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Abstract Due to the high computational accuracy and good ap-
plicability with a low complexity of algorithm, semi-discretization
method has a significant application for predictingmilling stability,
but to some extent it has some limitations in computational
efficiency. Based on the Newton interpolation polynomial and
an improved precise time-integration (PTI) algorithm, a
second-order semi-discretization method for efficiently and
accurately predicting the stability of the milling process is
proposed. In the method, the milling dynamic system consid-
ering the regenerative effect is first approximated by a time-
periodic delayed-differential equation (DDE) and then
reformulated in state-space form. After discretizing the time
period into a finite number of time intervals, the equation is
integrated on each discrete time interval. In order to improve
the approximation accuracy of the time-delay item, a second-
order Newton interpolation polynomial is utilized instead of a
linear function used in the original first-order semi-
discretization method (SDM). Next, with a rapid matrix com-
putation technique, an improved precise time-integration al-
gorithm is employed to calculate the resulting exponential
matrices efficiently. Finally, transition matrix of the system
is constructed over the discretization period and the milling
stability boundary is determined by Floquet theory. Compared
with the typical discretization methods, the proposed method
indicates a faster convergence rate. Further, two benchmark

examples are given to validate the effectiveness of the pro-
posed method from the aspects of computational efficiency
and accuracy.

Keywords Milling stability . Second-order
semi-discretizationmethod . Newton interpolation . Precise
time-integration . Floquet theory

1 Introduction

In the cutting operation, due to the intense dynamic periodic
interaction between the cutter and workpiece, regenerative chat-
ter, as a very common self-excited vibration, may probably be
produced. It inevitably brings some disadvantages in the efficien-
cy and accuracy of cutting and even deteriorates the machined
surface quality and the performance of the CNC machine tool
[1–3]. Most works, involved in preventing the regenerative chat-
ter in the cutting process, utilize a stability lobe diagram to predict
the limits of cutting stability in the cutting parameter space.
Therefore, how to get a stability chart with high computational
efficiency and accuracy is a key issue to help the machinist
choose an appropriate combination of cutting parameters in order
to acquire high machining productivity and good work-surface
finish. Till now, various methods for predicting milling stability
lobes have been proposed, which can be categorized as experi-
mental methods [4] and numerical methods.

Numerical methods for the prediction of cutting stability
can be mainly classified into frequency-domain-based
methods and time-domain-based methods. Altintas and
Budak [5] made a great effort in the first direction; they de-
veloped a single-frequency solution (SFS) for predicting mill-
ing stability. This method provides a rapid computation of
stability lobes in milling. However, it has a relatively low
prediction accuracy and fails to predict flip bifurcation [6, 7]
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as well as the additional stability domain in the parameter
space [6]. To handle the issue, Budak and Altintas [8]
presented a multi-frequency solution (MFS) for milling
stability prediction, and then Merdol and Altintas [9] ex-
tended the MFS by considering both the higher harmonics
of tooth passing frequency and the highly intermittent
process in low radial immersion milling. Utilizing the
above frequency solutions, stability models for ball-end
milling, variable pitch cutters, face milling, turning and
boring operations were proposed [10–15].

In the other direction, Tlusty and Zaton [16] applied a time-
domain method to generate the stability lobes. Campomanes
and Altintas [17] presented an improved time-domain model
to simulate vibratory cutting conditions at low radial immer-
sion milling. In discrete time domain, Bayly and Mann [18]
proposed a temporal finite element analysis (TFEA) for an
interrupted cutting process by means of multiple finite time
elements, which can be used to predict stability at arbitrary
times during the cut. Butcher et al. [19] presented a method
based on Chebyshev polynomial to predict the stability in up-
milling and down-milling operations. By using shifted
Chebyshev polynomials, Yan et al. [20] presented a semi-
analytical stability prediction method for thin-walled work-
piece milling.

Insperger and Stepan [21] proposed a semi-discretization
method (SDM), an important method in discrete time domain,
which has been widely used for milling stability prediction
and developed from zero-order method [22] to first-order
method [23]. This method utilized equidistant time nodes to
discretize the tooth passing period and is convenient to take
one or compound effects into account. For example, by using
SDM, Dombovari et al. [24–26] investigated the stability
properties of special tool geometries including variable helix
tool with distributed delay and serrated and variable pitch
tools with multiple delays. Moradi et al. [27] also utilized
SDM in their study where the process damping, structural
and cutting force nonlinearities of the peripheral milling pro-
cess were taken into account. Wan et al. [28] proposed an
updated SDM to systematically study the stability of the mill-
ing process with multiple delays resulting from cutter run-out
and variable pitch, and then extended it to thread milling [29].
More extended applications of SDM can be found in Refs.
[30–39]. However, during the numerical calculation of
SDMs, a large number of matrix exponential and matrix in-
version computations are required owing to that they must be
updated in the inner loop when sweeping the cutting parame-
ter space, which leads to some losses in the computational
efficiency.

On the other hand, a first-order full-discretization meth-
od (1st FDM) was proposed by Ding et al. [40]. Compared
with SDM, it is a quite efficient method for milling stabil-
ity prediction. However, it also has brought some disad-
vantages in computational accuracy [23]. Lately, more and

more studies [41–45] were focused on improving FDM
based on high-order interpolation or approximation theory.
In the study of Ozoegwu et al. [45], a hyper-third-order
FDM based on least squares approximation (LSA) was
proposed. They pointed out that the computational accura-
cy of LSA-based FDM peaks at the fourth order and de-
clines at the fifth order. It indicates that the computational
accuracy of FDM is not always being improved with in-
creasing degree of interpolation or approximation. In re-
cent years, many new stability prediction methods for mill-
ing operations were put forward. For example, Ding et al.
[46] proposed the numerical integration method (NIM).
Zhang et al. [47] presented a Simpson method. Wan et al.
[48] established a lowest envelop method. Tangjitsitcharoen
et al. [49] developed an in-process detection-based method.
Yang et al. [50] proposed an exponential force model based on
a three-dimensional stability prediction method, and many
other newly proposed methods can be seen in Refs. [51–58].

Despite this, it is still necessary to further study the
SDM due to its aforementioned significant application in
pract ice . A genera l form of higher-order semi-
discretizations for periodic delayed systems was developed
by Insperger et al. [59]. However, it is worth noting that the
higher-order SDMs were not extended to the stability prob-
lem for milling process. Moreover, there is an obvious
increase in computational time when improving the com-
putational accuracy of the SDM with a higher-order meth-
od. To simultaneously improve the computational efficien-
cy and accuracy of SDM, this paper presents a second-
order SDM (2nd SDM) for milling stability prediction. In
the framework of SDM, the time-state term in the proposed
method is not discretized and the key point is to handle the
time-delay term. In this paper, a second-order Newton inter-
polation polynomial is used to approximate the time-delay
term which leads to a significant improvement in approxima-
tion accuracy. The exponential matrices resulting from above
approximation process are calculated by an improved precise
time-integration (PTI) algorithm. The precise time-integration
algorithm was originally proposed by Zhong [60] and extend-
ed in [61], which is widely used in structural dynamic analy-
sis. In this paper, the system nature matrix inherits the form of
SDM, which brings the possibility and convenience of rapid
matrix computation. By taking advantage of its benefit, the
PTI algorithm is improved. On this base, a first-order SDM
is also proposed in order to facilitate the comparison with the
original first-order SDM.

2 Mathematical model of the milling dynamic system

In this section, mathematical models of milling dynamic sys-
tems with 1-DOF, 2-DOF and n-DOF are described,
respectively.
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2.1 Milling dynamic model with 1-DOF

The linear single-delay differential equation with a 1-DOF
milling tool can be expressed as [1]

mt€x tð Þ þ ct x ̇ tð Þ þ ktx tð Þ ¼ −wh tð Þ x tð Þ−x t−Tð Þð Þ ð1Þ

Where, mt is the modal mass, ct is the modal damping, kt is
the modal stiffness and w is the axial cutting depth. The time-
delay T satisfies T=60/NΩ, where N is the number of teeth
and Ω is the spindle speed in revolutions per minute. The
cutting force coefficient h(t) is defined as

h tð Þ ¼ ∑
N

j¼1
g ϕ j tð Þ
� �

sin ϕ j tð Þ
� �

Ktcos ϕ j tð Þ
� � þ Knsin ϕ j tð Þ

� �� � ð2Þ

Where, Kt and Kn are, respectively, the tangential and nor-
mal direction linearized cutting force coefficients under regen-
erative effects, and ϕj is the angular position of j th tooth which
is defined as

ϕ j tð Þ ¼ 2πΩ=60ð Þt þ j−1ð Þ2π=N ð3Þ

The unit step function g(ϕj(t)) is defined as

g ϕ j tð Þ
� � ¼ 1 if ϕst < ϕ j tð Þ < ϕex

0 otherwise

�
ð4Þ

Where, ϕst and ϕex are, respectively, the start and exit an-
gles of the jth cutter tooth given as

For up‐milling
ϕst ¼ 0
ϕex ¼ arccos 1−2a=Dð Þ

�

For down‐milling
ϕst ¼ arccos 2a=D−1ð Þ
ϕex ¼ π

�

8>><
>>:

ð5Þ

Where, a/D is the ratio of the radial cutting depth and tool
diameter.

By state-space transformation, Eq. (1) can be rewritten in
the following form:

Ẋ tð Þ ¼ A tð ÞX tð Þ þ B tð ÞX t−Tð Þ ð6Þ

Where,A(t) is the system nature matrix andB(t) is the force
coefficient matrix, which are periodically varying with time
and can be expressed by

A tð Þ ¼ 0 1
−kt=mt−wh tð Þ=mt −ct=mt

� �
ð7Þ

B tð Þ ¼ 0 0
h tð Þ 0

� �
ð8Þ

and the time-state vector X(t) is

X tð Þ ¼ x ̇ tð Þ
€x tð Þ

� �
ð9Þ

2.2 Milling dynamic model from 2- to n-DOF

The linear single-delay differential equation of a 2-DOF sym-
metric milling tool can be expressed in a matrix-vector form [1]

M€q tð Þ þ C q̇ tð Þ þKq tð Þ ¼ −wH tð Þ q tð Þ−q t−Tð Þð Þ ð10Þ

Where, the modal mass matrix M, modal damping matrix
C, modal stiffness matrix K and the displacement vector q(t) ,
respectively, are

M ¼ mt 0
0 mt

� �
; C ¼ ct 0

0 ct

� �
; K

¼ kt 0
0 kt

� �
; q ¼ x tð Þ

y tð Þ
	 


ð11Þ

and the cutting force coefficient matrix is

H tð Þ ¼ hxx tð Þ hxy tð Þ
hyx tð Þ hyy tð Þ

� �
ð12Þ

Where,

hxx tð Þ ¼ ∑
N

j¼1
g ϕ j tð Þ
� �

sin ϕ j tð Þ
� �

Ktcos ϕ j tð Þ
� � þ Knsin ϕ j tð Þ

� �� � ð13Þ

hxy tð Þ ¼ ∑
N

j¼1
g ϕ j tð Þ
� �

cos ϕ j tð Þ
� �

Ktcos ϕ j tð Þ
� � þ Knsin ϕ j tð Þ

� �� � ð14Þ

hyx tð Þ ¼ ∑
N

j¼1
g ϕ j tð Þ
� �

sin ϕ j tð Þ
� �

−Ktsin ϕ j tð Þ
� � þ Kncos ϕ j tð Þ

� �� � ð15Þ

hyy tð Þ ¼ ∑
N

j¼1
g ϕ j tð Þ
� �

cos ϕ j tð Þ
� �

−Ktsin ϕ j tð Þ
� � þ Kncos ϕ j tð Þ

� �� � ð16Þ

Similarly, Eq. (10) also can be written in the state-space
form

Ẋ
4�1 tð Þ ¼ A4�4 tð ÞX4�1 tð Þ þ B4�4 tð ÞX4�1 t−Tð Þ ð17Þ

Where, the system nature matrix A4 × 4(t) and the force
coefficient matrix B4 × 4(t) can be given by

A4�4 tð Þ ¼ O2�2 I2�2

−M2�2
−1K2�2−wM2�2

−1H2�2 tð Þ −M2�2
−1C2�2

� �
ð18Þ
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B4�4 tð Þ ¼ O2�2 O2�2

wM2�2
−1H2�2 tð Þ O2�2

� �
ð19Þ

and the time-state vector X(t) is

X tð Þ ¼ x tð Þ y tð Þ x ̇ tð Þ y ̇ tð Þ� �T ð20Þ

Comparing Eqs. (6) with (17), no matter the 1-DOF or 2-
DOF milling model, the system nature matrix A(t) in both
equations has similar elements, so does matrixB(t) and vector
X(t). The only difference between 1-DOF and 2-DOF milling
models is that elements of A(t) , B(t) and X(t) are 2 × 2
submatrices in the 2-DOF milling model. This can be further
extended to n-DOF milling model given as

Ẋ
2n�1 tð Þ ¼ A2n�2n tð ÞX2n�1 tð Þ þ B2n�2n tð ÞX2n�1 t−Tð Þ ð21Þ

with

A2n�2n tð Þ ¼ On�n In�n

−Mn�n
−1Kn�n−wMn�n

−1Hn�n tð Þ −Mn�n
−1Cn�n

� �

ð22Þ

B2n�2n tð Þ ¼ On�n On�n

wMn�n
−1Hn�n tð Þ On�n

� �
ð23Þ

X2n�1 tð Þ ¼ qn�1 tð Þ q̇n�1 tð Þ½ �T ð24Þ

Where, On and In are n×n zero matrix and unit matrix,
respectively. Mn, Cn and Kn are n×n modal mass, damping
and stiffness matrices, respectively.Hn(t) is n×n cutting force
coefficient matrix. qn × 1(t) and qn�1 tð Þ are n×1 modal dis-
placement and velocity vectors, respectively.

Without a DOF subscript, Eqs. (17) and (21) are reduced
into Eq. (6), which can be regarded as a general and universal
form no matter what the number of DOF is.

3 Proposed first-order and two-order SDMs

The dynamical equations (Eq. (6)) of the milling system are
periodic time-delayed differential equations which are focused
on the dynamic behavior of the tool tip, and thus can be cat-
egorized as the single-point contact model. They are solved
with the proposed first-order and two-order SDM presented
here. The time-delay T is equidistantly divided into m small
time intervals satisfying T=mτ, wherem is an integer. In orig-
inal SDMs, system nature matrix A(t) is approximated by a
piecewise constant. Therefore, the procedure of discretizing
the time-state term is not needed. This avoids deriving the
complex mathematical formula as high-order FDMs [41–45]
have done. With retaining the similar way of handling the

system nature matrix A(t) as SDM, Eq. (21) can be integrated
in each time interval kτ≤ t≤ (k+1)τ (k=0, … ,m) as follows:

Xkþ1 ¼ eAkτXk þ DI
DI ¼ ∫τ0e

Ak sB kτ þ τ−sð ÞX kτ þ τ−s−Tð Þds
�

ð25Þ

Where,Ak is namely the system nature matrixA(t) at t= kτ.
Xk and Xk + 1 are, respectively, the time-state vectors ofX(t) at
t= kτ and t= (k+ 1)τ. DI denotes the Duhamel integral in
which B(∗) is the periodic-coefficient term and X(∗) is the
time-delay term.

3.1 Proposed first-order SDM

In the proposed 1st SDM, linear interpolation is used to ap-
proximate periodic-coefficient term B(kτ+ τ− s) and time-
delay term X(kτ+ τ− s−T) as follows:

B kτ þ τ−sð Þ≈Bkþ1 þ Bk−Bkþ1ð Þs
τ

ð26Þ

X kτ þ τ−s−Tð Þ≈Xkþ1−m þ Xk−m−Xkþ1−mð Þs
τ

ð27Þ

Where, Bk + 1 =B(kτ + τ), Bk =B(kτ), Xk + 1 =X(kτ + τ)
andXk + 1 −m=X(kτ+ τ−mτ).

Substituting Eqs. (26) and (27) into Eq. (25) leads to

Xkþ1 ¼ F0Xk þ Fm−1Xkþ1−m þ FmXk−m ð28Þ

Where,

F0 ¼ Φ0 ð29Þ

Fm−1 ¼ τΦ2−Φ3ð ÞBk þ τ2Φ1 þΦ3−2τΦ2

� �
Bkþ1

� �
=τ2

ð30Þ

Fm ¼ Φ3Bk þ τΦ2−Φ3ð ÞBkþ1½ �=τ2 ð31Þ

and

Φ0 ¼ eAkτ ð32Þ

Φ1 ¼ ∫τ0e
Ak sds ð33Þ

Φ2 ¼ ∫τ0se
Ak sds ð34Þ

Φ3 ¼ ∫τ0s
2eAk sds ð35Þ

Considering the advantage of high computational efficien-
cy and accuracy, PTI algorithm is employed to calculate the
resulting Φ0,Φ1,Φ2 and Φ3 without solving any inverse

586 Int J Adv Manuf Technol (2017) 92:583–595



matrices. The pseudo-codes of the calculations are listed in
Table 1. The fundamental detail about PTI algorithm can be
obtained from Refs. [60, 61].

Next, according to Eq. (28), a discrete map can be defined as

Zkþ1 ¼ MkZk ð36Þ

Where,

Mk ¼

F0 O ⋯ O Fm−1 Fm

I O ⋯ O O O
O I ⋯ O O O
⋮ ⋮ ⋱ ⋮ ⋮ ⋮
O O ⋯ I O O
O O ⋯ O I O

2
6666664

3
7777775

ð37Þ

Zk ¼ col Xk ;Xk−1;⋯;Xkþ1−mXk−mð Þ ð38Þ

Now, the Floquet transition matrix of the milling dynamic
system can be constructed over a discretization period T by
using the sequence of discrete maps Mk (k=0,1, … ,m−1).
For example,

Zm ¼ MZ0 ð39Þ

Where,

M ¼ Mm−1Mm−2:::M1M0 ð40Þ

Finally, the stability of the milling dynamic system can be
determined using the Floquet theory: in the cutting parameter
space, the stability lobes can be drawn under the condition
where the eigenvalues of Floquet transition matrix M are in
modulus equal to 1. The milling process will be stable if a
cutting parameter combination is chosen in the lower region
of stability lobes; otherwise, it will be unstable.

3.2 Proposed 2nd SDM

In the proposed 2nd SDM, periodic-coefficient term is still
approximated by linear interpolation, but the time-delay term
is approximated by a second-order Newton interpolation as
follows:

X kτ þ τ−s−Tð Þ≈aXkþ2−m þ bXkþ1−m þ cXk−m ð41Þ

Where,

a ¼ s2

2τ2
−

s
2τ

ð42Þ

b ¼ 1−
s2

τ2
ð43Þ

c ¼ s2

2τ2
þ s

2τ
ð44Þ

Substituting Eqs. (26) and (41) into Eq. (25) leads to

Xkþ1 ¼ F0Xk þ Fm−2Xkþ2−m þ Fm−1Xkþ1−m

þ FmXk−m ð45Þ

Where,

F0 ¼ Φ0 ð46Þ

Fm−2 ¼ L1Bk þ −2L1−L2ð ÞBkþ1½ �=2τ3 ð47Þ

Fm−1 ¼ L2Bk þ L1 þ L3ð ÞBkþ1½ �=τ3 ð48Þ

Fm ¼ L4Bk þ L2Bkþ1½ �=2τ3 ð49Þ
L1 ¼ Φ4−τΦ3 ð50Þ

L2 ¼ −Φ4 þ τ2Φ2 ð51Þ
L3 ¼ −τ2Φ2 þ τ3Φ1 ð52Þ
L4 ¼ Φ4 þ τΦ3 ð53Þ

and

Φ4 ¼ ∫τ0s
3eAk sds ð54Þ

In the same way, Φ0,Φ1,Φ2, Φ3 and Φ4 are calculated by
using the PTI algorithm and the pseudo-codes of the calcula-
tions are listed in Table 2. After Φ0,Φ1,Φ2, Φ3 and Φ4are
acquired, according to Eq. (45), a discrete map for the
second-order SDM can be defined as:

Zkþ1 ¼ MkZk ð55Þ

Where,

Mk ¼

F0 O ⋯ Fm−2 Fm−1 Fm

I O ⋯ O O O
O I ⋯ O O O
⋮ ⋮ ⋱ ⋮ ⋮ ⋮
O O ⋯ I O O
O O ⋯ O I O

2
6666664

3
7777775

ð56Þ

Zk ¼ col Xk ;Xk−1;⋯;Xkþ1−mXk−mð Þ ð57Þ

Similarly, the Floquet transitionmatrix of themilling dynamic
system can be constructed over a discretization period T by using
the sequence of discrete mapsMk (k=0,1, … ,m−1); for exam-
ple,

Zm ¼ MZ0 ð58Þ

Where,

M ¼ Mm−1Mm−2:::M1M0 ð59Þ
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Finally, the stability lobes of the milling dynamic system
can be determined using the Floquet theory.

The proposed two solution methods are also applicable to
multiple-point contact models [62, 63] which take into ac-
count the dynamic behavior of several representative axial
contact points at the tool-part contact zone and are more suit-
able for the stability issues of thin-walled workpiece milling.
This is because the dynamical equations of the state-space
form in both single-point contact model and multiple-point
contact models are similar and their construction procedures
of Floquet transition matrix M are the same.

3.3 Rapid matrix computation of the jth power of system
nature matrix

It can be seen from Tables 1 and 2, during the calculation
process of the PTI algorithm, a large amount of jth power of
system nature matrix needs to be calculated which appears in
the form Ak

i (i=2,3,…). On the other hand, it also can be
found in Eq. (22) that half of the elements in system nature
matrix Ak are zero matrix O and unit matrix and I. With the
help of this particularity, an improvement for PTI algorithm
can be achieved by the following recursive formula:

Ak
i ¼ AkAk

i−1 ¼ Oi Ei

Pi Qi

� �

¼ O E
P Q

� �
Oi−1 Ei−1
Pi−1 Qi−1

� �
¼ Pi−1 Qi−1

Pi Qi

� �
ð60Þ Where,

Pi ¼ POi−1 þQPi−1 ð61Þ
Qi ¼ PEi−1 þQQi−1 ð62Þ

with

Oi−1 ¼ Pi−2 ð63Þ
Ei−1 ¼ Qi−2 ð64Þ

P ¼ −M−1K−wM−1H tkð Þ ð65Þ
Q ¼ −M−1C ð66Þ
P0 ¼ O; P1 ¼ P; Q0 ¼ I; Q1 ¼ Q; ð67Þ

It is noted in Eq. (60) that half of the elements in
matrix Ak

i are the other half of the elements in matrix
Ak

i − 1. This leads to a significant reduction of multiplica-
tions in millions of loop computations when the program
is sweeping the cutting parameter space. As a result, the
scale of calculation of Φn (n= 0, 1, 2,⋯) can be signifi-
cantly reduced by using the PTI algorithm improved
through this rapid matrix computation. Note that the sys-
tem nature matrix in this paper inherits the form of that in
the original SDM, which brings the convenience and pos-
sibility of the rapid computation.

Table 1 The pseudo-codes of calculating Φ0 ,Φ1 , Φ2 and Φ3

1:
Φ

0
0⇐ηAk þ η2Ak

2

2! þ η3Ak
3

3! þ η4Ak
4

4!

2:
Φ3⇐η3 I

3 þ ηAk
4 þ η2Ak

2

10

� �

3: for j= 0 ; j< p ; j++ do

4:
Φ2⇐η2 I þΦ

0
0

� � −Ak�Φ3
2

5:
Φ1⇐η I þΦ

0
0

� �
−Ak �Φ2

6:
Φ3⇐Φ3 þ I þΦ

0
0

� �
Φ3 þ 2ηΦ2 þ η2Φ1ð Þ

7:
Φ

0
0⇐2Φ

0
0 þΦ

0
0�Φ

0
0

8: η⇐ 2η

9: end for

10:
Φ0⇐I þΦ

0
0

11:
Φ2⇐

η2Φ0−Ak�Φ3

2

12: Φ1⇐ ηΦ0−Ak×Φ2

p is the precision exponent of the PTI algorithmwhich satisfies η ¼ τ=2p

Table 2 The pseudo-codes of calculating Φ0 ,Φ1 , Φ2 ,Φ3 and Φ4

1:
Φ

0
0⇐ηAk þ η2Ak

2

2 þ η3Ak
3

3! þ η4Ak
4

4!

2:
Φ4⇐η4 I

4 þ ηAk
5 þ η2Ak

2

12

� �

3: for j= 0 ; j< p ; j++ do

4:
Φ3⇐η3 I þΦ

0
0

� � −Ak�Φ4
3

5:
Φ2⇐η2 I þΦ

0
0

� � −Ak�Φ3
2

6:
Φ1⇐η I þΦ

0
0

� �
−Ak �Φ2

7:
Φ4⇐Φ4 þ I þΦ

0
0

� �
Φ4 þ 3ηΦ3 þ 3η2Φ2 þ η3Φ1ð Þ

8:
Φ

0
0⇐2Φ

0
0 þΦ

0
0�Φ

0
0

9: η⇐ 2η

10: end for

11:
Φ0⇐I þΦ

0
0

12:
Φ3⇐

η3Φ0−Ak�Φ4

3

13:
Φ2⇐

η2Φ0−Ak�Φ3

2

14: Φ1⇐ ηΦ0−Ak×Φ2
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4 Convergence analysis

Rate of convergence estimates is normally used in existing liter-
atures [23, 41–47]. It utilizes the local discretization error to
estimate the difference between the approximate solution x(t)
and the exact solution y(t) over a single discretization interval
[0,τ]. Namely, the local discretization error is a function of the
discretization step τ and defined as Econv = ‖x(τ) − y(τ)‖.
Following the same way, the local discretization error of the
proposed 1st and 2nd SDM can be determined asO τ3ð Þ.

Table 3 Milling parameters

Natural frequency ωn= 922Hz

Mass m= 0.03993kg

Damping ratio ξ= 0.011

Tangential cutting coefficient Kt= 600N/mm
2

Normal cutting coefficient Kn= 200N/mm
2

Number of teeth N= 2

Precision exponent of PTI algorithm p = 2

0
-

μ
μ

m

01.5mm, 1.6281pa μ= =e

0
-

μ
μ

m

00.5mm, 1.0740pa μ= =a

0
-

μ
μ

m

01mm, 1.4064pa μ= =c

0
-

μ
μ

m

d 01mm, 1.4064pa μ= =

0
-

μ
μ

m

00.5mm, 1.0740pa μ= =b

0
-

μ
μ

m

01.5mm, 1.6281pa μ= =f

Fig. 1 Convergence of the eigenvalues for the typical methods and proposed methods
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Programs are conducted using the Matlab R2014a software
on a desktop computer with Intel(R) Core(TM)i5-4430
CPU@3.0 Ghz and 8 GB memory. The modal parameters of
the milling dynamic system are chosen as the same as those used
in Ref. [23], which are listed in Table 3. The machining param-
eters are down-milling, the ratio of radial cutting depth and tool
diameter a/D=1, spindle speedΩ=5000 rpm, three axial cutting
depths ap=0.5 ,1 and 1.5 mm. In Fig.1, the label ||μ0|− |μ|| of the
y-axis represents the deviation between the exact critical eigen-
value μ0 and the approximate critical eigenvalue μ: where, μ0 is
determined by the original 1st SDM with a large discretization
parameter m=1000 as reference. It can be proved that if m is
large enough, the value of ||μ0|− |μ|| will approach 0 for each
method. So, if a method has a faster rate of convergence, the
value of ||μ0|− |μ|| will approach 0 more quickly.

Figure 1 shows the convergence curves of different methods.
The convergence curves of the original SDMs and the proposed
SDMs are illustrated on the left hand side of Fig. 1. Under the
same cutting condition, those of the 1st FDM, 2nd FDM, NIM,
Simpson method and the proposed 2nd SDM are shown in the
same lines of the right hand side. It can be seen from Fig.1a, c
and e that the proposed 2nd SDM improves the convergence rate
significantly compared with original SDMs. For example, as
shown in Fig. 1c, atm=40, the value of ||μ0|− |μ|| of the proposed
2nd SDM is already below 5.7×10−3. While those of the 0th
SDM and the 1st SDM are 117.4×10−3 and 75.7×10−3, respec-
tively, and all of which exceed 5.7×10−3 greatly. It also can be
found that the proposed 1st SDM converges slightly faster than
the original 1st SDM. In Fig. 1b, d and f, the convergence rate of
the proposed 2nd FDM is still faster than that of the 1st FDM, the
2nd FDM, the NIM and the newly proposed Simpson method.

5 Effectiveness validation

Under the conditions of low- and high-speed milling operations,
two benchmark examples are adopted from the literature [23] to

verify the effectiveness of the proposedmethods from the aspects
of computational efficiency and accuracy for milling stability
prediction. Figure 2 shows the computational time and Figs. 3
and 4 show the stability diagrams of different methods.

In order to make a clear comparison, stability lobes are
determined by the original 1st SDM with m=300, which are
marked as an accurate reference stability boundary in red col-
or. The modal parameters of the milling dynamic system have
been shown in Table 3. And the machining parameters are
down-milling and a/D=1.

Case 1: stability prediction in low-speed milling

Stability lobes of widely used 0th–1st SDMs, 1st–2nd FDMs
and the proposed 1st–2nd SDMs are presented in Fig. 3 for low-
spindle-speed domain with three different discretization
parameters m=50 , 70 and 90. They are calculated over a
200 × 100-sized grid of the cutting parameters with
Ω∈ [2×103,2.6×103 ]rpm and w∈ [0,4×10−3 ]m. Their com-
putational time is summarized in Fig. 2a. It can be seen from
Fig. 2a that both of the proposed 1st SDM and 2nd SDM spend
much less computational time than original SDMs. For example,
at m=70, the computational time of the original 1st SDM is
328 s, while that of the proposed 1st SDM is 105 s with a 68%
reduction and that of the proposed 2nd SDM is 113 s with a 65%
reduction. Compared with the 0th SDMwhich spends 219 s, the
reduction ratios of the proposed 1st SDM and 2nd SDM are 52
and 48%, respectively. It means that both of the proposed
methods havemuch higher computational efficiencies than those
of the original 1st SDM. And compared with that of the 0th
SDM, they still have higher computational efficiencies for mill-
ing stability prediction in low-speed milling. It can also be seen
from Fig. 2a that even compared with the highly efficient FDMs,
the proposed methods still have near computational time only
with a slight increase.

In terms of computational accuracy, as shown in
Fig. 3, stability lobes of the proposed 2nd SDM have

Fig. 2 A comparison of computational time for 0th–1st SDMs, 1st–2nd FDMs and the proposed 1st–2nd SDMs in a low-spindle-speed domain and b
high-spindle-speed domain

590 Int J Adv Manuf Technol (2017) 92:583–595



much better agreements with the reference stability
boundary than those of other methods. For example, at

m= 70, the stability lobes of the 0th SDM have notice-
able deviations from the reference stability boundary,
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Fig. 3 A comparison of computational accuracy for 0th–1st SDMs, 1st–
2nd FDMs and the proposed 1st–2nd SDMs in the low-spindle-speed

domain. The stability boundary determined by the original 1st SDM
with m=300 is marked in red color for reference
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Fig. 4 A comparison of computational accuracy for 0th–1st SDMs, 1st–
2nd FDMs and the proposed 1st–2nd SDMs in the high-spindle-speed

domain. The stability boundary determined by the original 1st SDM with
m=300 is marked in red color for reference
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especially at the top regions of two adjacent lobes.
Although the deviations are further reduced by the orig-
inal 1st SDM and 2nd FDM, there still exists a visible
difference from the reference stability boundary. When
using the proposed 2nd SDM, the stability lobes almost
coincide with the reference stability boundary. It further
indicates that the proposed 2nd SDM has a higher com-
putational accuracy than the other methods in low-speed
milling.

Case 2: Stability prediction in high-speed milling

Stability lobes of 0th–1st SDMs, 1st–2nd FDMs and the
proposed 1st–2nd SDMs are presented in Fig. 4 for high-
spindle-speed domain with three different discretization
parameters m= 20 , 30 and 40. They are calculated over
a 200 × 100-sized grid of the cutting parameters with
Ω ∈ [5 × 103, 10 × 103 ]rpm and w ∈ [0, 1.5 × 10−3 ]m.
Their computational time is summarized in Fig. 2b. It can
be seen from Fig. 2b that both of the proposed 1st SDM
and 2nd SDM still spend much less computational time
than the original SDMs. For example, at m= 30, the com-
putational time of the original 1st SDM is 115 s, while that
of the 1st SDM is 30 s with a 74% reduction and that of the
2nd SDM is 32 s with a 72% reduction. Compared with the
0th SDM which spends 70 s, the reduction ratios of the
proposed 1st SDM and 2nd SDM are, respectively 57 and
54%. It means that in high-spindle-speed domain, both of
the proposed 1st SDM and 2nd SDM still have much
higher computational efficiencies than the original 1st
SDM. And compared with that of the 0th SDM, they still
have higher computational efficiencies for milling stability
prediction in the high-speed milling. It can also be seen
from Fig. 2b that even compared with the high-efficiency
FDMs, the proposed methods still have near computational
time.

In terms of computational accuracy, as shown in
Fig. 4, stability lobes of the proposed 2nd SDM still
agree most with the reference stability boundary among
all the methods. For example, at a small discretization
parameter m= 20, obvious deviations can be found be-
tween the stability lobes of 0th SDM and the reference
stability boundary. Although the deviations are further
reduced by the original 1st SDM and 2nd FDM, there
still exists a visible difference from the reference stability
boundary. When using the proposed 2nd SDM, the sta-
bility lobes well agree with the reference stability bound-
ary. It further indicates that the proposed 2nd SDM has a
higher computational accuracy than other methods in
high-speed milling.

6 Conclusions and future works

Based on the Newton interpolation polynomial and an im-
proved PTI algorithm, a second-order SDM is proposed for
the milling stability prediction. From this study, the following
conclusions can be drawn:

& Instead of using a linear function in the original first-order
SDM, a second-order Newton interpolation polynomial is
utilized to approximate the time-delay term, which effec-
tively improves the approximation accuracy.

& With the help of a rapid matrix computation technique, an
improved precise time-integration algorithm is used to
calculate the resulting exponential matrices, which does
not need to solve any inverse matrices and effectively
reduces the computation time.

& Convergence analysis shows that the proposed second-
order SDM improved the convergence rate of original
SDMs greatly and also converges faster than the first-
order FDM, the second-order FDM, the NIM and the new-
ly proposed Simpson method.

& In terms of computational efficiency, compared with that
of the original 0th–1st SDMs, the proposed 2nd SDM
reduces the computational time significantly. Compared
with that of the 2nd FDM, it has a quite near computation-
al efficiency, while it is just a litter slower in computation
time.

& In terms of computational accuracy, the second proposed
method has a better agreement with the reference stability
boundary than the 0th–1st SDMs and 1st–2nd FDMs
using a smaller number of discretization parameters.

In summary, the proposedmethod is effective and has some
remarkable characteristics. In addition, the proposed method
has the potential to be used for the chatter stability prediction
in milling thin-walled workpiece and difficult-to-cut materials
including process damping [64–67], nonlinear force, complex
time-delay, et al. However, it needs future research.
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