k(x;, x;) = ¢ (x;)T ¢ (x;).There are
four types kernel functions frequently used including lin-
ear, polynomial, radial basis function (RBF), and sigmoid
kernels. As the most frequently used kernel function, RBF
kernel is adopted here and it is expressed with Eq. 17:

ki xp) = exp (=y xi = x]) a7

The parameter of y greatly affects the number of support
vector, which has a close relation with training time. Param-
eter y also controls the amplitude of the Gaussian function
which affects the generalization ability of SVM [24].

Thus, a suitable SVM model can be obtained accord-
ing to the given samples data where parameters that the
user has to specify are the kernel function, the value of
C, and the value of y. In this study, the values of C and
y are determined by a grid search method using cross-
validation. The main idea about this method is that different
parameter values are tested and the one with the best cross-
validation accuracy is picked. This method is implemented
in two steps. In the first step, a coarser grid is applied with
an exponentially growing sequence of (C, y) with C =
273,273, 27,2% y =279,277... |23 25 Afteriden-
tifying the better region on the grid, the finer grid search on
that region can be executed. The results are used to perform
the final training process [25]. Then, the SVM model can be
built by using the optimal parameters.

As discussed above, SVM basically is a binary classier.
In order to deal with multi-classification problem, multiple
binary classifiers are needed. It means that every sub-model
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is designed according to the sample data of any two kinds
of welding seam types. In this paper, the input of the SVM
model is the feature vector of the structured-light image of
the corresponding welding seam. The output of SVM model
is the type number of the welding seam. The numbers 1,
2, 3,4, 5, and 6 are used to represent six different welding
seam types, respectively. Thus, C62 sub-models need to be
designed according to the samples data of six welding seam
types. When classifying an unknown sample, we can get 15
classification results according to 15 sub-models. The weld-
ing seam type that occurs most frequently in classification
results is chosen as the type of the welding seam.

5 Experiments and results

To verify the effectiveness of automatic recognition system
of welding seam type, a series of experiments about six typ-
ical welding seam types were conducted. The experimental
setup is shown in Fig. 10.

5.1 Welding seam type recognition based on SVM

The laser vision sensor was installed at the robot end link,
and 50 different structured-light images of each welding
seam type were captured. The parameters used in the image
processing were set as follows: Ay = 50 pixel, ¢; = 1,
ay = 2, a3 = 1, dr = 3 pixel, and d; = 2 pixel. Then,
fivefold cross-validation method was used to find optimal
parameters. In detail, the experiment data was divided into
five parts, where four parts were used to model build-
ing and one part is used to model testing. By using the
grid search method based on cross-validation, the optimal

Fig. 10 The experimental system

Fig. 11 Some testing samples of symmetric V groove. a The straight
welding seam with small size of groove. b The curved welding seam
with small size of groove. ¢ The structured-light image of the straight
welding seam with small size of groove. d The structured-light image
of the curved welding seam with small size of groove. e The straight
welding seam with big size of groove. f The curved welding seam with
big size of groove. g The structured-light image of the straight weld-
ing seam with big size of groove. h The structured-light image of the
curved welding seam with big size of groove
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parameters C and y of RBF were determined as C = 128
and y = 0.5. Then, the SVM model was built by using the
optimal parameters.

In order to verify effectiveness of welding seam type
recognition system, workpieces with different sizes of
grooves of straight welding seam and curved welding seam
were tested. Taking symmetric V groove as an example,
some structured-light images of different testing samples
are shown in Fig. 11. Furthermore, in order to verify the
robustness of the system, different types of noises were
applied to images such as salt and pepper noise, gauss noise,
and speckle noise. In this paper, the noise density of salt
and pepper noise is 0.2. The mean and variance of gauss
noise are 0 and 0.04, respectively. The mean and variance of
speckle noise are 0 and 0.08 respectively. Taking symmetric
V groove as an example, structured-light images with and
without noises are shown in Fig. 12.

The results of the performance of the SVM model are
presented in Table 1. It clearly shows that the proposed
welding seam type recognition system based on SVM
method is effective and robust. At the same time, with the
computer that has the main frequency of 3.6 GHz and has
the RAM of 8 GB, the processing time of welding seam type
recognition based on the algorithm in [19] was 872.03 ms.
However, with the same computation platform, the process-
ing time of the proposed method in this paper was only
151.09 ms. Thus, the computation cost is reduced largely.

Fig. 12 Structured-light images
of symmetric V groove. a The
structured-light image without
noises. b The structured-light
image with salt and pepper
noise. ¢ The structured-light
image with gauss noise. d The
structured-light image with
speckle noise
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Table 1 Comparative performance of SVM and ANN in welding
seam type recognition

Case Case description Accuracy of SVM  Accuracy of ANN

(%) (%)
1 Without noise 97.33 94.0
2 Salt and pepper noise 97.33 94.0
3 Gauss noise 97.33 94.0
4 Speckle noise 97.33 93.33

5.2 Welding seam type recognition based on BPNN

To validate the proposed recognition system of welding
seam type further, comparison experiments were conducted
with the BP neural network (BPNN) method. A standard
three-layer BPNN was used as a benchmark. There were
nine nodes in the input layer h; ~ hog, fifteen nodes in
the hidden layer, and one node in the output layer. For the
input layer, the input feature vector computation method
was the same as the above-mentioned. For the hidden and
output layers, the hidden nodes used the tansig transfer func-
tion and the output node used the purelin transfer function.
The Levenberg-Marquardt method was used for training the
BPNN, and fivefold cross validation method was used for
testing. Similarly, structured-light images with and without
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noises were used as samples to test effectiveness and robust-
ness of BPNN model. The results of the performance of the
BPNN models are also presented in Table 1. It shows that
the SVM model’s effectiveness and robustness for welding
seam type recognition is better than that of BPNN because it
adapts to the little sample problems and can avoid the local
extreme.

6 Conclusions

An automatic recognition system of welding seam types
based on SVM method is presented in this paper. Both input
feature vector computation and model building methods are
described in detail. The following conclusions are drawn:

1. Most of noises from arc lights and splashes can be fil-
tered out by using a narrow band optical filter and “min
operation,” that is the prerequisite for welding seam
type recognition.

2. The proposed feature vector computation method and
SVM-based modeling method can distinguish different
welding seam types effectively.

3. Experimental results show that the proposed system can
achieve welding seam type recognition accurately even
if there are some noises in the structured light image,
and the computation cost can be reduced compared with
previous methods.

In the future, we will combine the proposed welding seam
type recognition system with the seam tracking system to
realize automatic seam tracking of various welding seam

types.
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