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Abstract Chatter is a kind of self-excited unstable vibration
during machining process, which always leads to multiple
negative effects such as poor surface quality, dimension
accuracy error, excessive noise, and tool wear. For purposes
of monitoring the processing state of milling process and
detecting chatter timely, a novel online chatter detection
method was proposed. In the proposed method, the acceler-
ation signals acquired by sensor were decomposed into a
series of intrinsic mode functions (IMFs) by the adaptive
analysis method named ensemble empirical mode decom-
position (EEMD), and the IMFs which contain the feature
information of milling process were selected as the analyzed
signals. The two indicators power spectral entropy and frac-
tal dimension which is obtained by morphological covering
method are introduced to detect the chatter features. Then,
both the frequency characteristic and morphological feature
of the extracted signals can be reflected by the two indica-
tors. To verify the approach, milling experiments were per-
formed; the experiment results show that the proposed
method can detect chatter timely and effectively, which is
important in the aspect of improving the milling quality.
And finally, in order to detect milling chatter timely, an
online milling chatter monitoring system was developed.

Keywords Milling . Chatter detection . Ensemble empirical
mode decomposition . Power spectral entropy . Fractal
dimension

1 Introduction

Chatter is a self-excited vibration, and it always lead to nega-
tive effects on the productivity. Especially in the process of
micromilling, the poor surface quality and dimension accura-
cy error which caused by chatter are fatal defect. Therefore,
the avoidance of chatter in milling process has attracted many
experts’ attention.

Chatter frequencies are very complicated in practice, which
are caused by regenerative chatter, frictional chatter [1],
thermomechanical chatter [2], mode coupling chatter [3],
etc. As discussed by Quintana et al. [4], regenerative chatter
is the most common form of self-excited vibration. As shown
in Fig. 1, the cutter vibrations leave a wavy surface; when
milling, the next tooth in cut attacks this wavy surface and
generates a new wavy surface. The chip thickness and the
force on the cutting tool vary due to the phase difference
between the wave left by the previous teeth and the wave left
by the current ones; this phenomenon will help enlarge vibra-
tions, leading to chatter eventually.

In general, the strategies for avoiding chatter are divided
into two categories: one is to select proper machining param-
eters (such as depth of cut and cutting speeds) to change the
mechanical system’s dynamic behavior [4]; another is the real-
time online monitoring the cutting states and adjusting cutting
parameters once chatter is about to happen.

The method of selecting right cutting parameters for
avoiding chatter is usually based on the stability lobe diagram
(SLD). For the purpose of obtaining a reliable SLD, an accu-
rate dynamic model of milling process is necessary, and at
present, most of the milling stability analysis methods are
based on the classical dynamic control equation [6–8].
Specialists and scholars have proposed many analytic
methods for stability analysis of milling processes from the
frequency domain [5, 9–13] and time domain [14–19].
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Because of the tight coupling and time-varying properties of
the whole cutting system, analytic method still could not iden-
tically model the real cutting system and perfectly prevent the
occurrence of chatter [4, 20]. Therefore, the online signal-
based cutting state monitoring and chatter detection methods
are very important for practical milling processes to ensure the
safety of the machining system and the workpiece [21].

Various signals can be applied to the field of chatter iden-
tification, such as acceleration signal [22], sound [23], cutting
force [24, 25], torque signal [26], motor current [27], and
instantaneous angular speeds [21]. Based on the signals
above, many chatter detection methods have been employed
in time domain, frequency domain, and time-frequency
domain.

Chatter is a complex self-excited vibration, and the chatter
signal is nonlinear and nonstationary. Effective signal analysis
method is the foundation of chatter identification. Fourier
transform has provided a general method for analyzing signals
from time domain to frequency domain and has achieved un-
precedented success for signals generated by linear and sta-
tionary processes. But Fourier transform is not so impressive
in terms of processing nonlinear and nonstationary signal.
There are also methods for nonlinear and nonstationary sig-
nals such as windowed Fourier transform [28], wavelet trans-
form [29], and the Wigner-Ville distribution [30, 31].
However, almost all of the methods above have their own
limitations. For example, windowed Fourier transform is
based on traditional Fourier analysis, so it is still remains
challenges in processing nonlinear and nonstationary signals.
When wavelet method is involved, experts will always be
needed to set and adjust those model parameters [32].

Empirical mode decomposition (EMD) is a self-
adaptive signal analysis method proposed by Huang et al.
[33]. EMD has big advantages over the traditional linear
method in analyzing nonlinear and nonstationary signals
since it is highly adaptive in processing signal. But this
method also has some limitations. One of the major draw-
backs of EMD is mode mixing. Mode mixing, which is
defined as either a single intrinsic mode function (IMF),
consists of signals of widely disparate scales or a signal of
a similar scale residing in different IMF components; it
could not only cause serious aliasing in the time-
frequency distribution but could also make the individual
IMF lose its physical meaning. Another side effect of mode
mixing is the lack of physical uniqueness [34]. In order to
overcome the drawbacks of mode mixing, Huang and Wu
[35] proposed a noise-assisted method which is called en-
semble empirical mode decomposition (EEMD). This
method performs well in the aspect of suppressing mode
mixing. EEMD has been applied in many scientific fields
such as wind energy [36, 37], economy [38], and fault
diagnosis [39–42].

A good evaluation indicator is necessary in the aspect of
chatter detection. Chatter is a phenomenon reflecting
changes of frequency and energy distribution in machining
process [43]. So, the nonlinear dimensionless indicators
which can reflect the changes of frequency and energy dis-
tribution can be applied to judge the severe degree of
chatter.

Liu et al. [27] applied standard deviation and energy ratio
to identify chatter, but both of the two indicators just can
reflect the changes of energy distribution, and it is difficult
to the reflect the changes of frequency. In addition, with the
increase of cutting thickness, signal energy will also increase;
it easily causes misjudgment only according to the change of
energy to identify chatter.

The entropy [44] is a function of the probability distri-
bution function. The concept of power spectral entropy
(PSE) is the extension of Shannon entropy in frequency
domain, and it can reflect the changes of frequency. Power
spectral entropy is a good indicator in the aspect of chatter
detection.

Fractal theory [45, 46] is proposed byMandelbrot. Fractals
are virtual geometrical objects that appear identical regardless
of the length scale, which can be characterized by a single
parameter—fractal dimension (FD) [47]. Fractal dimension
plays an important role in the aspect of texture segmentation
[48], shape classification [49], and graphic analysis [50]. The
typical methods of calculating fractal dimension can be divid-
ed into four categories: the box counting method [51], the
variance methods, the spectral methods, and the morphologi-
cal covering method [52]. The morphological covering meth-
od is more robust than the box counting method when dealing
with discrete signals, because it can yield results that are
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Fig. 1 Regeneration of waviness in a milling model with two degrees of
freedom. Source:[5]
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invariant with respect to shifting the signal’s domain or affine
scaling of its dynamic range. What is more, this method is
more effective in terms of processing one-dimensional signal.

Chatter is a phenomenon of reflecting changes of frequen-
cy and energy distribution in machining process. In addition,
the structure of the captured signal is also changed when chat-
ter occurs. An indicator that both can reflect these character-
istics is necessary in the aspect of detecting chatter. But in fact,
it is difficult to find such an indicator. On the other hand, only
according to the change of energy to identify chatter is not
reliable. As discussed by Cao [53], in the stable cutting case,
the frequency components are evenly distributed in all fre-
quency ranges, and the morphology of the signal is relatively
regular. As the chatter severity level increases, the frequency
components gradually gather at the location of chatter fre-
quencies, and the morphology of the signal is disordered.
Power spectral entropy can reflect the changes of frequencies;
however, it is difficult to indicate the changes of the signal
morphology. The fractal dimension obtained by the morpho-
logical covering method is an important characteristic of frac-
tals that contains information about their geometrical structure
at multiple scales. So, it can reflect the change of signal
morphology.

Based on the analysis above, a novel online milling
chatter detection method is proposed. The EEMD method
is presented as a preprocessing tool for the measured sig-
nals. The PSE and FD which is obtained by the morpho-
logical covering method are applied to identify the chatter
state. In order to obtain the information which can reflect
milling state to the greatest extent, the following chatter
analysis method is based on the acceleration signal. The
originality of the proposed method is that the original char-
acteristic information is extracted by EEMD method firstly,
and then, both of the frequency characteristic and morpho-
logical features of the extracted signals are reflected by
power spectral entropy and fractal dimension; it means that
the milling chatter can be detected from different aspects.
Therefore, the diagnosis result is more reliable. In other
words, misjudgment can be avoided when assessing the
milling state by considering the two indicators. On the
other hand, it is more convenient to judge different milling
states by the specific values, i.e., the values of power spec-
tral entropy and fractal dimension.

The organization of this paper is as follows: brief intro-
duction of EMD, EEMD, FD, and PSE are given in Sect. 2.
Section 3 introduces the proposed chatter identification
method, including the experimental setup, the feature ex-
traction of chatter, the determination of chatter threshold,
and the validation of the chatter identification method. The
online chatter monitoring strategy is proposed in Sect. 4.
The realization of the online milling chatter monitoring is
given in Sect. 5. Finally, the conclusions and future works
are laid out in Sect. 6.

2 Introduction of ensemble empirical mode
decomposition, fractal dimension, and power
spectral entropy

2.1 Empirical mode decomposition and the ensemble
empirical mode decomposition

The EMD method is a new adaptive signal decomposition
method, and it has big advantages over the traditional linear
method in analyzing nonlinear and nonstationary signals since
it is highly adaptive in processing signal. This method can
decompose a nonlinear, nonstationary time series into several
components referred to as IMFs. an IMF should satisfies two
conditions [33]: (1) in the whole dataset, the number of extre-
ma and the number of zero crossings must either equal or
differ at most by one; (2) at any point, the mean value of the
envelope defined by the local maxima and the envelope de-
fined by the local minima is zero. However, one of limitations
of EMD is mode mixing, which could not only cause serious
aliasing in the time-frequency distribution but could alsomake
the individual IMF loses its physical meaning. Another side
effect of mode mixing is the lack of physical uniqueness [34].
The EEMD [35] method is a noise-assisted method EMD
which proposed by Wu and Huang, utilizing the full advan-
tage of the Gaussian white noise’s statistical characteristic of
uniform distribution to improve the distribution of extreme
points in original signal; this method performers well in the
aspect of solving the problem of mode mixing.

The basic idea of EEMD is that the signals are combined
with the true time series and noise. Thus, if data are collected
by separate observations, each with a different noise level, the
ensemble mean is close to the true time series. Therefore, an
additional step is taken by adding white noise that may help
extract the true signal in the data. The effect of the added white
noise can be controlled by the well-established statistical rule,
calculated as in Eq. 1.

εn ¼ εffiffiffiffi
N

p ð1Þ

where N is the number of ensemble members, ε is the ampli-
tude of the added noise, and εn is the final standard deviation
of error, defined as the difference between the input signal and
the corresponding IMFs. In practice, the number of ensemble
members is often set to 100 and the standard deviation of
white noise series is set to 0.1 or 0.2 [38].

2.2 Fractal dimension obtained by the morphological
covering method

Fractals can model many classes of time-series data. The FD is
an important characteristic of fractals that contains
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information about their geometrical structure at multiple
scales. The covering methods are a class of efficient ap-
proaches to measure the fractal dimension of an arbitrary frac-
tal signal by creating multiscale covers around the signal’s
graph. The steps of calculating the FD of a discrete-time fi-
nite-length signal f(t), t = 1, 2, ..., N by the morphological
covering method are expressed as follows [52]:
1. Select a set structuring element B. B is a compact planar

set and B should be a convex symmetric subset of the
3 × 3 square set of points from the rectangular grid of
pixels (n, mh), where (n, m) are integer coordinates and
h is the vertical grid spacing. Then, g[n], n = −1, 0, 1, is a
three-sample function whose graph is the upper envelope
of B. There are only three choices for such a unit-radius B:
the 3 × 3-pixel square, the 5-pixel rhombus, and the 3-
pixel horizontal segment. IfB is the 3 × 3-pixel square, the
corresponding g is shaped like a rectangle, that is g-
r[−1]=gr[0]=gr[1]=h≥0 and gr[n] = −∞ for n ≠ −1, 0,
1. If B is the 5-pixel rhombus, then g is shaped like a
triangle, defined by gt[−1] = gt[1] = 0, gt[0] = h≥ 0, and
gt[n] = −∞ for n ≠ −1, 0, 1. If B is the 3-pixel horizontal
segment, then the corresponding g can be regarded as
resulting either from gt or gr by setting h = 0.

2. Perform recursively the support-limited dilations ⊕ and
erosions Θ of f(t) by g⊕ε at scales ε=1 , 2 , 3 , . . . , εmax,
yield

f⊕sg n½ � ¼ max
−1≤ i≤1

f nþ i½ � þ g i½ �f g; ε ¼ 1

f⊕sg⊕ εþ1ð Þ ¼ f⊕sg⊕εð Þ⊕sg; ε≥2

8>><
>>:

ð2Þ

where s is a support set and S={0, 1, 2, ... ,N}, and N denotes
the length of signal f(t).

f⊕sg⊕ε ¼ f⊕sgð Þ⊕sg:::ð Þ⊕sg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
εtimes

Likewise, for the erosions fΘsg⊕ε. For n = 0, N, the local
max/min operations take place only over the available
samples.
3. Compute the cover areas

Ag ε½ � ¼ ∑
N

n¼0
f⊕sg⊕εð Þ− fΘsg⊕εð Þð Þ n½ �;

ε ¼ 1; 2; :::; εmax≤
N
2

ð3Þ

where fΘsg⊕ε ¼ fΘsgð ÞΘsg:::ð ÞΘsg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
εtimes

4. Fit a straight line using least squares to the graph of
log(Ag[ε]/(ε')

2) versus log(1/ε'),

log
Ag ε½ �
ε0ð Þ2 ≈DM ⋅log 1

.
ε0

� �
þ constant ð4Þ

For ε ' = 2/N , 4/N , . . . ,ε'max, define ε ' = 2ε/N as the nor-
malized scale, and 2/N≤ ε ' ≤ ε'max≤1, where ε'max =2εmax/N.

The approximate estimate of the fractal dimension DM( f )
can be obtained from the slope of the fitted straight line
(Eq. 4). The details of the algorithm are introduced in refer-
ence [52].

The fractal dimension DM( f ) of the graph of f(t) resulting
from the morphological covering method (in both the contin-
uous and discrete case) has the following two attractive prop-
erties [48].
1. The fractal dimension DM( f ) will not be changed if f is

shifted with respect to its argument or amplitude, that is
DM( f ) =DM(f'), where f ' (x) = f(x− x0) +b;

2. If h = 0, then DM( f ) remains invariant with respect to any
affine scaling of the amplitude of f(t) or shifting of its
argument.

Because of the two properties above, the morphological
covering method is more robust than other methods such as
box counting method.

2.3 Power spectral entropy

The concept of power spectral entropy is the extension of Shannon
entropy in frequency domain, which is linked to the distribution of
frequency components [53]. The power spectral entropy of a giv-
en signal is obtained by the following steps [53, 54]:
1. The power spectrum of signal x(t) can be obtained by

using Eq. 5.

s fð Þ ¼ 1

2πN
X wð Þj j2 ð5Þ

where N is the length of the signal x(t). X(w) is the Fourier
transformation of x(t) by the fast Fourier transform (FFT).
2. The probability density function for the spectrum can thus

be estimated by normalization over all frequency
components:

pi ¼ s f ið Þ
.

∑
N

k¼1
s f kð Þ; i ¼ 1; 2; 3; 4; 5:::;N ð6Þ
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where s(fi) is the spectral energy of the frequency component
fi, pi is the corresponding probability density, and N is the total
number of frequency components in FFT.
3. The corresponding power spectral entropy is defined as

H ¼ − ∑
N

k¼1
pi⋅logpi ð7Þ

For the purpose of comparing different working conditions,
the result is normalized by the factor log N, that is

E ¼ H
logN

¼
− ∑

N

k¼1
pi⋅logpi

logN
ð8Þ

The power spectral entropyE is a nondimensional indicator
in the range of [0, 1], where 1 corresponds to the spectrum
whose distribution of frequency component is comparatively
even and uncertain and 0 corresponds to the distribution un-
certainty is the least [53].

3 The proposed chatter identification method

The vibration signal is composed of many components. These
components not only contain the periodic component due to
the rotation of the cutter and intermittent milling of the tool,
the chatter vibration component due to regenerative effect, but
also contain the stochastic perturbation component due to sys-
tem noise, inhomogeneous material, etc. [53]. The core prob-
lem of chatter identification is to find the frequency compo-
nents which are related to chatter.

In order to obtain the useful components and remove
the noise components and other components which are
unrelated to the chatter signals, the EEMD method is ap-
plied to decompose the original vibration signal into a
series of IMFs; then, the useful IMFs are selected to com-
bine a new signal, and this new signal is the foundation of
chatter identification. For the purpose of real-time moni-
toring the running state of the machine tool and identifying
chatter state as soon as possible, the new signal is divided
into several segments; then, the FD and PSE of each seg-
ment signal are calculated, respectively. Next, the curves
based on the fractal dimension and power spectral entropy
of each segment are drawn. Furthermore, the distribution
chart of the two indicators can be obtained. In the end, the
running state of machine tool can be judged according to
the change of the fractal dimension curve and power spec-
tral entropy curve or the distribution chart. The flow chart
of the proposed chatter identification is illustrated in
Fig. 2.

3.1 Experimental setup

The milling test (side milling) was performed on a high-speed
machining center DMU 80. The workpiece material was a
block of 2A12 aluminum alloy clamped on the worktable.
The cutter was a carbide end mill cutter with four flutes, and
its diameter was 10 mm. The accelerometer was mounted on
the workpiece to measure the vibration signals during milling
process, and the sampling frequency was set as 5120 Hz. The
milling condition was dry cutting, downmilling. The experi-
mental schematic diagram is shown in Fig. 3.

Since chatter is closely related to the spindle speed and the
depth of cut [6], the experiment was performed with different
cutting speed and depth of cut. In order to obtain the vibration
signal from stable state to chatter, the SLD, which obtained by
the semidiscretization method [55], is applied to determine the
approximate cutting parameters. For the purpose of obtaining
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Fig. 2 Flow chart of the proposed method
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the relative parameters of the SLD, a modal test experiment
was carried out firstly.

The modal tests were performed to identify the modal pa-
rameters. In the experiments, the cutting tool and workpiece
were clamped on the high-speed machining center DMU 80.
An INV9822 type acceleration sensor was attached to the
selected position on the workpiece in order to obtain response
signals. The sensitivity of this acceleration sensor is
10.355 mV/ms−2, and the available frequency range is 0.5–
8000 Hz. AMSC-1 impact hammer with a 500 kgf sensor was
employed to knock the workpiece with the aim of generating
stimulus signals. A DLF-3 type two-channel charge amplifier
with an attenuation rate greater than 140 Db/oct was used to
amplify the stimulus signals. Finally, the stimulus signals were
acquired by an AD8304 type four-channel data acquisition
unit and analyzed by DynaCut software. The modal test ex-
periment is shown in Fig. 4. The modal parameters of the tool-
workpiece system are listed in Table 1.

In Table 1, fn denotes the natural frequency, ξ denotes the
relative damping, andmt denotes the modal mass. The tangen-
tial cutting force coefficient Kt and the normal linear cutting
force coefficient Kn were obtained by experiment,
Kt=696.8Mpa,Kn=201.2Mpa. The radial depth of cut ae = 5-
mm and the diameter of the milling cutter D = 10 mm. The
milling style is downmilling. So, the tooth entering angle of
the workpiece ϕstart = arc cos (2ae/D− 1) = 1.571 and the
tooth exiting angleϕexit=π.

According to the parameters above, the SLD is obtained, as
shown in Fig. 5. The SLD distinguishes regions of stable and
unstable cutting operation for different combinations of axial
depth of cut and spindle speed. Theoretically, when the axial
depth of cut and spindle speed are selected under the stability
lobes, the cutting process would be stable (chatter-free).
Otherwise, the cutting process would be unstable (chatter) [6].

Three kinds of different milling conditions which marked
A, B, and C are selected in the milling experiment. According

to Fig. 5, the specific processing parameters of different cut-
ting states are shown in Table 2.

The feed per tooth ft of each milling condition was set as
0.02 mm, and under condition A, the radial depth was set as
3 mm. And both under conditions B and C, the radial depths
were set as 5 mm, respectively. The acceleration signal was
sampled by an acceleration sensor.

Figure 6 shows the workpiece quality under the three kinds
of milling parameters. It is obvious that under the parameter
combination of condition B and condition C, the cutting states
are stable; under the parameter combination of condition A,
the cutting state is varying from stable to chatter. This exper-
iment indicates that the actual cutting state is not identical to
the theoretical analysis of stability lobes. The reason is the
tight coupling and time-varying properties of the whole cut-
ting system. So, it also shows that it still has a certain chal-
lenges to predict machining states by analytic method.

The vibration signals of the three cutting states are shown
in Fig. 7. Since condition A shows that the cutting state is
varying from stable to chatter, the following chatter analysis
is based on the acceleration signal of condition A.

3.2 Selection of the feature components

For the purpose of obtaining the useful components and re-
move the noise components of the acceleration signal, the
EEMDmethod is applied to decompose the signal into a series
of IMFs. Figure 8 shows the first seven IMFs of the acceler-
ation signal sampled under condition A.
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Table 1 The modal
parameters of the tool-
workpiece system

fn (Hz) ξ(%) mt (kg)

1286.12 0.0289 0.1118
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Fig. 5 The stability lobe diagram (SLD)
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In order to select sensitive IMFs which contain the main
information of milling state, the correlation coefficients and
relative energy ratio are introduced to determine the sensitive
IMFs. Pseudo-IMF is inevitable during the process of EEMD,
and it will bring bad effects to the analysis results. The real
IMFs have good correlations with the original signal, but the
pseudo-component will not [56]. And usually, the relative
energy ratio of the useful IMF is higher than the pseudo. For
the purpose of obtaining useful information to the greatest
extent, the correlation coefficients between the IMFs and the
original signal and the relative energy ratio of each IMF are
introduced to choose the real IMFs synchronously.

Figure 9a shows the correlation coefficients between the
first seven IMFs and the original signal, and Fig. 9b shows
the relative energy ratio of the first seven IMFs to the original
signal.

As shown in Fig. 9, the first three IMFs have higher corre-
lation coefficient than others. And also, most of the energy
mainly distributes in the first three IMFs. For the purpose of
obtaining the useful information and abandoning the useless
information, the first three IMFs are selected to combine into a
new signal. The following chatter analysis is based on the new
signal.

3.3 Chatter detection based on fractal dimension
and power spectral entropy

The changing properties of frequency domain can be reflected
by the power spectral entropy. In the stable cutting state, the
frequencies are evenly distributed in all frequency ranges and
it leads the value of power spectral entropy reaches its

maximum. However, when chatter gradually increases, the
chatter frequency component plays a leading role in the fre-
quency band, which means that the amplitude of chatter fre-
quencies will gradually increase, and other frequency compo-
nents can be ignored, which leads to the decreases of the
power spectral entropy.

FD can reflect the intrinsic properties of a signal. The frac-
tal dimension obtained by the morphological coveringmethod

Fig. 7 The acceleration signals of different milling states. a Condition A.
b Condition B. c Condition C

Condition

A

Condition

B

Condition

C

Milling direction

ChatterStable

Fig. 6 Workpiece surface under different milling condition

Table 2 The cutting parameters

Cutting condition Spindle speed n (rpm) Axial depth of cut ap (mm)

A 5600 3.5

B 8000 4.0

C 9000 4.0

Fig. 8 The first seven IMFs
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is a good nondimensional factor of judging chatter. In the
stable cutting state, the morphology of the signal is relatively
regular, and under this circumstance, the fractal dimension
fixed in a relatively small value. However, as the chatter se-
verity level increases, the morphology of the signal is disor-
dered and the value of fractal dimension will increase sharply.

Figure 10 shows the fractal dimension curve and power
spectral entropy curve of the acceleration signal under condi-
tion A. Figure 10a shows the time-domain signal obtained by
the EEMD. Figure 10b shows the fractal dimension curve.
Figure 10c shows the power spectral entropy curve. It is clear
from Fig. 10a that the amplitude of the signal in the first 4 s is
relatively small, but starting from the fifth second, the ampli-
tude of the signal increases dramatically. Since then, the am-
plitude stable at a relatively high level. It is difficult to judge
whether chatter occurs or not according to the time domain
signal. Figure 10b shows that in the first 4 s, the value of
fractal dimension fluctuates slightly around 1.6; at the begin-
ning of the fifth second, the value of fractal dimension reaches
to 1.8 dramatically, which is considerably higher than the val-
ue in other areas. However, the fractal dimension falls back to
1.7 starting from the sixth second. Figure 10c shows that in the
first 4 s, the value of power spectral entropy close to 0.82; at
the beginning of the fifth second, the value of power spectral
entropy down to 0.6 suddenly. However, the power spectral

entropy reaches to 0.8 starting from the sixth second. Both of
the fractal dimension curve and power spectral entropy curve
indicate that chatter occurs in the fifth second; then, it de-
creases at the beginning of the 4.5 s. Finally, it reached at a
new chatter state. In order to validate whether the above anal-
ysis is correct or not, the frequency spectrum analysis is ap-
plied to analyze the signal.

There are several sources of vibrations in metal cutting pro-
cesses, and these mechanical vibrations arise due to the lack of
dynamic stiffness of one or several elements of the system
composed by the machine tool, the tool holder, the cutting tool,
and the workpiece material. These vibrations are defined as free
vibrations, forced vibrations, and self-excited vibrations. In
milling process, the sources of vibrations are also connected
to the tooth pass excitation frequency and its higher harmonics
[57]. In this article, because some of the low-frequency com-
ponents have been filtered out by EEMD, there are three main
types of frequency components on the frequency band, i.e.,
chatter frequency, tooth passing frequency, and its harmonics.

Chatter is a self-excited vibration, and chatter frequencies
are very complicated in practice, which are caused by regen-
erative chatter, frictional chatter, thermomechanical chatter,
andmode coupling chatter [4]. In this article, the main purpose
of using spectrum analysis is to verify the effectiveness of the
proposed chatter detection method. The basic principle of
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detecting chatter by power spectral entropy and fractal dimen-
sion is according to the frequency distribution and the mor-
phological structure of the vibration signals; it means that we
are more concerned with the frequency distribution and the
energy of the chatter frequency when detecting chatter by the
two indicators.

Figure 11 shows the frequency spectrum of different
time periods. Figure 11a shows the frequency spectrum

of segment 1 (S1); it is clear from Fig. 11a that there are
three main types of frequency components, i.e., chatter
frequency, tooth passing frequency (wT), and its harmonics
(kwT) due to periodic tooth pass excitation effect, where k
is a positive integer number. And chatter frequency com-
ponents play a dominant role in the frequency band.
Figure 11c shows the frequency spectrum of segment 2
(S2), and although the chatter frequencies also exist in
the frequency bands, the amplitude of each chatter frequen-
cy is reduced; the tooth passing frequency and its har-
monics occupy a large proportion in the frequency band.
It indicates that the milling chatter is reduced at the begin-
ning of the sixth second. The analysis result of frequency
spectrum is in accordance with the changing trend of frac-
tal dimension curve and power spectral entropy curve. We
can come to the conclusion that according to the changes
of fractal dimension curve and power spectral entropy
curve, the chatter state can be identified accurately.

In order to judge the milling state more intuitive and con-
venient, the values of fractal dimension and power spectral

Chatter frequencies

wT=373.5Hz

Chatter frequencies

a

b

c

S1

S2

2wT

3wT

wT

2wT
3wT

Fig. 11 The frequency spectrum. a The frequency spectrum of segment 1
(S1). b The acceleration signal selected by EEMD. c The frequency
spectrum of segment 2 (S2)

Fig. 12 The distribution chart of fractal dimension and power spectral
entropy under different milling states

Table 3 The cutting parameters and values of FD and PSE

n (rpm) ft (mm) ap (mm) w (mm) FD PSE

3500 0.01 3.2 2 1.62 0.81

4000 0.01 3.2 2 1.59 0.83

4500 0.02 3.2 2 1.55 0.85

5000 0.02 3.5 2 1.59 0.82

5500 0.03 2 2 1.62 0.75

6000 0.03 4 3 1.63 0.75

6500 0.04 4 3 1.58 0.77

7000 0.04 4 3 1.65 0.75

7500 0.15 3.5 3 1.57 0.82

8000 0.15 3.2 3 1.60 0.78

3000 4000 5000 6000 7000 8000
0.6

0.8

1

1.2

1.4

1.6

1.8

Spindle speed (r/min)

FD

PSE

0.7

1.65

Fig. 13 The values of fractal dimension (FD) and power spectral entropy
(PSE) under different milling conditions
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Table 4 The cutting parameters and the analysis result of each milling state

No.
n

(rpm)
ft 

(mm)

ap 
(mm)

w
(mm)

The classification chart 
and the average values 

of FD and PSE 
Surface topography

Surface 
roughness

(μm)

Milling 
state

1 5000 0.05 4 2

0.2 0.4 0.6 0.8 1
1.4

1.5

1.6

1.7

1.8

PSE

DF

Chatter

FD=1.6; PSE=0.82

0.295 Stable 

2 5500 0.05 4 2

0.2 0.4 0.6 0.8 1
1.4

1.5

1.6

1.7

1.8

PSE

DF

Chatter

FD=1.69; PSE=0.58

1.558
Slight 

chatter  

3 6000 0.05 4 2

0.2 0.4 0.6 0.8 1
1.4

1.5

1.6

1.7

1.8

PSE

DF

Chatter

FD=1.60; PSE=0.76

0.365 Stable 

4 6500 0.05 4 2

0.2 0.4 0.6 0.8 1
1.4

1.5

1.6

1.7

1.8

PSE

DF

Chatter

FD=1.58; PSE=0.72

0.850 Stable 

5 7000 0.05 5 2

0.2 0.4 0.6 0.8 1
1.4

1.5

1.6

1.7

1.8

PSE

DF

Chatter

FD=1.67; PSE=0.76

0.872 Stable 

6 7500 0.05 5 2

0.2 0.4 0.6 0.8 1
1.4

1.5

1.6

1.7

1.8

PSE

DF

Chatter

FD=1.80; PSE=0.56

2.867
Severe

chatter
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entropy of condition A are displayed in the same image; then,
the distribution chart of the two indicators can be obtained, as
shown in Fig. 12.

According to Fig. 12, we can notice that the values of
fractal dimension and power spectral entropy are distributed
in different areas, which means different milling states. In the
direction of the arrow, the milling state changes from stable to
chatter. When the values of the two indicators appear on the
top left corner of the image, severe chatter occurs. To deter-
mine the chatter area on the image, the thresholds of fractal
dimension and power spectral entropy should be determined
firstly.

3.4 The determination of chatter threshold

Through the experimental analysis of Sect. 3.3, it is clear that
the stable (chatter-free) and chatter states can be identified
according to FD and PSE.

In practical milling, to detect chatter accurately, the re-
liable chatter thresholds (i.e., the stability boundary) with
respect to fractal dimension and power spectral entropy are
indispensable. Theoretically, in a stable cut, the value of
power spectral entropy is relatively high and the value of
FD is relatively low. Using a higher power spectral entropy
value and a lower fractal dimension value as the thresholds
means that the onset is detected sooner, but it increases the
possibility of a cut being detected as exhibiting chatter,
whereas the workpiece surface quality is still acceptable.
However, when using a lower power spectral entropy value
and a higher fractal dimension value as the thresholds, it
might occur that the cut is exhibiting chatter, i.e., the sur-
face of workpiece is damaged, but it is not detected.

In the paper, to determine the reliable chatter threshold
level, milling experiments have been performed to choose
the stability boundary. The acceleration signal was also taken
as the signal to be studied. The experimental device is the
same as Sect. 3.1. The specific processing parameters of dif-
ferent milling states and the values of FD and PSE of each
milling state are shown in Table 3. In Table 3, n, ft., ap, and w
denote the spindle speed, feed per tooth, axial depth of cut,
and radial depth, respectively. After testing the quality of the
workpiece surface topography [58], we have already known
that all of the milling states are stable.

The values of FD and PSE under different milling condi-
tions are shown in Fig. 13. It is clear that all of the values of
FD fluctuate around 1.6, and both of them are less than 1.65.
Meanwhile, both of the values of PSE are above 0.7. Based on
the experimental analysis above, the chatter threshold level
(i.e., the stability boundary) are determined as FD = 1.65
and PSE = 0.70, respectively, in this paper.

3.5 The validation of the proposed method

To verify the reliability of the proposed method, a series of
acceleration signals under different milling (side milling) con-
ditions were analyzed by the proposed method. The experi-
mental device is the same as Sect. 3.1. The sampling frequen-
cy was set as 5120 Hz during the process of signal acquisition.
The different milling experiments are labeled as no. 1, no. 2,
no. 3, no. 4, no. 5, and no. 6. The cutting parameters and the
analysis result of each milling state are shown in Table 4.

In Table 4, n, ft., ap, and w denote the spindle speed, feed
per tooth, axial depth of cut, and radial depth, respectively.
The surface topography of the workpiece under different mill-
ing conditions are measured by the white-light interferometer.

80
2

Feed direction of tool

Fig. 14 The milling state diagrams (top view)

Fig. 15 The acceleration signal and the curves of different indicators
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As shown in Table 4, both of the surface topography of no.
1, no. 3, no. 4, and no. 5 are regular vertical texture, which
conforms to the side milling mechanism, and the values of
surface topography stand at relatively low values, meaning
that these states are stable. According to the classification
chart, almost all of the values of FD and PSE are outside of
the chatter area, which are in accordance with the actual states.
It is clear from Table 4 that there are two kinds of chatter, i.e.,
slight chatter (no. 2) and severe chatter (no. 6). Both of the
surface topography of no. 2 and no. 6 are disordered, and the
values of surface roughness are 1.558 and 2.867 μm, respec-
tively, which are higher than that of under other milling con-
ditions. In terms of the classification chart of FD and PSE,
both of the values of the two indicators in no. 2 and no. 6
appear on the chatter area. Furthermore, the values of FD
and PSE under no. 6 are more close to upper left corner of
the classification chart, which means that the chatter condition
is more severe.

To verify the advantages of the proposed method, a com-
parative analysis was carried out here. The standard deviation
and energy ratio [27] are also used to judge the milling state. In

Set the sampling frequency

Sample the vibration signal

continuously

Combine the useful IMFs into a

new signal

Apply the EEMD to obtain IMFs

Pick out the useful IMFs based on

the correlation coefficient and the

relative energy ratio Divide the new signal into several

segments

Calculate the power spectral

entropy and fractal dimension of

each segment

Draw the distribution chart of

power spectral entropy and

fractal dimension
Judge the milling state based on

the distribution of power spectral

entropy and fractal dimension

Obtain the distribution chart of

power spectral entropy and

fractal dimension

Chatter or not? Modify the milling parameters

Machine end?
Continue

machine?

Finish

Y

N

Y

N

Y

N

StartFig. 16 The flow chart of online
chatter monitoring strategy

(a) The acceleration sensor

(b) The INV3062T type four channel data acquisition

instrument

Fig. 17 The acceleration sensor and the signal acquisition instrument
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this milling experiment, the axial depth of cut is set as 3 mm,
feed per tooth is set as 0.02 mm, and spindle speed is set as
4000 rpm, and the radial cutting depth increases linearly from
0.5 to 2 mm; the schematic diagram is shown as Fig. 14. The
experimental device is the same as Sect. 3.1. We have known
that the milling process is stable (i.e., chatter-free) by detecting
the signal and workpiece.

The acceleration signal and the values of FD, PSE, standard
deviation (SD) and energy ratio (ER) are shown in Fig. 15. It
is clear from Fig. 15 that the value of acceleration signal in-
creases as time goes on. This is mainly due to the cutting force

increases with the increase of cutting thickness. The values of
FD and PSE remain stable at approximately 1.62 and 0.80,
respectively, which is consistent with the actual milling state
(chatter-free). While the values of SD and ER rise gradually
during the milling process. In this case, according to Liu et al.
[27], chatter occurs during the milling process. But this result
is not consistent with actual situation, meaning that it will
cause misjudgment according to SD and ER.

Based on the above analysis, we can draw the conclusion
that the proposed method is more reliable in the aspect of
chatter detection.

1
2
3
4
5
6
7
8
9

11

12

13

15 16 17

10

14

Fig. 18 The main interface of the
chatter monitoring system

Table 5 The details of the main interface

Number Functions

1 Set the sampling frequency

2 Set the sampling points

3 The starting point of the data selection

4 The end point of the data selection

5 Be used to specify how frequently the original data is refreshed

6 To determine the segment number of the original signal

7 Display the data number of each segment

8 Select the channel

9 Display the running time of signal processing

10 Set the stability boundary threshold of FD and PSE

11 Start the monitoring system

12 Stop the monitoring system

13 Real-time display the highest value of FD and the lowest value of PSE

14 Real-time display identification results (stable or chatter)

15 Real-time display the original vibration signal

16 Real-time display the distribution diagram

17 Display the fractal dimension, power spectral entropy, and correlation coefficient of each IMF
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4 Online chatter monitoring strategy

Since chatter is harmful in the actual milling, and it is difficult
to avoid chatter by analytical method, an online chatter mon-
itoring strategy is proposed here. This strategy is based on the
EEMD, PSE, and FD. The flow chart of this strategy is shown
in Fig. 16.

The efficiency of the online chatter monitoring system
greatly depends on the signal segment length. If the length
of the segment is too short, the power spectral entropy cannot
reflect the running state of the machine, so the data length of a
segment depends on the data length of one sampling period,
that is, the sampling frequency. For the purpose of obtaining
an accurate result, higher sampling frequency should be set,
and the number of the segments at one sampling period should
depend on the actual machining state.

5 The realization of the online milling chatter
monitoring

For the purpose of detecting the milling chatter timely, an
online milling chatter monitoring system is developed here.
The chatter monitoring system mainly consists of two parts:
the hardware system and the software system. The hardware
system consists of acceleration sensor (Fig. 17a), data acqui-
sition instrument (Fig. 17b), the desktop PC, and the displayer.
The acceleration sensor and the signal acquisition instrument
are shown in Fig. 17. The sensitivity of the acceleration sensor
is 10.355 mV/ms2, and the available frequency range is 0.5–
8000 Hz. The data acquisition instrument is an INV3062T
type four-channel data acquisition instrument. The software
system mainly consists of two parts: the signal processing
system and state recognition system.

The core of this chatter monitoring system is the software
system, i.e., the signal processing system and state recognition
system. The software system is realized by the programming
software LABVIEW 2013 and MATLAB 2012b. The func-
tions of signal storage and real-time updates are realized by
LABVIEW 2013, and the functions of signal processing and
state recognition are realized by MATLAB 2012b.

The chatter recognition algorithm through software pro-
gramming makes the system easy to upgrade, but also user-
friendly according to their needs the flexibility to choose dif-
ferent recognition functions. The main interface of the chatter
monitoring system is shown in Fig. 18. Table 5 shows the
details of the main interface. It is very convenient to use this
chatter monitoring system due to its flexible operability. The
sensors can be fixed in different places according to the actual
needs, and the equipment is easy to install. The practical ap-
plication of the system is shown in Fig. 19.

6 Conclusions and future works

Chatter is a kind of self-excited unstable vibration during ma-
chining process, which always leads to multiple negative ef-
fects such as poor surface quality, dimension accuracy error,
excessive noise, and tool wear. Online chatter monitoring is
necessary in the machinery manufacturing.

A novel online chatter detection method was proposed in
this article. The EEMD was applied to decompose the vibra-
tion signal into a series of IMFs. The first three IMFs which
contain the most information that can reflect the running state
of the machine tool were synthesized into a new signal. The
new signal was divided into several segments, calculating the
power spectral entropy and fractal dimension of each segment,
and then the power spectral entropy curve and fractal

Sensor 1

Sensor 2

The data acquisition

instrument

The Desktop PC The displayer
The data

transmission line

Fig. 19 The practical application
of the online milling chatter
monitoring system
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dimension curve were obtained. Further, the distribution chart
of the two indicators can be obtained. According to the two
indicators, we can identify the milling chatter accurately. The
advantages of the proposed method are described as follows:
1. The power spectral entropy can reflect the changing prop-

erties of frequency domain. In the stable milling state, the
power spectral entropy reaches its maximum. Power spec-
tral entropy will be decreased when the chatter gradually
increases.

2. Fractal dimension can reflect the intrinsic properties of a
signal. The fractal dimension obtained by the morpholog-
ical covering method is a good nondimensional indicator
for judging chatter. In the stable cutting state, the fractal
dimension is fixed in a relatively small value. On the
contrary, the value of fractal dimension will increase dra-
matically when chatter occurs.

3. The power spectral entropy and fractal dimension are
combined to judge the milling state, which means that
both of the frequency characteristic and morphological
feature of the extracted signals can be reflected by the
two indicators, so this proposed method is more reliable
in the aspect of chatter detection.

In the article, a novel online milling chatter detection
method was proposed, and the experiments have verified
the reliability of the method. There are still some aspects
need to be improved. For example, we have already realized
the online monitoring here, but how to adjust the processing
parameters adaptively (i.e., without human intervention) ac-
cording to themonitoring information is still a challenge. On
the other hand, computational efficiency is important in the
aspect of condition monitoring, and the efficiency of signal
processing should be improved if we want to adjust the pro-
cessing parametersmore quickly. These problemswill be the
research direction for the future works.

Acknowledgements This work was supported by the National Natural
Science Foundation of China (Grant Nos. 51375055 and 51575050).

Reference

1. Wiercigroch M, Krivtsov AM (2001) Frictional chatter in orthogo-
nal metal cutting. Philosophical Transactions: Mathematical
Physical and Engineering Sciences (Series A) 359(1781):713–
738. doi:10.1098/rsta.2000.0752

2. Wiercigroch M, Budak E (2001) Sources of nonlinearities, chatter
generation and suppression in metal cutting. Philosophical
Transactions of the Royal Society London 359(1781):663–693.
doi:10.1098/rsta.2000.0750

3. Tlusty J, Polacek M (1963) The stability of machine tools against
self-excited vibrations in machining, international research in pro-
duction engineering. Mach Sci and Technol 465–474

4. Quintana G, Ciurana J (2011) Chatter in machining processes: a
review. Int J Mach Tools Manuf 51(5):363–376. doi:10.1016/j.
ijmachtools.2011.01.001

5. Altintas Y, Budak E (1995) Analytical prediction of stability lobes
in milling. CIRPAnn Manuf Technol 44(1):357–362

6. Altintas Y (2012) Manufacturing automation: metal cutting me-
chanics, machine tool vibrations, and CNC design. Cambridge
University Press, Cambridge

7. Gradisek J, Kalveram M, Insperger T, Weinert K, Stepan G,
Govekar E, Grabec I (2005) On stability prediction for milling.
Int J Mach Tools Manuf 45(7–8):769–781. doi:10.1016/j.
ijmachtools.2004.11.015

8. Mann BP, YoungKA, Schmitz TL, Dilley DN (2005) Simultaneous
stability and surface location error predictions in milling. J Manuf
Sci E-T ASME 127(3):446–453. doi:10.1115/1.1948394

9. Minis I, Yanushevsky R (1993) A new theoretical approach for the
prediction of machine tool chatter in milling. J Eng Ind-Trans
ASME 115(1):1–8. doi:10.1115/1.2901633

10. Budak E, Altintas Y (1998) Analytical prediction of chatter stability
in milling—part I: general formulation. ASME J Dyn Syst Meas
Control 120(1):22–30. doi:10.1115/1.2801317

11. Merdol SD, Altintas Y (2004) Multi frequency solution of chatter
stability for low immersion milling. J Manuf Sci Eng.-Trans ASME
126(3):459–466. doi:10.1115/1.1765139

12. Altintas Y, Engin S, Budak E (1999) Analytical stability prediction
and design of variable pitch cutters. J Manuf Sci Eng-Trans ASME
121(2):173–178. doi:10.1115/1.2831201

13. Altintas Y (2001) Analytical prediction of three dimensional chatter
stability in milling. JSME Int J Ser C 44(3):717–723

14. Butcher EA, Ma HT, Bueler E, Averina V, Szabo Z (2004) Stability
of linear time-periodic delay-differential equations via Chebyshev
polynomials. Int J Numer Methods Eng 59(7):895–922. doi:10.
1002/nme.894

15. Butcher EA, Bobrenkov OA, Bueler E, Nindujarla P (2009)
Analysis of milling stability by the Chebyshev collocation method:
algorithm and optimal stable immersion levels. J Comput
Nonlinear Dyn 4(3):031003:1–03100312. doi:10.1115/1.3124088

16. Khasawneh FA, Bobrenkov OA, Mann BP, Butcher EA (2012)
Investigation of period-doubling islands in milling with simulta-
neously engaged helical flutes. J Vib Acoust-Trans ASME
134(2):1–9. doi:10.1115/1.4 005022

17. Ding Y, Zhu LM, Zhang XJ, Ding H (2010) A full-discretization
method for prediction of milling stability. Int J Mach Tools Manuf
50(5):502–509. doi:10.1016/j.ijmachtools.2010.01.003

18. Quo Q, Sun YW, Jiang Y (2012) On the accurate calculation of
milling stability limits using third-order full-discretization method.
Int J Mach Tools Manuf 62:61–66. doi:10.1016/j.ijmachtools.2012.
05.001

19. Liu YL, Zhang DH, Wu BH (2012) An efficient full-discretization
method for prediction of milling stability. Int J Mach Tools Manuf
63:44–48. doi:10.1016/j.ijmachtools.2012.07.008

20. Abellan-Nebot JV, Subirón FR (2010) A review of machiningmon-
itoring systems based on artificial intelligence process models. Int J
Adv Manuf Technol 47(1–4):237–257. doi:10.1007/s00170-009-
2191-8

21. Lamraoui M, Thomas M, El Badaoui M, Girardin F (2014a)
Indicators for monitoring chatter in milling based on instantaneous
angular speeds. Mech Syst Signal Proc 44(1–2):72–85. doi:10.
1016/j.ymssp.2013.05.002

22. Lamraoui M, Thomas M, El Badaoui M (2014b) Cyclostationarity
approach for monitoring chatter and tool wear in high speed mill-
ing.Mech Syst Signal Proc 44(1–2):177–198. doi:10.1016/j.ymssp.
2013.05.001

23. Thaler T, Potočnik P, Bric I, Govekar E (2014) Chatter detection in
band sawing based on discriminant analysis of sound features. Appl
Acoust 77:114–121. doi:10.1016/j.apacoust.2012.12.004

Int J Adv Manuf Technol (2017) 92:1185–1200 1199

http://dx.doi.org/10.1098/rsta.2000.0752
http://dx.doi.org/10.1098/rsta.2000.0750
http://dx.doi.org/10.1016/j.ijmachtools.2011.01.001
http://dx.doi.org/10.1016/j.ijmachtools.2011.01.001
http://dx.doi.org/10.1016/j.ijmachtools.2004.11.015
http://dx.doi.org/10.1016/j.ijmachtools.2004.11.015
http://dx.doi.org/10.1115/1.1948394
http://dx.doi.org/10.1115/1.2901633
http://dx.doi.org/10.1115/1.2801317
http://dx.doi.org/10.1115/1.1765139
http://dx.doi.org/10.1115/1.2831201
http://dx.doi.org/10.1002/nme.894
http://dx.doi.org/10.1002/nme.894
http://dx.doi.org/10.1115/1.3124088
http://dx.doi.org/10.1115/1.4005022
http://dx.doi.org/10.1016/j.ijmachtools.2010.01.003
http://dx.doi.org/10.1016/j.ijmachtools.2012.05.001
http://dx.doi.org/10.1016/j.ijmachtools.2012.05.001
http://dx.doi.org/10.1016/j.ijmachtools.2012.07.008
http://dx.doi.org/10.1007/s00170-009-2191-8
http://dx.doi.org/10.1007/s00170-009-2191-8
http://dx.doi.org/10.1016/j.ymssp.2013.05.002
http://dx.doi.org/10.1016/j.ymssp.2013.05.002
http://dx.doi.org/10.1016/j.ymssp.2013.05.001
http://dx.doi.org/10.1016/j.ymssp.2013.05.001
http://dx.doi.org/10.1016/j.apacoust.2012.12.004


24. Huang PL, Li JF, Sun J, Zhou J (2013) Vibration analysis in milling
titanium alloy based on signal processing of cutting force. Int J Adv
Manuf Technol 64(5–8):613–621. doi:10.1007/s00170-012-4039-x

25. Tangjitsitcharoen S, Pongsathornwiwat N (2013) Development of
chatter detection in milling processes. Int J Adv Manuf Technol
65(5–8):919–927. doi:10.1007/s00170-012-4228-7

26. Tansel IN, Li M, Demetgul M, Bickraj K, Kaya B, Ozcelik B
(2012) Detecting chatter and estimating wear from the torque of
end milling signals by using Index Based Reasoner (IBR). Int J
Adv Manuf Technol 58(1–4):109–118. doi:10.1007/s00170-010-
2838-5

27. LiuY,WangXF, Lin J, ZhaoW (2016) Early chatter detection in gear
grinding process using servo feed motor current. Int J Adv Manuf
Technol 83(9–12):1801–1810. doi:10.1007/s00170-015-7687-9

28. Weng JW, Zhong JG (2003) Application of Gabor transform to 3-D
shape analysis. Acta Photonica Sinica 32(08):993–996

29. Postnikov EB, Lebedeva EA, Lavrova AI (2016) Computational
implementation of the inverse continuous wavelet transform with-
out a requirement of the admissibility condition. Appl Math
Comput 282:128–136. doi:10.1016/j.amc.2016.02.013

30. Staszewski WJ, Worden K, Tomlinson GR (1997) Time-frequency
analysis in gearbox fault detection using the Wigner-Ville distribu-
tion and pattern recognition.Mech Syst Signal Proc 11(5):673–692.
doi:10.1006/mssp.1997.0102

31. Pachori RB, Nishad A (2016) Cross-terms reduction in the Wigner-
Ville distribution using tunable-Q wavelet transform. Signal
Process 120:288–304. doi:10.1016/j.sigpro.2015.07.026

32. Fu Y, Zhang Y, Zhou HM, Li DQ, Liu HQ, Qiao HY, Wang XQ
(2016) Timely online chatter detection in endmilling process. Mech
Syst Signal Proc 75:668–688. doi:10.1016/j.ymssp.2016.01.003

33. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng QA, Yen
NC, Tung CC, Liu HH (1998) The empirical mode decomposition
and the Hilbert spectrum for nonlinear non-stationary time series
analysis. Proc R Soc Lond A 454:903–995

34. Huang NE, Wu ZH (2008) A review on Hilbert-Huang transform:
method and its applications to geophysical studies. Rev Geophys
46(2):1–23. doi:10.1029/2007RG000228

35. Wu ZH, Huang NE (2009) Ensemble empirical mode decomposi-
tion: a noise assisted data analysis method. Adv Adapt Data Anal
1(1):1–41. doi:10.1142/S1793536909000047

36. Liu H, Tian HQ, Liang XF, Li YF (2015) New wind speed fore-
casting approaches using fast ensemble empirical model decompo-
sition, genetic algorithm, mind evolutionary algorithm and artificial
neural networks. Renew Energy 83:1066–1075. doi:10.1016/j.
renene.2015.06.004

37. Wang SX, Zhang N,Wu L,Wang YM (2016) Wind speed forecast-
ing based on the hybrid ensemble empirical mode decomposition
and GA-BP neural network method. Renew Energy 94:629–636.
doi:10.1016/j.renene.2016.03.103

38. Xian L, He KJ, Lai KK (2016) Gold price analysis based on ensem-
ble empirical model decomposition and independent component
analysis. Physica A 454:11–23. doi:10.1016/j.physa.2016.02.055

39. Yang CY, Wu TY (2015) Diagnostics of gear deterioration using
EEMD approach and PCA process. Measurement 61:75–87. doi:
10.1016/j.measurement.2014.10.026

40. Tabrizi A, Garibaldi L, Fasana A, Marchesiello S (2015) Early dam-
age detection of roller bearings using wavelet packet decomposition,
ensemble empirical mode decomposition and support vector ma-
chine. Meccanica 50(3):865–874. doi:10.1007/s11012-014-9968-z

41. Žvokelj M, Zupan S, Prebil I (2016) EEMD-based multiscale ICA
method for slewing bearing fault detection and diagnosis. J Sound
Vibr 370:394–423. doi:10.1016/j.jsv.2016.01.046

42. Xu J, Wang ZB, Tan C, Si L, Liu XH (2015) A cutting pattern
recognition method for shearers based on improved ensemble em-
pirical mode decomposition and a probabilistic neural network.
Sensors 15(11):27721–27737. doi:10.3390/s151127721

43. Siddhpura M, Paurobally R (2012) A review of chatter vibration
research in turning. Int J Mach Tools Manuf 61:27–47. doi:10.
1016/j.ijmachtools.2012.05.007

44. Gray RM (2009) Entropy and information theory. Springer-Verlag,
New York

45. Mandelbrot BB (1982) The fractal geometry of nature. Freeman,
New York

46. Mandelbrot BB (2006) Fractal analysis and synthesis of fracture
surface roughness and related forms of complexity and disorder.
Int J Fract 138(1–4):13–17. doi:10.1007/s10704-006-0037-z

47. Bramowicz M, Braic L, Azem FA, Kulesza S, Birlik I (2016)
Mechanical properties and fractal analysis of the surface texture
of sputtered hydroxyapatite coatings. Appl Surf Sci 379:338–346.
doi:10.1016/j.Apsusc.2016.04.077

48. Liu SC, Chang S (1997) Dimension estimation of discrete-time
fractional Brownian motion with applications to image texture clas-
sification. IEEE Trans Image Process 6(8):1176–1184. doi:10.
1109/83.605414

49. Neil G, Curtis KM (1997) Shape recognition using fractal geome-
try. Pattern Recogn 30(12):1957–1969. doi:10.1016/S0031-
3203(96)00193-8

50. Lin KH, Lam KM, Siu WC (2001) Locating the eye in human face
images using fractal dimensions. IEE Proc-Vis Image Signal
Process 148(6):413–421. doi:10.1049/ip-vis:20010709

51. Sarker N, Chaudhuri BB (1994) An efficient differential box-
counting approach to compute fractal dimension of image. IEEE
Transactions on Systems, Man, and Cybernetics 24(1):115–120.
doi:10.1109/21.259692

52. Maragos P, Sun FK (1993) Measuring the fractal dimension of sig-
nals: morphological covers and iterative optimization. IEEE Trans
Signal Process 41(1):108–121. doi:10.1109/TSP.1993.193131

53. Cao HR, Zhou K, Ghen XF (2015) Chatter identification in end
milling process based on EEMD and nonlinear dimensionless indi-
cators. Int J Mach Tools Manuf 92:52–59. doi:10.1016/j.
ijmachtools.2015.03.002

54. Shen JL, Hung JW, Lee LS (1998) Robust entropy-based end point
detection for speech recognition in noisy environments. in: The
International Conference on Spoken Language Processing,
Incorporating the Australian International Speech Science and
Technology Conference, Sydney Convention Centre, Sydney,
Australia, November-December. DBLP 232–235

55. Insperger T, Stépán G (2004) Updated semi-discretization method
for periodic delay- differential equations with discrete delay. Int J
Numer Methods Eng 61(1):117–141. doi:10.1002/nme.1061

56. Xun J, Yan SZ (2008) A revised Hilbert-Huang transformation
based on the neural networks and its application in vibration signal
analysis of a deployable structure. Mech Syst Signal Proc 22(7):
1705–1723. doi:10.1016/j.ymssp.2008.02.008

57. Insperger T, Stépán G, Bayly PV, Mann BP (2003) Multiple chatter
frequencies in milling processes. J Sound Vib 262(2):333–345. doi:
10.1016/S0022-460X(02)01131-8

58. Feng JL, Sun ZL, Jiang ZH, Yang L (2016) Identification of chatter
in milling of Ti-6Al-4V titanium alloy thin-walled workpieces
based on cutting force signals and surface topography. Int J Adv
Manuf Technol 82(9–12):1909–1920. doi:10.1007/s00170-015-
7509-0

The main codes for computing the fractal dimension (obtained by the
morphological covering method) are given in the appendices in order to
provide a full understanding of the method. These codes are inspired by
reference [52] and Jesús Monge-Álvarez, University of Valladolid. The
original codes are available on the website: https://cn.mathworks.com/
matlabcentral/fileexchange/51175-margaos-sun-fractal-dimension

1200 Int J Adv Manuf Technol (2017) 92:1185–1200

http://dx.doi.org/10.1007/s00170-012-4039-x
http://dx.doi.org/10.1007/s00170-012-4228-7
http://dx.doi.org/10.1007/s00170-010-2838-5
http://dx.doi.org/10.1007/s00170-010-2838-5
http://dx.doi.org/10.1007/s00170-015-7687-9
http://dx.doi.org/10.1016/j.amc.2016.02.013
http://dx.doi.org/10.1006/mssp.1997.0102
http://dx.doi.org/10.1016/j.sigpro.2015.07.026
http://dx.doi.org/10.1016/j.ymssp.2016.01.003
http://dx.doi.org/10.1029/2007RG000228
http://dx.doi.org/10.1142/S1793536909000047
http://dx.doi.org/10.1016/j.renene.2015.06.004
http://dx.doi.org/10.1016/j.renene.2015.06.004
http://dx.doi.org/10.1016/j.renene.2016.03.103
http://dx.doi.org/10.1016/j.physa.2016.02.055
http://dx.doi.org/10.1016/j.measurement.2014.10.026
http://dx.doi.org/10.1007/s11012-014-9968-z
http://dx.doi.org/10.1016/j.jsv.2016.01.046
http://dx.doi.org/10.3390/s151127721
http://dx.doi.org/10.1016/j.ijmachtools.2012.05.007
http://dx.doi.org/10.1016/j.ijmachtools.2012.05.007
http://dx.doi.org/10.1007/s10704-006-0037-z
http://dx.doi.org/10.1016/j.Apsusc.2016.04.077
http://dx.doi.org/10.1109/83.605414
http://dx.doi.org/10.1109/83.605414
http://dx.doi.org/10.1016/S0031-3203(96)00193-8
http://dx.doi.org/10.1016/S0031-3203(96)00193-8
http://dx.doi.org/10.1049/ip-vis:20010709
http://dx.doi.org/10.1109/21.259692
http://dx.doi.org/10.1109/TSP.1993.193131
http://dx.doi.org/10.1016/j.ijmachtools.2015.03.002
http://dx.doi.org/10.1016/j.ijmachtools.2015.03.002
http://dx.doi.org/10.1002/nme.1061
http://dx.doi.org/10.1016/j.ymssp.2008.02.008
http://dx.doi.org/10.1016/S0022-460X(02)01131-8
http://dx.doi.org/10.1007/s00170-015-7509-0
http://dx.doi.org/10.1007/s00170-015-7509-0
https://cn.mathworks.com/matlabcentral/fileexchange/51175-margaos-sun-fractal-dimension
https://cn.mathworks.com/matlabcentral/fileexchange/51175-margaos-sun-fractal-dimension

	EEMD-based online milling chatter detection by fractal dimension and power spectral entropy
	Abstract
	Introduction
	Introduction of ensemble empirical mode decomposition, fractal dimension, and power spectral entropy
	Empirical mode decomposition and the ensemble empirical mode decomposition
	Fractal dimension obtained by the morphological covering method
	Power spectral entropy

	The proposed chatter identification method
	Experimental setup
	Selection of the feature components
	Chatter detection based on fractal dimension and power spectral entropy
	The determination of chatter threshold
	The validation of the proposed method

	Online chatter monitoring strategy
	The realization of the online milling chatter monitoring
	Conclusions and future works
	Reference


