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Abstract Accuracy detection for five-axis numerical control
(NC) machine tools that can truly reflect their practical ma-
chining precision is of crucial importance. Standard test pieces
are commonly employed for this purpose. However, poor ac-
curacy detection performance is obtained when the test pieces
used here are applied to five-axis NC machine tools. This
paper introduces a new S-shaped test piece that is exclusively
designed for the precision detection of five-axis NC machine
tools. The S-shaped test piece integrates numerous character-
istics associated with aviation parts and has been widely
adopted by machine tool makers. This article presents a nu-
merical model of the latest S-shaped test piece and shows that
its side surfaces represent typical undevelopable ruled sur-
faces. The curvature changes along the ruled lines inevitably
produce a theoretical error. Thus, machining methods seek to
reduce the theoretical error as much as possible. Based on
basic summaries of five existing positioning algorithms, a
novel algorithm is proposed to position the tool head using
three points, wherein two are tangential to the top and bottom
boundary curves, respectively, and the third is tangential to the
midpoint of the ruled line. The proposed positioning algorithm
together with five existing positioning algorithms is applied to
the S-shaped test piece, and a numerical error performance
analysis is conducted. The results indicate that the machined
surface reduces the theoretical error by at least 96% compared
to all the existing numerical positioning algorithms except for
Redonnet’s algorithm. Compared with Redonnet’s algorithm,
the accuracy of the proposed algorithm is equivalent, although

the proposed algorithm reduces the calculation time by 62.7%,
and is not sensitive to the initial values. Hence, the computa-
tional process demonstrates that the proposed method is effi-
cient, robust, and universal. Finally, simulation results were
confirmed through an actual machining experiment.

Keywords Five-axis numerical control machining . Flank
milling . S-shaped test piece . Undevelopable ruled surface .

Tool path generation

1 Introduction

Accuracy detection for NC machine tools is important for
improving their performance. A number of significant devel-
opments have been achieved during the past decades world-
wide. Direct methods of accuracy detection usually apply par-
ticular apparatus [1–6] for measurements. However, these
methods are generally aimed at static accuracy testing or 3-
axis linkage machining accuracy testing. In contrast, indirect
methods utilize test pieces [7, 8], which reflect dynamic errors,
and are convenient to implement. However, conventional test
samples usually present several shortcomings, and are not
appropriate for use in the accuracy detection of five-axis NC
machine tools [9, 10]. Out-of-tolerance of surface quality are
often obtained when processing parts with complex curved
surfaces, though corresponding machine tools have already
been certified using other test pieces [8].

Considering the difficulty of adequately evaluating the per-
formance of five-axis NC machine tools with existing test
samples, Chengdu Aircraft Industry Group developed an S-
shaped test piece for accuracy detection [11]. Because the side
surfaces of the S-shaped test piece are typical undevelopable
ruled surfaces that integrate numerous characteristics associ-
ated with aviation parts, the test piece adequately evaluates the
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accuracy and performance of five-axis NC machining. In
2012, application was made for including this S-shaped test
piece as an international standard at the 74th meeting of the
International Organization for Standardization (ISO) [12], and
it was agreed to be added to the draft international standard
(DIS) at the 79th meeting of the ISO/TC39SC2 in May 2016.
Therefore, it is of great theoretical and practical significance to
study this test piece and its processing. However, unlike other
test pieces, theoretical error is generated due to the twist angle
during the side milling process.

The side milling of ruled surfaces has been frequently
studied by researchers [13–17]. The conventional single
point offset (SPO) algorithm [18, 19] was proposed first.
It became the standard method for the flank milling of the
developable ruled surfaces in practice and is also present-
ly the standard method given in CAD/CAM software sys-
tems. Subsequently, Liu [20] presented the double point
offset (DPO) method that can reduce machining errors
compared to the SPO algorithm. However, the error re-
mains quite large. For this reason, Redonnet et al. [21, 22]
developed a method that positions the cylindrical cutter
with three-point tangential (TPT). Because seven tran-
scendental equations must be solved simultaneously to
obtain each tool position, the required system of equations
limits the robustness of the TPT method, and a relatively
long computation time is required. Then Bedi et al. [23]
developed a strategy for rolling a cylindrical cutting tool
along two boundary curves with double-point tangential
(DPT). This method requires the solution of only two
transcendental equations, and is therefore simpler than
the TPT method. On the basis of the TPT and DPT algo-
rithms, Liang et al. [24] proposed the new double points
tangential (NDPT) method. The NDPT algorithm selects
two points on the boundary curves at equal parametric
values, and then offsets the two points at a distance d
along the point’s main normal. Therefore, only a single
transcendental equation requires solution with the un-
known value d. However, the transcendental equation in
this case is complex, and it involves no obvious reduction
in computation time.

The methods discussed above involve mathematical
analysis, such that each tool position can be obtained by
solving some number of equations. However, some
methods have been developed that cannot be expressed
by mathematical formulas, such as the statistical method
[25–27], subsection optimization method [28], least square
method [29, 30], and others [31], but these methods usual-
ly require greater computation time than the analytical
methods or involve some limitations that have not been
properly applied in the CAD/CAM systems.

The present study proposes new strategy, where the cylin-
drical cutting tool is rolled along the two boundary curves
with three tangential points, which is similar to the TPT

method, and the method of placing the tool tangential to the
two boundary curves is based on the DPTmethod. Hence, this
algorithm is denoted as the new three-point tangential (NTPT)
algorithm. With the proposed method, the tool position can
thus be completely defined by solving only four simple tran-
scendental equations, which makes the algorithm much more
efficient and robust.

The reminder of this paper is organized as follows. In
Section 2, the numerical model of the S-shaped test piece is
presented in detail. The characteristics of the S-shaped test
piece are given in Section 3, and in Section 4, the NTPT
algorithm is proposed based on five existing side milling
methods. The distribution of the theoretical error of the S-
shaped test piece is analyzed, and the value compared with
the errors associated with the other five algorithms in
Section 5. The machining experiment verifying the results of
the simulation is presented in Section 6. Finally, the conclu-
sions of this paper are given in Section 7.

2 Description of the S-shaped test piece

A simplified theoretical modeling of the S-shaped test piece is
established as follows. First, a Cartesian coordinate system is
established at an arbitrary origin. Then, the ruled surface A is
defined using two quasi-uniform cubic rational B-splines
[32–34] in an “S” shape, which are further defined by two sets
of control points, Pi andQi. Similarly, the ruled surface B is also
defined by two sets of control points, Mi and Ni. Moreover, the
ruled surfaces in the S-shaped test piece are obtained by linearly
blending at equal parameter values between the two corre-
sponding curves. Finally, the S-shape fillet defined by the two
ruled surfaces is given with a rectangular base, as shown in
Fig. 1. Next, the quasi-uniform cubic rational B-splines of sur-
face A and B are shown in Fig. 2 and Fig. 3. The control points
are also included in the figures. Then, the coordinates of arbi-
trary points with different values of Z can be deduced from the
two quasi-uniform cubic rational B-splines at Z = 0 and Z = 30.

From the figures and the description presented above, it is
clearly observed that the configuration of the S-shaped test

Fig. 1 The S-shaped test piece
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piece offers significant advantages for accuracy detection,
which include the following.

Both ruled surfaces comprise 13 B-spline curve sec-
tions, enabling the S-shaped test piece to integrate sub-
stantial characteristics.

Viewed from the positive direction of the Z-axis, the two
boundary curves of each ruled surface are not coincident.
Therefore, the orientation of the ruled line changes continuously.

When X values are small, the Yvalues of the bottom bound-
ary curves are greater than those of the top boundary curves.
Then, this relationship reverses as the X values increases. At
the point of reversal from open-angle to closed-angle, the
curves are straight lines, which avoids serious overcut.

3 Characteristics of the S-shaped test piece

We must first establish related definitions before we focus on
the characteristics of the S-shaped test piece. It is clear from

the figures and previous description that each ruled surface is
generated by a set of straight lines based on two boundary
curvesC1(u) and C2(u). At equal parametric values u0, vectors
N1(u0) and N2(u0) are the main normal vectors of the top and
bottom boundary curves, respectively.

Figure 4 presents the distributions of the curvature of the
ruled surfaces. The inconsistent size and direction of curvature
are the primary characteristics of the S-shaped test piece. On
the one hand, these inconsistencies increase the difficulty of
error estimation by mathematical analysis; whereas, on the
other hand, non-uniform changes in the curvature will directly
lead to changes in the milling force during processing,
resulting in the vibration of tools and parts, which destroys
the stability of the milling machine [10]. Hence, compared to
other test pieces, the S-shaped test piece incurs higher require-
ments for an NC machine tool.

However, we expect that the measurement of processing
error can effectively reflect the performance of the machine
tool. Therefore, it is required to decrease the theoretical
error as much as possible. The theoretical error is mainly
produced by the twist angle γ, which is a typical feature of
undevelopable ruled surface, as shown in Fig. 5, where the
projection of the upper and lower S-shaped curves in the
view of the ruled line crossed each other rather than coin-
ciding, resulting in a finite value of γ.

As shown in Fig. 6, the change in γ is irregular along the
boundary curves. Therefore, sharp changes in the tool axis
vector are required when flank milling with cylindrical tools.
This further explains the detection ability of multi-axis linkage
due to the high demand of processing capacity.

Considering the cause of theoretical error, the algorithm
should fit the ruled surface to the greatest extent possible. In
addition, the formulation should be expressed regularly to
reduce the vibration of tools and parts. These considerations
will be further investigated in the following section.

Fig. 4 The distribution of curvature

Fig. 2 Curves of surface A

Fig. 3 Curves of surface B
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4 The NTPTAlgorithma

In this section, we first provide basic summaries of five
existing positioning algorithms and then present the NTPT
algorithm in detail.

4.1 Existing positioning algorithms

With the SPO algorithm, the tool axis is positioned collinear to
the ruled line with an offset distance R, which is the radius of
the cylindrical tool, and the perpendicular vector from S1 to the
tool axis is N1(u0). (note that the main normal of another curve
is sometimes also applied.) Then, as shown in Fig. 7, where we
take the top curves as an example, the tool axis vector and the
tool tip are expressed as S1 − S2 and S2 + RN1(u0), respectively.

The DPO algorithm is illustrated in Fig. 8. Here, the tool
axis vector M1 −M2 is obtained, and the tool tip is calculated
by making a vertical line from S2 to the tool axis and finding
the crossing point.

S0— The midpoint of S1S2:
P1— The midpoint of S0S1
P2— The midpoint of S0S2
NP1 u0ð Þ—The normal vector at point P1

NP2 u0ð Þ—The normal vector at point P2

M 1—Calculated by M 1−P1 ¼ RNP1 u0ð Þ
M 2—Calculated by M 2−P2 ¼ RNP2 u0ð Þ

Next, according to the DPT method (illustrated in Fig. 9),
the two equations below can be obtained to maintain the tool
tangential to the designed surface at two points (S1 and S2)
with the parameter u = u0:

a1cos θð Þ þ b1sin θð Þ þ R ¼ 0
a2cos φð Þ þ b2sin φð Þ−R ¼ 0

where

a1 ¼ M1−M2ð ÞN1 u0ð Þ−RB2 u0ð Þ⋅N1 u0ð Þsinφ−RN2 u0ð Þ⋅N1 u0ð Þcosφ
b1 ¼ M1−M2ð ÞB1 u0ð Þ−RB2 u0ð Þ⋅B1 u0ð Þsinφ−RN2 u0ð Þ⋅B1 u0ð Þcosφ
a2 ¼ M1−M2ð ÞN2 u0ð Þ−RB1 u0ð Þ⋅N2 u0ð Þsinθþ RN1 u0ð Þ⋅N2 u0ð Þcosθ
b2 ¼ M1−M2ð ÞB2 u0ð Þ−RB1 u0ð Þ⋅B2 u0ð Þsinθþ RN1 u0ð Þ⋅B2 u0ð Þcosθ

To obtain the tool position, only two transcendental equa-
tions are needed to numerically solve for the two unknowns θ
and φ. The tool position is easily determined by the tool axis
vector (M1 − M2), and tool tip was obtained by the same
means as employed by the DPO algorithm.

The NDPT algorithm is illustrated in Fig. 10. The dif-
ferences between the NDPT algorithm and the DPO algo-
rithm include that the NDPT algorithm substitutes P1, P2,
N1(u0), and N2(u0) with S1 and S2, and their normal vectors
N1(u0) and N2(u0), respectively. In addition, M1 and M2

reside on N1(u0) and N2(u0), respectively, with an un-
known distance parameter d, rather than with the known
value of R. Therefore, ||S1 − M1||2 = ||S2 − M2||2 = d, and
M1 and M2 are joined as the tool axis. The only equation of
constraint is that the distances from S1 and S2 to the tool

Fig. 6 The distribution of twist angle Fig. 8 Schematic of the DPO algorithm

Fig. 7 Schematic of the SPO algorithm
Fig. 5 The projection of curves
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axis are equal to R (See Fig. 10). Thus, according to the
established geometric relationships, we obtain

ffiffiffiffiffiffiffiffiffiffiffiffiffi

d2−R2
p

d
¼ 2dsin2 γ=2ð Þ

l2 þ 4d2sin2 γ=2ð Þ� �1=2

where l is the length of the rule and γ is established in accor-
dance with the parametric relationship u = u0. Finally, the tool
position is determined by the tool tip O2 and the tool axis
vector M1 − M2 when the value of d is calculated.

In accordance with the TPT algorithm illustrated in Fig. 11
and Fig. 12, the tool position can be completely defined in the
Plane A1A2B2B1 by the angle δ made between the tool axis
and the ruled line and the position of the point S0. The TPT
algorithm employs a system of seven transcendental equations
that must be solved. The condition for tangency between the
tool and the boundary curve C1(u) is translated to the condi-
tion of unicity of the intersection betweenC1(u) and the ellipse
EII1(w) of the tool. The vector tanEII1(w) is tangent to
EII1(w), so that the unicity of the intersection can be
expressed by the fact that tanEII1(w) and T1(u0) have the

same slope at the point of intersection, as does tanEII2(w)
and T2(u0). Thus, we obtain the following equations in the
same reference:

C1 u1ð Þx ¼ EII1 w1ð Þx C1 u1ð Þy ¼ EII1 w1ð Þy
C2 u2ð Þx ¼ EII2 w2ð Þx C2 u2ð Þy ¼ EII2 w2ð Þy
T1y

T1x
¼ tanEII1y w1ð Þ

tanEII1x w1ð Þ
T2y

T2x
¼ tanEII2y w2ð Þ

tanEII2x w2ð Þ l1 þ l2 ¼ l

where the subscripts express the component along the x, y, or
z, axes, and l is the length of the rule divided into segments l1
and l2 by point S0. Then, the tool position is determined after
solving the system of these seven equations.

4.2 Mathematic definition of the NTPT algorithm

The NTPT algorithm is proposed based on an investiga-
tion of the TPT algorithm. The TPT method establishes
of four coordination references, and the equations should
be finally transformed with respect to only one reference.
It is readily visible that the more tangential points in-
volved in a method, the less theoretical error the unde-
veloped surface will show, so the TPT algorithm can be
expected to involve less theoretical error than the SPO,
DPO, DPT and NDPT algorithms. However, the TPT
method is difficult to understand and inconvenient to cal-
culate. Due to the complexity of the expression, there is
no solution to these equations when the given initial
values are inappropriate, which is one reason why the

Fig. 9 Schematic of the DPT algorithm

Fig. 10 Schematic of the NDPT algorithm Fig. 11 Schematic of the TPT algorithm
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initial values are so sensitive. In addition, the TPT meth-
od includes an absolute value function and division, pro-
duces a breakpoint γ = 0 within the function. However,
numerical methods for solving nonlinear equations re-
quire that the function be continuous on the interval, so
the solution must provide both positive and negative ini-
tial values for each position in order to suitable for dif-
ferent conditions, and this is the second reason why the
initial values are sensitive. Another cause of this problem
is the order of convergence of the nonlinear equations.
Nevertheless, it is extremely difficult to obtain the order
of convergence because of the intricate formulas. Thus,
the approximate order of convergence is derived by cal-
culating the actual iterative process and fitting the results,
as shown in Fig. 13. Then, the order of convergence can
be found to be about 1.043, near a linear iteration, which
demonstrates the slow convergence speed and sensitivity
of the initial values [35].

The TPT algorithm is constructed using two kinds of con-
straints. The first constraint is the position of S0, expressed by
an unknown v (0 ≤ v ≤ 1, v = 0 is S1 and v = 1 is S2). The
second constraint is the tangential relationship at P1 and P2,
which is equivalent to the relationship between θ and φ in the
DPT algorithm. Therefore, we must obtain the unknowns v, θ,
φ, u1 (determine P1) and u2 (determine P2). Next, we consider
the equations: The first two equations are defined by the three
collinear points M0, M1, and M2 (see Figs. 9 and 11). The
vertical relation between the tool axis and (Mi − Si)
(0 ≤ i ≤ 2) also provides three equations. Finally, we obtain
five equations expressing equivalent constraints to those of the
TPT method. However, the essential parameter γ still exists,
resulting in a limit for solution. Therefore, we propose an
improved NTPT algorithm.

The NTPT algorithm is illustrated in Fig. 14, where the
position of the ruled line is defined by u = u0. The first step
is to establish the Frenet frames for both boundary curves at

tangential points P1 and P2. The Frenet frame for P1 is defined
by the tangent T1(u1), the main normal N1(u1), and the
binormal B1(u1). Similarly, T2(u2), N2(u2), and B2(u2) estab-
lish the Frenet frame at P2. To position a cylindrical tool tan-
gential to curve C1(u) at P1, the vector (M1-P1) must pass
through a plane described by N1(u1) and B1(u1) at an angle θ
towardsN1(u1). Here, forT1(u1) perpendicular out of the page,
a positive rotation is counter-clockwise. Analogously, the vec-
tor (M2 − P2) must pass through a plane described by N2(u2)
and B2(u2) at an angle φ towardsN2(u2). Therefore, we obtain

M1−P1 ¼ Rcos θð ÞN1 u1ð Þ þ Rsin θð ÞB1 u1ð Þ ð1Þ
M2−P2 ¼ Rcos φð ÞN2 u2ð Þ þ Rsin φð ÞB2 u2ð Þ ð2Þ

In addition, for cylindrical tools, the axis vector (M1 −M2)
must be perpendicular to the two vectors (M1 − P1) and
(M2 − P2), such that (M1 − M2)·(M1 − P1) = (M1 − M2)·
(M2 − P2) = 0. Thus, we eliminate M1 and M2 from Eqs. (1)
and (2), which yields

a1cos θð Þ þ b1sin θð Þ þ R ¼ 0 ð3Þ
a2cos φð Þ þ b2sin φð Þ−R ¼ 0 ð4Þ

where

a1 ¼ M1−M2ð ÞN1 u1ð Þ−RB2 u2ð Þ⋅N1 u1ð Þsinφ−RN2 u2ð Þ⋅N1 u1ð Þcosφ
b1 ¼ M1−M2ð ÞB1 u1ð Þ−RB2 u2ð Þ⋅B1 u1ð Þsinφ−RN2 u2ð Þ⋅B1 u1ð Þcosφ
a2 ¼ M1−M2ð ÞN2 u2ð Þ−RB1 u1ð Þ⋅N2 u2ð Þsinθþ RN1 u1ð Þ⋅N2 u2ð Þcosθ
b2 ¼ M1−M2ð ÞB2 u2ð Þ−RB1 u1ð Þ⋅B2 u2ð Þsinθþ RN1 u1ð Þ⋅B2 u2ð Þcosθ

Equations (3) and (4) are two transcendental equations in-
cluding four unknown variables. Further, we know that point
M0 is unused at the tool axis with a distance R from S0.

Fig. 13 Method to solve the order of convergence

Fig. 12 The ellipse EII1(w) of the tool
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Therefore, we obtain another equation with the three collinear
points M0, M1, and M2:

M0x−M1x

M2x−M1x
¼ M0y−M1y

M2y−M1y
¼ M0z−M1z

M2z−M1z
ð5Þ

which include two equations,

M0x−M1x

M2x−M1x
¼ M0y−M1y

M2y−M1y
ð6Þ

M0y−M1y

M2y−M1y
¼ M0z−M1z

M2z−M1z
ð7Þ

The system of four equations (Eqs. (3), (4), (6), and (7))
with four unknown parameters u1, u2, θ, and φ can be quickly
solved. Finally, we can establish the position of the cylindrical
tool with the tool tip M2 and the tool axis vector (M1 − M2).

S0—The midpoint of S1S2:
S1—AtC1 uð Þ with parameteru ¼ u0:
S2—AtC2 uð Þ with parameteru ¼ u0:
P1—AtC1 uð Þ with parameteru ¼ u1:
P2—AtC2 uð Þ with parameteru ¼ u2:
M0—At the tool axis with a distance R from S0:
M1—At the tool axis with a distance R from S1:
M2—At the tool axis with a distance R from S2:

In a sense, the proposed NTPT algorithm is similar to DPT
and TPT algorithms. However, The DPT tangential position-
ing strategy places the cutting tool tangential to the top and
bottom boundary curves of the ruled surface at an equal para-
metric value u0, while the NTPT algorithm places the cutting
tool tangential to the top and bottom boundary curves of the
ruled surface at different parametric values u1 and u2. In addi-
tion, the TPT tangential positioning strategy positions the tool
axis in the Plane A1A2B2B1 (see Fig. 11), while the NTPT
algorithm abolishes the vertical relation between the tool axis
and (M0 − S0) to make the tool axis free. Furthermore, for the
purpose of reducing the number of equations, we define S0 as
the midpoint of S1S2, so the NTPT algorithm requires solving
a system of four transcendental equations rather than seven.

Precisely comparing the geometric differences between
NTPT and TPT algorithms showed the only difference to be
the definitions related to S0. Because the initial value of the v
was equal to 0.5 (for fastest solution) in the TPT algorithm, it
is also the solution for NTPT if the TPT gives solution at
v = 0.5, which increases the solving speed to an extent. The
NTPT method also fixes the variable v when the vertical re-
straint between tool axis and (M0-S0) is removed. This ren-
ders results of TPT and NTPT algorithms similar, as shown in
next section. However, it increases the convergence order to
1.89, which speeds up convergence and improves the robust-
ness of initial values.

For the purpose of efficient direct comparisons, MATLAB
was employed to solve all six algorithms at the same 6000
points for an equivalent S-shaped test piece. Considering that
the computation time is related to computer performance,
MATLAB settings, and the environmental temperature were
uniformly maintained, and equivalent steps were repeated 20
times for each algorithm. A computer with an Intel® Core™ i7
Q720 1.6 GHz CPU, 16 GB memory, and 256 GB SSD was
employed in the numerical study. In addition, the initial values
can seriously affect the results, so we set the zero (most algo-
rithms) and the value of R (only the NDPT algorithm) as the
generic initial value. However, due to the sensitivity of results
with respect to initial values, the TPTmethod required different
initial values. Nevertheless, even though we employed initial
values near the final values, the TPTmethod also requires more
time and iterations. For example, when initial values are (0.81,
0.81, −1.5, −1.5, 15.5, 15.5, 0.002) and the solution is (0.8062,
0.8052, −1.5764, −1.5652, 15.5453, 15.5024, 0.0018), the TPT
method still required around 0.2401 s and 14 iterations, which
is much greater than those required by other algorithms. For this
reason, when comparing the time cost and iterations of NTPT to
TPT method, only the transformed TPT is used. The computa-
tion time is shown in Fig. 15, and the average computation time
and average number of iterations are listed in Table 1.

Although the three tangential points employed by the TPT
and NTPT algorithms are very similar, the NTPT reduced the
computation time by 62.7%, in roughly equivalent to the time

Fig. 14 Schematic of the NTPT algorithm
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required to calculate the tool position by the NDPT algo-
rithms. In addition, the convergence rate of the NTPT algo-
rithm is very fast, and position calculations using the NTPT
algorithm were less sensitive to initial values than for the case
of the TPT. In the following section, we show that the NTPT
algorithm reduces theoretical errors by greater than 96 and
99%, compared with the theoretical errors of the NDPT (or
DPO or DPT) and SPO algorithms, respectively, and provides
a similar performance to that of the TPT algorithm.

5 Error analysis of S-shaped test piece

The theoretical errors using the NTPT algorithm on the S-
shaped test piece cannot be calculated like that of the SPO
or DPO algorithms, because the adjacent tool positions
affect the error with each other. Two methods were
employed to calculate the theoretical error for the sake
of reliable error calculation. One method (Fig. 16) is
based on the cutter’s swept volume, where the error is
calculated by comparing the envelope surface of the tool

with the designed surface. Another method (Fig. 17) com-
putes the minimum distance between each tool position
and the designed surface of the S-shaped test piece.

Prior to conducting error analysis, we must first address
a related issue. For the DPO method, if we replace points P1
and P2 with points S1 and S2 [20], we can obtain the more
basic DPO algorithm. However, this does not change the
limit of error (LE), defined as the difference between the
highest and the lowest error values, but only changes the
overcut error values and undercut error values, as illustrated
in Fig. 18. Similarly, the overcut and undercut error values
can be adjusted for any algorithm by changing the points
used along the ruled line. Therefore, the overcut and

0 1000 2000 3000 4000 5000 6000
0

0.01
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0.03

0.04

0.05
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0.08

0.09

0.1

SPO

DPO

DPT

NDPT

NTPT

Transformed TPT  

Fig. 15 Computation time at
6000 points as indicated using
different methods

Table 1 Average computation time and average number of iterations
using different methods

Algorithm Computation time (s) Number of iterations

SPO 0.0023 Null

DPO 0.0044 Null

DPT 0.0051 1.5422

NDPT 0.0123 6

Transformed TPT 0.0437 3.5746

NTPT 0.0163 3.4081
Fig. 16 Swept volume method used to assess theoretical errors
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undercut error values are not particularly useful for error
analysis. In addition, given that γ is slightly larger for ruled
surface A than for ruled surface B, only the error distribu-
tion of ruled surface A is discussed owing to space limita-
tions. Our error analysis results indicate that the error dis-
tribution for ruled surface B is similar to that for ruled sur-
face A, but is slightly smaller in the peak position. The
global theoretical errors for the S-shaped test piece using
the six different algorithms (SPO, DPO, DPT, NDPT, TPT,
and NTPT) with R = 10 mm are shown in Fig. 19.

The general features and trends of the distributions are
discussed as follows.

For the five existing methods, relatively larger error values
appear in three areas where X is approximately equal to 40,
140, and 250 (the homologous arc lengths are about 130, 270,
and 480, respectively). This indicates that the positioning
strategies have high consistency. In addition, compared with
Fig. 6, we find that these larger error values coincide with the
maxima of γ, as would be expected.

The SPO algorithm yields the largest theoretical error, with
an LE of roughly 25 μm. Therefore, use of the SPO algorithm
should be avoided due to its high theoretical error.

Although the working principles of the DPO, DPT, and
NDPT methods differ, their theoretical error distributions

are similar, and provide LEs that are all about 5 μm.
Therefore, for machining the S-shaped test piece, the
DPO algorithm is the best of the three due to its lower
calculation time (see Subsection 3.1).

The TPT and NTPT algorithms provide similar results.
Investigation of the G-code files for these two algorithms in-
dicates that the values of u1 and u2 are not far from u, or more
accurately, △u1 and △u1 are about 10

−3. In addition, the posi-
tion of S0 solved in the TPT algorithm is near the midpoint of
S1S2. For these reasons, the TPT and NTPT algorithms pro-
duce very similar results, which lead to the close tool-axis
vector, as shown in Fig. 20. However, the NTPT algorithm
provides for more rapid calculation and easier execution than
the TPT algorithm.

For all the algorithms considered, the error value is about
zero in most regions, while the different methods present
slightly different trends. The SPO algorithm provides a peak
error value near the boundary curve, while those of the DPT
and NDPT algorithms are around the middle curve. In addi-
tion, the DPO algorithm presents a high undercut error in the
boundary curves and a high overcut error in the middle curve.
Error concentration is primarily avoided when X is about 40
and 250. The position X ≈ 270 is where the open-angle to
closed-angle transformation occurs [10]. Therefore, error con-
centration still exists.

In general, the TPT and NTPT algorithms provide the low-
est theoretical errors, and the LE is decreased to approximately
0.2 μm by these two methods. The scope of the experimental
test accuracy for the S-shaped test piece lies at around 60 μm,
as indicated from trial cut results obtained by the Chengdu
Aircraft Industrial Group. Therefore, with the TPT and
NTPT algorithms, the theoretical error can be ignored in ac-
curacy detection.

To clarify the global theoretical errors shown in Fig. 19, we
plot the error distribution curves obtained with the six algo-
rithms at five typical heights in Fig. 21. Here, the results ob-
tained from the DPO algorithm have been transformed from
undercut to overcut to compare the LE directly.

The general features and trends of the distributions given in
Fig. 21 are discussed as follows.

Compared with Fig. 6, the error distribution curves
coincide well with the calculated distribution of γ.
Generally, a larger theoretical error value coincides with
a larger value of γ.

With the NTPT algorithm, the LE has been reduced by
more than 99% compared to that of the SPO algorithm. In
addition, the LE has been reduced in this case by up to 96%
compared to the LE values of the DPO, DPT, and NDPT
algorithms. Therefore, the NTPT algorithm is effective for
the side milling of undevelopable ruled surfaces.

The LE obtained with NTPT algorithm has been decreased
to less than 0.8% in most areas, except for the three peak areas
(X is about 40, 140, and 250), where the LE is approximately

Fig. 17 Minimum distance method used to assess theoretical errors

Fig. 18 Different error distributions along the ruled line
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4%. This result indicates that the NTPT algorithm performs
better when γ is less than 2°.

Similar to the conclusion drawn earlier, theoretical er-
ror is reduced more at arc lengths of 130 and 480 than at
270. Therefore, the results of this study indicate that the
NTPT algorithm performs much better under conditions
where a transformation from open-angle to closed-angle
does not occur.

The NTPTand TPTalgorithms produced nearly equivalent
results. However, the TPT algorithm must simultaneously
solve a greater number of equations and is sensitive to initial
values due to the breakpoint within the function. When solv-
ing nonlinear transcendental equations in MATLAB, the TPT
algorithm requires an appropriate initial value while the NTPT
algorithm does not, and the former requires several iterations
to obtain a solution.

mhtiroglaOPDb)mhtiroglaOPSa)

mhtiroglaTPDNd)mhtiroglaTPDc)

mhtiroglaTPTNf)mhtiroglaTPTe)

Fig. 19 The global theoretical errors obtained using the six different algorithms for the S-shaped test piece

Fig. 20 The deviation of tool-axis vector between TPT and NTPT
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Fig. 21 The error distribution curves for the six different algorithms at different heights

Fig. 22 Two test pieces produced
using the SPO and the NTPT
methods
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6 Machining experiment

A machining test was conducted to verify the results of the
simulation. Two test pieces were flank milled on a ZOJE
GMC2060u five-axis machine using the SPO and the NTPT
methods, as shown in Fig. 22. The finish machining required
about 30 min under both methods, which demonstrates that
the NTPT method is effective. Then, measurements points
identified using according to DIS (Appendix A) were obtained
using a coordinate measuring machine, and the deviation of
the machined surfaces from the designed ruled surfaces is
graphed in Fig. 23. The picture shows that the NTPT algo-
rithm reduced actual LE approximately by 50 μm, which in-
dicates that the NTPT algorithm is better than ever expected.

7 Conclusions

This paper introduced a new standard S-shaped test piece for
testing the performance of five-axis NC machining tools, and
summarized the main existing machining methods (i.e., the
SPO, DPO, DPT, NDPT, and TPT algorithms) using mathe-
matical expressions for flank milling the non-developable sur-
face. Themain goals of this studywere to introduce the new S-
shaped test piece and implement an optimized numerical
method for flank milling a ruled surface. The proposed
NTPT algorithm is based on the DPT and TPT tool-
positioning strategies. In contrast to the TPT algorithm, this
algorithm requires the simultaneous solution of only four sim-
ple transcendental equations, which greatly reduces the calcu-
lation time required for tool positioning, and makes the algo-
rithm more robust. In addition, the working principle of this
method is simpler and the physical meaning of the parameters
is more intuitive. The NTPTalgorithm reduced the theoretical
error by more than 99, 96, 96, and 96% compared with the
SPO, DPO, DPT, and NDPT algorithms, respectively.
Compared with the TPT algorithm, the LE obtained by the

NTPT algorithm was similar, while the calculation time was
reduced by 62.7%, and the setting of initial values could also
be ignored. The S-shaped test piece integrates a variety of
practical features of interest, such that the low theoretical error
of this method implies that the NTPT algorithm has extensive
adaptability for different surfaces. In this way, these results
provide sufficient reason to use the NTPT algorithm in
CAD/CAM software systems.

The NTPT algorithm, in conjunction with the S-shaped test
piece, can provide better accuracy detection measurements for
five-axis NC machine tools. In addition, the ideas employed to
establish the constraint equation for unknown arguments and to
maintain a number of equations equal to the number of un-
known arguments can be studied in depth. This may facilitate
the development of similar algorithms (e.g., four points tangen-
tial), which may provide optimal tool positioning for the flank
milling of undevelopable ruled surfaces. Finally, whether this
method is effective for other surfaces with more important
twists provides a good foundation for further investigation.
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Appendix

Definition parameters of the S-shaped test piece used in this
paper are listed in Table 2 and Table 3, where the ruled surface
A is defined by two sets of control points, Pi and Qi, presented
in Table 2, and the ruled surface B is defined by two sets of
control points, Mi and Ni. Measurement points according to
DIS are presented in Table 4.

Fig. 23 The deviation of two test pieces

Table 2 Control points of ruled surface A

Pi X Y Z Qi X Y Z

P0 22 7.5 30 Q0 16 7.5 0

P1 27 62 30 Q1 19 62 0

P2 22 126 30 Q2 15 126 0

P3 37 181 30 Q3 35 190 0

P4 102 180 30 Q4 104 187 0

P5 133 149 30 Q5 130 161 0

P6 142 113 30 Q6 142 113 0

P7 144 105 30 Q7 144 105 0

P8 146 97 30 Q8 146 97 0

P9 148 89 30 Q9 148 89 0

P10 156 57 30 Q10 156 57 0

P11 185 23 30 Q11 189 15 0

P12 256 22 30 Q12 264 19 0

P13 269 90 30 Q13 272 90 0

P14 263 146 30 Q14 271 146 0

P15 268 202.5 30 Q15 274 202.5 0
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Table 3 Control points of ruled
surface B Mi X Y Z Ni X Y Z

M0 32 7.5 30 N0 26 7.5 0

M1 36 74 30 N1 29 74 0

M2 32 133 30 N2 25 133 0

M3 46 171 30 N3 45 179 0

M4 91 170 30 N4 91 177 0

M5 122 151 30 N5 120 159 0

M6 131 115 30 N6 131 115 0

M7 133 107 30 N7 133 107 0

M8 135 99 30 N8 135 99 0

M9 137 91 30 N9 137 91 0

M10 146 55 30 N10 146 55 0

M11 179 15 30 N11 183 8 0

M12 248 12 30 N12 253 6 0

M13 282 61 30 N13 285 57 0

M14 271 131 30 N14 280 130 0

M15 278 202.5 30 N15 284 202.5 0

Table 4 Measurements points in
machining experiment X Y Z I J K

19.6103 32.7247 11 −0.974431 0.042103 0.220708

20.3919 57.9766 11 −0.971666 0.018916 0.235601

20.6858 83.2398 11 −0.971398 0.007038 0.237353

21.0788 108.5007 11 −0.974209 0.033341 0.223172

23.1626 133.6656 11 −0.969376 0.144681 0.198436

29.6884 157.9968 11 −0.898594 0.396065 0.18884

45.492 177.1908 11 −0.504397 0.830749 0.235458

69.6297 183.7191 11 −0.042217 0.965967 0.255196

94.6185 180.7799 11 0.263289 0.930146 0.255945

116.7231 169.0187 11 0.654739 0.725257 0.212882

131.0207 148.4131 11 0.909993 0.409811 0.062988

139.0988 124.5053 11 0.967295 0.25365 0.001463

145.2498 100.0009 11 0.970143 0.242536 0

151.5789 75.5446 11 0.955442 0.295179 0.000481

161.8422 52.5303 11 0.853035 0.521824 −0.00548
178.3731 33.6086 11 0.611259 0.788443 −0.068699
201.0421 22.9118 11 0.2263 0.961465 −0.156118
226.139 21.5356 11 −0.123295 0.973735 −0.191412
249.4168 30.5318 11 −0.60768 0.763343 −0.219164
262.8441 51.5056 11 −0.931217 0.305856 −0.198208
267.5502 76.2764 11 −0.981229 0.09377 −0.168512
268.7953 101.5043 11 −0.984529 0.017921 −0.174303
269.0294 126.7679 11 −0.979339 0.008105 −0.202063
269.4382 152.0294 11 −0.975474 0.025272 −0.218658
270.364 177.2764 11 −0.975304 0.046078 −0.216006
280.2761 177.3317 11 0.973585 −0.04886 0.223037

279.2772 152.1371 11 0.971303 −0.028402 0.236144

278.7725 126.9276 11 0.9725 −0.011808 0.232603

278.5188 101.714 11 0.977374 −0.013113 0.211114
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Table 4 (continued)
X Y Z I J K

277.559 76.5222 11 0.98042 −0.079948 0.17996

273.0981 51.7576 11 0.940102 −0.2919 0.176077

261.4583 29.5795 11 0.746942 −0.629449 0.214178

241.0226 15.3022 11 0.338712 −0.911887 0.231813

216.2639 11.3567 11 −0.017199 −0.978929 0.203477

191.5629 15.8281 11 −0.337359 −0.930755 0.141012

170.042 28.6794 11 −0.658414 −0.750977 0.050238

153.8217 47.8753 11 −0.843229 −0.537545 0.003176

142.8072 70.4985 11 −0.941581 −0.336784 −0.001311
136.055 94.7799 11 −0.970143 −0.242536 0

129.9395 119.2419 11 −0.970143 −0.242536 0

122.3741 143.2603 11 −0.914104 −0.40406 −0.033893
107.1894 163.0031 11 −0.582558 −0.794132 −0.17315
84.0993 172.6409 11 −0.194253 −0.953513 −0.230389
59.1012 172.5839 11 0.250724 −0.939677 −0.23269
39.8735 157.4177 11 0.857717 −0.483992 −0.173417
32.4815 133.4534 11 0.971071 −0.1452 −0.189574
30.6826 108.3198 11 0.976722 −0.022232 −0.213353
30.391 83.1069 11 0.975561 −0.00884 −0.21955
30.0275 57.8948 11 0.976241 −0.020668 −0.215701
29.301 32.6908 11 0.977681 −0.03566 −0.20704
22.7492 32.1473 25 −0.973948 0.054528 0.220116

23.7577 56.8357 25 −0.971622 0.025338 0.235179

24.0994 81.5432 25 −0.971337 0.004159 0.23767

24.238 106.2527 25 −0.974358 0.015992 0.224434

25.6587 130.9113 25 −0.973199 0.115068 0.199107

31.2847 154.8975 25 −0.909867 0.370309 0.187121

46.4787 173.8216 25 −0.500151 0.833219 0.235787

70.1303 180.0408 25 −0.035653 0.966218 0.255248

94.5398 176.9478 25 0.275178 0.926854 0.255379

116.1693 165.3857 25 0.634973 0.74099 0.218504

131.1137 145.9091 25 0.888678 0.451592 0.079478

139.5433 122.7313 25 0.966899 0.255155 0.001599

145.5589 98.7646 25 0.970143 0.242536 0

151.7859 74.8553 25 0.9541 0.299487 0.000568

162.0048 52.4357 25 0.843133 0.537657 −0.007141
178.8296 34.5619 25 0.569148 0.818388 −0.079449
201.4746 25.1126 25 0.198344 0.966996 −0.159931
226.0493 24.2708 25 −0.142637 0.971313 −0.190278
248.4607 33.8329 25 −0.6479 0.729665 −0.218666
260.9623 54.7987 25 −0.935488 0.295277 −0.194096
265.4126 79.0565 25 −0.981989 0.087607 −0.167399
266.3236 103.7416 25 −0.984347 0.000073 −0.176242
266.1314 128.4509 25 −0.979033 −0.005289 −0.203633
266.3254 153.1599 25 −0.975471 0.022567 −0.218966
267.2947 177.8495 25 −0.974999 0.053575 −0.215655
277.1006 177.8744 25 0.972942 −0.061409 0.222738

275.9072 153.2047 25 0.971191 −0.032497 0.236074

275.437 128.5105 25 0.972525 −0.005444 0.232733

275.5035 103.8112 25 0.977457 0.005581 0.211059
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