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Abstract Government legislation and public opinion are the
main drivers behind the movement of manufacturing compa-
nies towards sustainable production. Fundamentally, compa-
nies want to avoid future financial penalties and the industry is
therefore under pressure to adapt new techniques and practices
in order to become environmentally friendly. The cost effi-
ciency of metal cutting operations is highly dependent on
accuracy, excellent surface finish and minimized tool wear
and, to this end, has traditionally made abundant use of cutting
fluid in machining operations. However, these cutting fluids
have been a major contributor to environmental and health
issues. In recent years, an enormous effort to eradicate these
adverse effects has been made with one important focus being
the implementation of minimum quantity lubrication (MQL).
In the present work, the authors have reviewed the current
state of the art in MQL with a particular focus on drilling,
turning, milling and grinding machining operations. Overall,
it is concluded that MQL has huge potential as a substitute for
conventional flood cooling.
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1 Introduction

The effectiveness of traditional machining processes is
highly dependent on the presence of cutting fluid in order
to decrease cutting temperatures and cutting forces.
Unfortunately, these cutting fluids are well known to cause
environmental and health issues. In an effort to eradicate
these adverse effects, several avenues of research have
been explored with one major focus being that of minimum
quantity lubrication (MQL) which is also known as near-
dry machining (NDM) [1, 2] or micro-lubrication [3]. The
first use of the phrase “minimum quantity lubrication” in
the literature appears to have been by Weck and Koch in
1993 in relation to the lubrication of bearings [4].
Following this, the first research on MQL relating to ma-
chining operations was in 1997 for grinding [5] and shortly
afterwards for cutting [6]. Figure 1 shows the rapid growth
in MQL publications since the early 2000s with more than
100 articles being published during 2015 as compared to
just one article in 2000 [7]. The growth in patents related to
MQL has also shown a similar trend with the first patents
being granted in the late 1990s and more than 400 patents
having been granted to the present time. MQL was initially
considered with regard to contact lubrication, e.g. roller
bearings [8, 9] and piston rings [10, 11], but since the early
2000s has tended to focus on lubrication in machining pro-
cesses. Increasing research has been conducted into its ef-
fectiveness when used for difficult-to-machine materials
such as titanium with more than 80 articles having been
published in this area since 1999 [12].

MQL has been receiving worldwide attention due to its
low oil consumption and general provision of excellent
machining performance, which has been reported to be
comparable to that of traditional flood cooling, if not better
[13–15]. The quantity of lubricant used in MQL was found
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to vary considerably between various studies. For example,
according to Tschätsch and Reichelt, the range of cutting
fluid consumption is between 50 ml/h and 2 l/h [16] where-
as other studies have reported even lower amounts of 10–
100 ml/h [17–19], which is still extremely low compared to
conventional flood cooling, where the typical rate is ap-
proximately 1200 l/h [19]. Typically, MQL is presented
to the cutting zone via an atomized spray, allowing the
lubricant to enter the cutting interface. The amount of lu-
bricant entering the interface may be adjusted by altering a
single air source. Evaluation of the MQL with respect to
flood end milling by M. Rahman et al. [20] showed that
25,260 ml/h liquid coolant could be replaced by 8.5 ml/h
vegetable oil with comparative effectiveness. The purpose
of this review is to provide readers with a clear understand-
ing of the feasibility of MQL as a substitute for conven-
tional flood cooling in machining operations.

The increasing interest to further improve MQL has given
rise to new technologies that complement the machining pro-
cess, e.g. the inclusion of nanoparticles inMQL fluids [21, 22]
and the combination of cooled air with MQL [23]. More than
50 articles have been published on MQL incorporating nano-
particles since 2008 [24] with a continuing rise in publications
which confirms the ever-growing attention that MQL has re-
ceived in the past years.

Out of nearly 600 papers considered by the authors during
the course of this work, more than half were focussed on the
four main types of machining, namely, drilling, turning, mill-
ing and grinding. It should be noted that whereas the term
machining is normally limited to drilling, turning and milling
operations, the influence of MQL on grinding was also con-
sidered in this work due to the process control issues being
similar together with the presence of chip formation. Of these
four main categories, grinding was the most popular (29%)
and followed by milling (26%) and then turning (24%) and
drilling (21%). This demonstrates that the MQL studies were
distributed relatively evenly in terms of machining types,
which, once again, confirms the high applicability of MQL.

2 Economic concerns

The high consumption of cutting fluids results in extremely
high costs worldwide. For example, the cost of purchasing and
disposing of cutting fluids in the USA has been estimated at
48 billion dollars per year [25]. In Germany, the cost has been
estimated at 1 billion German Marks [26] whereas the associ-
ated cost in Japan is 71 billion yen per year including 42
billion yen just for disposal costs [27]. The high cost of cutting
fluids is further confirmed by claims reported from various
companies. For example, it was reported that the management
of cutting fluid or coolant costs more than four times that of
the cutting tools and represents at least 16% of the product
cost [28, 29]. This surprisingly high price is supported by
studies made by different countries including America,
Germany and Spain [30]. The factors that contribute to the
high cost include system costs, personnel costs for material
monitoring and maintenance, in addition to investment costs
for splitting plants and water purification [31]. Further costs
are also incurred in the process of drying wet chips as recy-
clers only accept dry chips [28]. Manufacturers who are able
to save on cutting fluid costs and its associated equipment, in
addition to the production of clean chips, can reap the benefits
of extra profits. For example, according to Unist Inc. [32], one
of their customers reported that the company earned an extra
10 cents per kilogramme of dry chips when compared with
wet chips. It is apparent considerable savings can be made by
machining dry or near dry condition. To repeat the benefits of
NDM, it is necessary to have good knowledge of the cutting
process, which is explained in [33].

In order to achieve lubrication in dry machining conditions,
researchers have examined the application of coated cutting
tools, with it being agreed that dry machining is possible in the
presence of appropriate tool coatings [34, 35]. For example,
Dudzinski et al. studied the developments towards dry and
high-speed machining of Inconel 718 alloy and concluded
that, with the application of physical vapour deposition titani-
um aluminium nitride (PVD (Ti, Al)N)-coated tools, dry cut-
ting of Inconel 718 at higher cutting speeds up to 100 m/min
was achievable [36]. While dry machining is applicable in the
turning and milling operations of most materials, dry drilling
remains an issue. This is supported by a summary made by
Kutz [37] on the applicability of dry machining based on
machining processes and workpiece materials. The main
problem associated with dry drilling is the clogging of chips
in the drill flutes, which can result in drill failure. This phe-
nomenon was clearly shown in an experiment by Dasch et al.
where the absence of a cooling effect during the dry drilling of
aluminium produced temperatures in excess of 350 °C, which
would soften the aluminium and also compromise many
carbon-based coatings [38]. Furthermore, many of the drill
flutes eventually became clogged with aluminium and the
drilling torque increased leading to drill fracture. Such a result

Fig. 1 Number of papers published on “minimum quantity lubrication”
[7]
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confirmed the significance of heat removal in the machining
process. Excessive heat generation was also reported in the
case of dry grinding when Hadad and Hadi investigated the
surface grinding of S34700 hardened stainless steel and
AA6061 aluminium alloy using dry, MQL and conventional
flood cooling techniques [39]. A comparison was made with
respect to the maximum surface temperature rise for all
cooling techniques. In the case of stainless steel, dry machin-
ing yielded the highest temperature rise (960 °C) followed by
MQL (average of 565 °C) and flood cooling (305 °C). These
results have been supported by other research that has identi-
fied the difficulty of removing or reducing the generation of
heat in dry machining conditions. It is these types of concern
that have driven manufacturers to investigate various methods
for introducing a cooling effect in dry machining such as
through MQL.

3 MQL characteristics

It is important that MQL fluid possesses the following prop-
erties due to the requirements for sustainability and low oil
consumption:

& Biodegradable
& High lubrication
& High stability

The two most common cutting fluids used in MQL appli-
cations are vegetable-based oils and synthetic esters, owing to
their superior biodegradability [18, 40, 41]. Khan and Dhar
outlined the six main advantages of vegetable-based oils com-
pared with conventional metal working fluids as follows [42]:

1. The molecules, being long, heavy and dipolar in nature,
create a dense homogeneous and strong lubricating film
that gives the vegetable oil a greater capacity to absorb
pressure.

2. The lubricating film layer provided by vegetable oils, be-
ing intrinsically strong and lubricious, improves work-
piece quality and overall process productivity reducing
friction and heat generation.

3. A higher flash point yields opportunities for increased
rates of metal removal as a result of reduced smoke for-
mation and fire hazard.

4. The higher boiling point and greater molecular weight of
vegetable oil result in considerably less loss from vapor-
ization and misting.

5. Vegetable oils are non-toxic to the environment and bio-
logically inert and do not produce significant organic dis-
eases and toxic effects.

6. No signs or symptoms of acute or chronic exposure to
vegetable oil mist have been reported in humans.

These advantages were reflected in various studies on mill-
ing [43], drilling [44, 45] and turning [42, 46, 47]. As for
synthetic esters, similar properties were observed including
high boiling temperature, flash point and low viscosity, thus
leaving a thin film of oil on the workpiece, which aids in
corrosion resistance [40]. Some studies showed that the appli-
cation of synthetic oil outperformed vegetable and mineral
oils [48]. Other than cutting fluid, an extra medium is neces-
sary to transport the lubricant effectively into the cutting zone
(tool/work interface). Themost commonmedium used is pres-
surized atmospheric air with pressures ranging from 3 to 7 bar
[28, 49, 50]. However, in recent years, researchers have ven-
tured into the hybrid effect of cooled air with MQL in order to
enhance its cooling ability [23, 51]. Compared to conventional
flood cooling, MQL is a sustainable technique especially with
regard to its environmental aspect due to its reduced oil con-
sumption and energy consumption.

3.1 Types of MQL delivery systems

Based on selected literature [2, 28, 52], a summary of different
types of MQL delivery systems has been presented in Fig. 2.

There are two major delivery methods for MQL—one is an
external application and the other is an internal application as
mentioned in [33]. In the case of the external application, a
mixture of compressed air and oil is fed via an external nozzle
to the cutting zone from a chamber. In contrast to this, there
are two possible methods for the external application of oil
and air or aerosol (Fig. 3):

& Ejector nozzle: The compressed air and oil are supplied to
the ejector separately, and mixing occurs just after the
nozzle.

& Conventional nozzle: The aerosol is prepared in an exter-
nal atomizer and then transported to a conventional
nozzle.

The internal delivery system of MQL is also known as a
through-tool application, where the delivery of MQL is made
through the spindle. There are two different configurations
available (Fig. 4):

& Single channel: The oil and compressed air are mixed
before being supplied through the cutting tool to the
workpiece/tool zone.

& Dual channel: The oil and compressed air are delivered in
different channels and are only mixed before the holder of
the cutting tool.

Out of the four combinations mentioned earlier, the dual-
channel internal system was reported to be the ideal
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configuration, especially for drilling and boring operations
[53–55]. For example, Zeilmann and Weingaertner analysed
the drilling temperature of Ti-6Al-4V titanium alloy under
MQL conditions using different delivery methods (internal
and external) [53]. It was reported that the maximum temper-
ature increase measured in the case of internal MQL was 50%
lower than that of externally applied MQL. The main issue
with external application is that the supplied aerosol will not
be able to penetrate into the hole during machining. Besides
that, as the compressed air and oil are mixed close to the tool
in a dual-channel internal system, the supplied aerosol is af-
fected only by the rotation of the spindle for a short distance,
providing a better response in discharging the aerosol such as
reduced dispersion and dropouts, as well as producing mist
with larger droplet sizes when compared to that from an ex-
ternal mixing device [28].

4 Effectiveness of machining with MQL

Workpiece materials and types of machining process play an
important role in determining the effectiveness of a machining
performance whenMQL is used. Therefore, categorizing with
respect to material being machined can provide a better com-
parison of the effectiveness of MQL relative to the process.

4.1 Turning and milling of aluminium

Themain problem identified by researchers in the machining of
aluminium alloys is material adhesion with the amount of cut-
ting fluid determining the level of material adhesion to the
cutting tool surface. Bhowmick studied the application of
MQL with aluminium and magnesium alloys and pointed out
the presence of such an adhesion issue [14]. It was reported that
a large amount of adhered material was observed on the rake,
clearance and flank faces of cutting tools during the high-speed
milling of aluminium-silicon (319 Al) alloy in a dry environ-
ment, whereas a moderate amount of adhered material was
observed under MQL conditions with flood cooling resulting
in the least amount of material adhesion. Similar results were
reported by Sreejith in an experiment on turning 6061 alumin-
ium alloy where the amount of material adhering to the cutting
tool surface was noted to be higher in MQL machining com-
pared to flood cooling [56]. To solve the previously mentioned
problem, a more in-depth study on the adhesion of aluminium
alloy during machining was conducted by Yoshimura et al.
where it was observed that an increase in cutting speed could
reduce the amount of adhered material [57].

Another solution proposed by researchers is the application
of diamond-like coating (DLC) and diamond coating tools, as
both coatings have an extremely low friction coefficient and a
low affinity for aluminium alloys. A comparisonwas made for
DLC-coated and DLC-uncoated tools in the end milling of
A7075 aluminium alloy with a significant improvement being
noted for the case of DLC-coated tools [58]. Fortunately, the
effect of material adhesion towards machining performance is
not highly significant. Despite experiencing material adhesion

Fig. 3 The principles of ejector nozzle and conventional nozzle in MQL
external applications (redrawn from [2])

Fig. 4 The principles of single channel and dual channel inMQL internal
applications (redrawn from [19])

Fig. 2 MQL delivery systems

324 Int J Adv Manuf Technol (2017) 92:321–340



in the turning of 6061 aluminium alloy, it was reported that the
application of MQL managed to reduce tool wear [56]. This
was confirmed by Tsao who investigated the milling of
A6061P-T651 aluminium alloy [59] where it was noted that
the application of sulphurous boric acid ester cutting fluid in
MQL conditions reduced the average flank wear by 12.5%
compared to dry milling. Aware of the positive results in terms
of tool wear, Lacalle et al. recommended the application of
MQL for the high-speed milling of aluminium alloys [60].

Apart from tool wear reduction, the surface quality of the
workpiece was found to be improved under MQL conditions.
Diciuc and colleagues studied the effect of different lubrication
methods (MQL, flood cooling and dry) on the surface rough-
ness of a milled 7175 aluminium alloy workpiece [61]. Based
on the experimental results, the lowest surface roughness value
was achieved under MQL conditions in low (118 to 170 mm/
min) and high (268 mm/min to 375 mm/min) feed rates.

4.2 Turning and milling of steel

Various studies have shown the positive effects of MQL in the
turning of steels. For example, Sohrabpoor et al. used four
different cooling conditions when turning AISI 4340 stainless
steel workpieces: dry, air cooling, wet andMQL (where soluble
oil was the cutting fluid used in wet andMQL conditions) [62].
Based on the results, the best performance was obtained under
MQL conditions with respect to surface roughness and flank
wear (Fig. 5). The lower growth of flank wear in MQL turning
can be explained by the heat reduction at the tool-chip interface
as the mist produced in MQL has a higher interface penetration
ability compared to wet cooling [62]. This result was confirmed
by Dhar and colleagues who conducted a series of experiments
with regard to the turning operations for both AISI 4340 and
AISI 1040 steels [63]. It was reported that the heat reduction
contributed to maintaining the sharpness of the cutting edge,
thus providing a longer tool life, reduced tool wear, better sur-
face finish and better tolerances. Furthermore, the chips pro-
duced from the turning of AISI 1040 steels under MQL condi-
tions with a flow rate of 60 ml/h portrayed desirable properties
such as being smoother, lighter in colour and with no trace of
built-up edge (BUE) formation [63–65]. Ginting et al. conclud-
ed that, compared to traditional coolant, MQL can reduce the
machining process cost of AISI 4340 steel since it requires less
power and a shorter machining time [47].

Similar to turning, there was also a reduction in tool wear
when milling steel workpieces. A machining test involving
the milling of ASSAB HH718 steel reported reduced flank
wear under MQL cooling conditions, especially at lower
speed, feed and depth rates [66]. Overall, it was concluded
that the performance shown was comparable to that from
flood cooling with it being noted that the direction of the
MQL nozzles is particularly important in the evaluation of
tool wear as it is imperative that lubrication occurs between

the chip and rake face [66]. With regard to surface quality in
the milling of steels, it was concluded that cooling conditions
did not affect burr height whereas the geometry of the milling
cutter tool did [67].

4.3 Turning and milling of difficult-to-machine materials

Studies on the turning of difficult-to-machine materials under
MQL conditions have produced mixed results. The main de-
bate sparked amongst the studies was based on the cooling
and lubricating abilities of MQL. A study on the milling and
turning of Ti-48Al-2Cr-2Nb intermetallic alloy under different
cooling conditions (wet cooling, dry and MQL) was conduct-
ed [68]. The only significant improvement observed under
MQL conditions was in respect to surface roughness (Fig. 6)
whereas wet machining was the ideal cooling condition in
terms of tool wear/life (Fig. 7) [68]. Difficult-to-machine ma-
terials are becoming increasingly popular due to their superior
properties including exceptional strength and high corrosion
resistance [69]. Some common examples of these materials
are titanium alloys, nickel-based alloys and iron-based alloys
[70, 71]. However, the metallurgical changes made to these
materials have also reduced their machinability. The main
challenge faced by manufacturers in the machining of
difficult-to-machine materials is the generation of high tem-
peratures. Harder materials usually produce a higher machin-
ing temperature when compared to softer materials as they
possess a higher specific cutting energy, higher friction and
deformation [72].

Fig. 5 Effect of lubrication onmachinability characteristics of AISI 4340
stainless steel turned parts for three different machining conditions: a
surface roughness and b flank wear, with it being noted that MQL
machining outperformed machining in dry, air cool and wet
environments (redrawn from [62])
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Park et al. showed that MQL experienced intermediate
flank wear compared with both dry and wet machining with
its pattern being similar to that of dry machining [73]. Such a
result can be explained by the significantly better cooling ca-
pability of wet machining compared to both dry and MQL
conditions. However, Wang et al. argued that MQL has a
similar cooling and lubrication ability as for flood cooling
[74]. They studied the effect of different cooling conditions:
wet, dry and MQL in the continuous turning and interruptive
turning of Ti-6Al-4V titanium alloy. MQL exhibited the best
overall performance in both continuous and interruptive turn-
ing, especially for two slot interrupted cutting and continuous

cutting at a higher feed rate and cutting speed. It was sug-
gested that these positive results were obtained due to the
better lubrication ability of MQL compared to flood cooling
[74]. However, Boswell and Islam found that, compared to
MQL, flood produces a better surface finish whilst cryogenic
cooling improved tool life on a turning test of titanium alloy
[75, 76].

In addition to titanium alloys, nickel-based alloys have also
been investigated under MQL conditions. A nickel copper
alloy (MONEL alloy K-500) was studied under different
cooling conditions [77]. From comparison of dry and MQL
conditions, it was concluded that MQL was a better cooling
condition as it had the ability to lower the surface roughness
and cutting force by 38 and 59%, respectively [78]. It was
further explained that the improvement in surface roughness
or surface quality is a result of lower cutting temperature [79].
In comparison to the suggestion of Wang et al. [74], MQL
exhibited a cooling effect only in the turning experiment of
Waspaloy conducted by Beno et al. [80] as evidenced by the
absence of a significant reduction in the aspect of cutting
force, which could only be explained by the lack of
lubrication.

Park et al. investigated the face milling of Ti-6Al-4V tita-
nium alloy using a series of eco-friendly machining technol-
ogies including MQL, cryogenic machining with liquid nitro-
gen, combination of cryogenic and MQL and laser-assisted
machining (LAM) [73, 81]. Results from these green tech-
niques were then compared to dry and flood cooling. The
main outcome of the experiment was a comparison of the
electric power consumption by all machining methods
(Fig. 8). The electric power consumption was found to be
maximum under wet machining conditions (2.75 kW) and
followed by LAM, cryogenic, dry and MQL with the power
consumption of MQL being only 1.53 kW. The high power
consumption of wet machining can be explained by the appli-
cation of a pump for delivering and recycling cutting fluids.
As for MQL, it is suggested that the minimal tool wear ob-
served was the key factor leading to the lowest power con-
sumption [73].

Thamizhmanii and Hasan conducted an experiment on the
milling of Inconel 718 with the conditions being vegetable-
based MQL and dry milling with the cutting tool being super
hard cobalt [82]. It was reported that the cutting tool travelled
longer under the condition of MQL with a flow rate of
37.5 ml/h providing the optimum surface roughness and flank
wear of the material. Moreover, the reduction in flank wear led
to a tool life increase of 43.75% compared to dry milling [82].

4.4 Drilling of aluminium

Coated drills have also receiving great attention in deep hole
drilling of aluminium alloy [83]. For example, Bhowmick and
Alpas investigated the effect of a low-friction coating drill

Fig. 7 Effect of lubrication conditions on the turning properties of a
RCMT 1204 M0-SM S05F coated tool: a maximum flank wear (cutting
speed 50 m/min; feed rate 0.1 mm/rev; depth of cut 0.3 mm) and b tool
life (feed rate 0.1 mm/rev; depth of cut 0.3 mm) (redrawn from [68])

Fig. 6 Surface roughness of turned parts under different cooling
conditions (redrawn from [68])
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such as diamond-like carbon (DLC) under H2O/MQL condi-
tions at a rate of 30 ml/h with positive results [84]. Another
example was that of Fox et al. who studied the influence of
different coatings under MQL conditions on the drilling of
aluminium silicon B319 cast alloy with diamond-coated and
low-hydrogen DLC drills exhibiting the best performance in
the drilling of 50 holes with the latter being the best whilst
drilling 500 holes [85]. In an attempt to reach 7000 holes, tool
failure was experienced by the diamond-coated drill after
4300 holes whereas the low-hydrogen DLC-coated drill
succeeded with minimum tool wear. However, several studies
have also shown positive results without the use of coated
drills. Davim and colleagues [86] investigated the effect of
different cooling conditions on the drilling of AA1050 alu-
minium with the cutting tools and lubricants being uncoated
K10 carbide drills and emulsion oil, respectively, under MQL
conditions. Comparing the results with those recorded under
flood cooling, it was reported that the performances were
comparable. This was confirmed by additional experiments
conducted by Braga and colleagues [87] who compared an
uncoated K10 carbide drill and diamond-coated carbide drill
under both MQL and flood cooling conditions. Mineral oil
was used in the application of MQL whereas soluble oil was
supplied in the latter. It was shown that the diamond-coated
drill did not present any advantages when compared to the
uncoated carbide drill and that both were subjected to similar
amounts of flank wear. In fact, a higher feed force value was
observed during the use of the diamond-coated drill due to the
presence of adhered chips on the tool nose.

4.5 Drilling of steel

Similar to the MQL drilling of aluminium alloys, the dril-
ling of steels using MQL has been found to yield positive
results. For example, the drilling of AISI 1040 steel with
high-speed steel (HSS) drills under MQL conditions was
found to improve the accuracy with an average temperature
reduction of 10% at the tool chip interface in addition to
providing the best hole surface texture [88]. Zeilmann

et al. conducted drilling tests on AISI P20 steel using car-
bide drills with different drilling conditions being applied
during machining, namely dry, emulsion and MQL [89].
Continuous drilling was adopted for the emulsion case
whereas a pecking cycle was used for both dry and MQL
conditions with an advance of 1.5 mm followed by a retreat
out of the hole. The adoption of a pecking cycle was under-
taken to avoid microchipping and facilitate chip evacuation.
Figure 9 shows the plastic deformation experienced by the
workpiece during drilling with the plastic deformation ex-
perienced under dry conditions being larger near the begin-
ning and bottom of the hole. The emulsion technique and
MQLwere found to be comparable near the beginning of the
hole, but the plastic deformation experienced under emul-
sion cooling was larger at the end of the experiment. This
difference can be explained in terms of the penetration of
cutting fluid. At the beginning, the cutting fluid had no
problem penetrating the cutting zone under emulsion con-
ditions, but this became increasingly difficult as the exper-
iment progressed. Positive results were also observed in a
deep hole drilling experiment with the tool life being im-
proved in the machining of plain carbon steel using water-
based lubricant [90].

4.6 Drilling of difficult-to-machine materials

A new group of automotive materials known as austempered
ductile iron (ADI) is categorized as a difficult-to-machine ma-
terial due to its impressive strength and hardness. A study on
the drilling of ADI was conducted under dry, flood and MQL
conditions by Meena and Mansori [91] with MQL being
found to offer good machining performance in terms of aver-
age torque, average thrust force, average surface roughness
and flank wear width, although not to the same extent as those
obtained from conventional flood cooling (Fig. 10). Rahim
and Sasahara evaluated the effects of both synthetic esters
and palm oil-based MQL in the drilling of Ti-6Al-4V titanium
alloy and compared the results to those obtained from dry
milling [44]. The main result of the research was the excellent
improvement in terms of tool life with the improvement made
from both synthetic esters and palm oil-based MQL [44].
Another study on the drilling of Ti-6Al-4V aluminium alloy
examined the drilling temperatures under different conditions
[53] with internal emulsion exhibiting the smallest maximum
temperature. Brinksmeier et al. investigated the effect of MQL
on chip removal in drilling Ti-6Al-4V [92]. In addition, the
maximum temperature obtained from internal MQL was 50%
lower than that of externally applied MQL. This result was
confirmed by Brinksmeier and Janssen who recommended the
application of internal MQL for the machining of multilayer
composite materials comprising carbon fibre reinforced plas-
tic (CFRP), titanium and aluminium alloys [54].

Fig. 8 Influence of cooling method on electric power consumption at a
cutting speed of 76.4 m/min (redrawn from [73])
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4.7 Grinding of aluminium

Due to the adhesive property of aluminium, grinding can be
challenging as any chips generated tend to clog the grinding
wheel [93]. Contrary to the good surface quality reported in
milling experiments [61], the surface quality of AA6061 alu-
minium alloy inMQL grinding was found to be unsatisfactory
with the surface roughness being between that of conventional
flood cooling and dry grinding. Furthermore, under lower
removal rates, it was observed that the surface quality obtain-
ed from dry grinding surpassed that of MQL [39]. Aware of

this issue, researchers have indicated that a silicon carbide
(SiC) grinding wheel is ideal for aluminium alloys as the ap-
plication of a SiC grinding wheel tends to lower forces and
surface roughness [39, 94]. This result is attributed to the
easily fractured SiC, which provides new cutting edges with
minimum tool wear (i.e. self-sharpening effect) during grind-
ing [95]. Other than the type of grinding wheel, the optimiza-
tion of cutting parameters is essential in the grinding of alu-
minium alloys. A study on the effects of cutting parameters on
the abrasive belt grinding of LY12 aluminium alloy was car-
ried out with an increase in belt speed tending to decrease the
surface roughness of the workpiece whereas an increase in
workpiece travel speed or grinding depth led to a higher sur-
face roughness [96].

4.8 Grinding of steel

Awide range of steels was investigated under grinding MQL
conditions by Barczak et al. [13] and included common steels
such as EN8,M2 and EN31, with a common alumina grinding
wheel being used. It was reported that a comparable perfor-
mance, if not better, can be achieved under MQL condition
compared to flood cooling. However, MQL is not suitable for
very hard materials [13], which can be explained by the high
heat generated from grinding. A thermal analysis of MQL on
the grinding process was made with it being observed that
MQL provided good lubrication but was lacking in the
cooling aspect compared to conventional flood cooling [97].
This result was confirmed by Yamin et al. in an experimental
investigation of MQL grinding of AISI 1080 steel [98]. Mao
et al. also noted the same trend based on the grinding of AISI
52100 hardened steel under dry, wet and MQL conditions
with different cutting fluids, namely pure oil and a mixture

Fig. 10 Effect of cooling
conditions on a average torque, b
average force, c average surface
roughness and d flank wear width
(redrawn from [91])

Fig. 9 Average plastic deformation measured near the beginning and
bottom of the holes (redrawn from [89])
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of oil and water [99]. The workpiece temperature was mea-
sured under all conditions with the results being presented in
Fig. 11.

The peak temperatures for wet and dry grinding were found
to be 192 and 561 °C, respectively, with the peak temperature
of MQL grinding being 90–130 °C lower than dry grinding. It
is also apparent that there was no significant improvement
with the application of oil-water cutting fluid in MQL com-
pared to MQL using pure oil with only a small (40 °C) de-
crease in peak temperature for the former compared to the
latter [99]. This result indicates that, unlike drilling of alumin-
ium alloys, the addition of water did not significantly improve
the grinding of steel. Therefore, instead of focusing on the
types of lubricant, Hadad et al. focused on the type of grinding
wheel whilst investigating the temperature and energy parti-
tion for the MQL grinding of a hardened 100Cr6 steel work-
piece under three cooling conditions: dry, wet and MQL
[100]. Awater-miscible fluid (5% concentration) was selected
for conventional wet cooling whereas an additional mineral oil
and hydrocracked oil were used during theMQL tests with the
MQL flow rate being in the range of 20–100 ml/h under an air
pressure of 4–7 bar. Two types of grinding wheels were used,
namely resin bond cubic boron nitride (CBN) and aluminium
oxide, with the results showing that with the appropriate pa-
rameters, MQL grinding is not only applicable but in fact
provides for a better performance compared to conventional
flood cooling (Fig. 12). Based on that experiment, the ideal
parameters for the MQL grinding of hardened 100Cr6 steel
are found to be CBN wheel with mineral oil-based MQL at an
oil flow rate of 100 ml/h and an air pressure of 4 bar. The
application of a CBN wheel also lowered the energy partition
of the workpiece to a maximum of 31% under the same MQL
conditions with this being explained in terms of the higher
thermal capability of the CBN superabrasive [100].

4.9 Grinding difficulties using MQL

Concerning the grinding of challenging materials, Payne ex-
plained that it is of utmost importance that the coolant be
delivered into the cutting zone [101]. Moreover, the optimiza-
tion of parameters such as type of abrasive, coolant, cutting
speed and feed rate is essential in order to avoid damaging the
workpiece [101]. There is very limited literature available for
the grinding of difficult-to-machine materials, especially un-
der the application of MQL conditions. However, Sadeghi
et al. performed an extensive evaluation on the MQL grinding
of Ti-6Al-4V titanium alloy [102]. An extensive range of var-
iables were applied including work speed, depth of cut and
cooling conditions whilst additional parameters that were
evaluated under MQL conditions have been shown in
Table 1. It was observed that MQL grinding yielded a larger
surface roughness compared to flood cooling (Fig. 13) and
that MQL with vegetable oil resulted in a particularly large

surface roughness. However, a slight variation was recorded
when synthetic oil was used as the MQL cutting fluid [102].
Due to its less than satisfactory performance, researchers have
been focusing on advanced techniques such as using nanopar-
ticles as additives for MQL cutting fluids [103] and cryogenic
pneumatic mist jet (CPMJ) cooling [104]. Setti et al. per-
formed an experiment using water-based Al2O3 fluid under
MQL conditions for the grinding of Ti-6Al-4V titanium alloy
[103] with an MQL flow rate of 18 ml/h and a pressure of
1.5 bar with two volume fractions of Al2O3 nanofluids (1.0
and 4.0%). The results showed that the grinding force
(Fig. 14) and surface roughness (Fig. 15) were significantly
enhanced under the application of a nanofluid compared with
conventional MQL using coolant and water [103].

5 Summary of machining using MQL

The general lack of adhesion problems during the machining
of steels would suggest that MQL can result in improved

Fig. 12 Influence of grinding wheel type and cooling condition on the
surface roughness of a 100Cr6 hardened steel (depth of cut 30 μm;
workpiece speed 2000 mm/min; wheel speed 30 m/s) (redrawn from
[100])

Fig. 11 Influence of cooling condition on the grinding temperature of
AISI 52100 hardened steel (redrawn from [99])
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performance compared to conventional cooling techniques.
This trend was highlighted in the literature with MQL being
concluded to be applicable in the major machining operations:
turning, milling and drilling, for steel workpiece materials.
However, it is important to note the ideal parameters required
in order to achieve satisfactory machining performance under
MQL conditions, especially for drilling operations. For MQL
drilling, a pecking cycle is advisable in order to avoid chip
clogging and eventual tool failure. This can be explained by

the ability of MQL droplets to reach the internal hole surfaces,
providing both lubrication and cooling effects [105]. Based on
the available research, it was shown that the amount of cutting
fluid used in the machining of aluminium alloys significantly
influences the amount of material adhesion on the cutting tool.
Therefore, dry machining is not advisable for aluminium and
its alloys as dry machining involve zero cutting fluid. On the
other hand, positive results were obtained in the milling and
turning of aluminium alloys with MQL despite the adhesion

Fig. 13 Effect of cooling
condition on surface roughness
for the grinding of Ti-6Al-4V
titanium alloy as function of
workpiece speed: a 20, b 30 and c
40 m/min and depth of cut: d 2, e
5 and f 7 μm (redrawn from
[102])

Table 1 Grinding conditions
Grinding mode Plunge surface grinding, down cut

Grinding wheel Al2O3 (91A46I8AV)

Grinding machine FAVRETTO MB100 CNC surface grinder

Wheel speed (Vs) Vs = 15 m/s

Workpiece speed (Vw) Vs = 20, 30, 40 m/s

Depth of cut (DOC) a = 0.002, 0.005, 0.007 mm

Environments Wet and MQL

Conventional wet grinding fluid Soluble oil (Blaser BC35) in a 5% concentration

MQL flow rate Q = 20, 40, 50, 60, 70, 100, 140 ml/h

Air pressure P = 3, 4, 5, 6 bar

MQL oil Vegetable oil, synthetic oil, Behran cutting oil 34 and Behran cutting oil 53

Workpiece material Ti-6Al-4V (50 mm × 20 mm × 10 mm)

Dresser Six point diamond dresser

Dressing depth Total depth of dressing (ad) = 0.03 mm

Dressing speed Vd = 5 mm/s

As used by Sadeghi et al. [102]
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issue, especially in the aspects of tool wear and surface rough-
ness. As for drilling processes, although it was shown that the
DLC-coated drill is compatible for the drilling of aluminium
alloys under MQL condition, uncoated K10 carbide drills
would suffice by pairing it with appropriate lubricants, i.e.
low-viscosity lubricants.

The machining of difficult-to-machine materials is more
complex mainly due to their higher hardness, and this is rec-
ognized within the literature. Despite having a considerable
number of studies performed for the MQL turning of difficult-
to-machine materials, researchers were not able to arrive at a
consensus with regard to the cooling and lubricating proper-
ties of MQL systems. Nevertheless, some improvements were
observed with MQL, especially in the milling of difficult-to-
machine materials, with the main improvements being with
regard to tool wear and tool life. For drilling and grinding
experiments, MQL showed intermediate results with several
studies indicating that MQL was usually better than dry ma-
chining but that conventional flood cooling ultimately
outperformed MQL.

In general, MQL is an effective technique for machining.
However, the extent of its effectiveness is dependent on

various factors including workpiece material, type of machin-
ing operation, machining and other parameters associatedwith
MQL such as flow rate, compressed air pressure, type of lu-
bricant and delivery method. However, in spite of this, there
were two consistent conclusions obtained from the application
of MQL:

1. Tool wear improvement: Compared to conventional flood
cooling, tool wear improvement [59, 106] was consistent
in most studies taking into account the differences in ma-
terials and machining types.

2. MQL is better than drymachining: Other than themachin-
ing of low hardness steels, MQL outperforms dry machin-
ing in the previously mentioned materials. This can be
explained by the application of cutting fluids, since lubri-
cation and cooling are themain functions of cutting fluids.
Therefore, the absence of cutting fluids in dry machining
is not ideal.

Based on the reviewed literature, there is still a debate
concerning the cooling and lubrication capabilities of MQL.
Some researchers have suggested that MQL lacks a cooling
effect [97–99] while others have suggested the opposite point
of view [74, 78]. These inconclusive results act as a key mo-
tivator to the advancement of MQL, which will be discussed
in the next section.

6 Advancements in MQL

Although MQL is proven to be a good alternative for tradi-
tional flood cooling, its cooling and lubricating effects are still
in question. Therefore, researchers have been exploring ways
to enhance the effectiveness of MQL by improving both its
cooling and lubricating effects as shown in Fig. 16 as pro-
posed by the current authors.

6.1 MQL with additives

Since MQL involves only a small amount of lubricant, it is
essential to make sure that the lubrication provided is suffi-
cient. Lubrication is important as it can affect the life of a
cutting tool as well as the surface quality and tolerance of
the machined workpiece [107]. Therefore, researchers have
investigated the addition of nanofluid [21, 108, 109] and ionic
liquid [110–112] in order to study their effect and
performance.

6.2 MQL with nanolubricants

Nanolubricants or nanofluids are defined as suspensions of
nanoparticles in a base fluid, and they can be designed or
engineered based on the desired properties. The four design

Fig. 15 Effect of MQL cutting fluid on surface roughness for a Ti-6Al-
4V titanium alloy (wheel speed 16.34m/s; table speed 15m/min; depth of
cut 10 μm) (redrawn from [103])

Fig. 14 Effect of MQL cutting fluid on grinding force for a Ti-6Al-4V
titanium alloy (wheel speed 10.89 m/s; table speed 3 m/min; depth of cut
10 μm) (redrawn from [103])
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parameters are nanoparticles, base fluid, additives and scale
[113]. The addition of these nano-sized particles not only per-
mits penetration to the cutting interface but also increases the
heat transfer capability as the nano-sized solids generally have
a much higher thermal conductivity compared to liquids [113,
114] as shown in Table 2.

The thermal behaviour of nanofluids containing various
nanoparticles has been widely researched including Al2O3

[115], TiO2 [116, 117], SiC [118] and NiFe2O4 [119].
Overall, it has been observed that the thermal conductivity
of the MQL increases as the concentration of nanoparticles
increases, although the linearity of the relationship is still in
question [120].

Another advantage offered by nanofluids is the lubrication
mechanism of nanoparticles. Nanofluids have higher lubricity
as the nanoparticles provide for several beneficial mechanisms
including the formation of a surface-protective film, rolling
effect, polishing effect and mending effect, whereupon the
nano-sized particles can be deposited on the “damaged” sur-
face in order to compensate for the loss of mass [121–123].

Aware of the multiple benefits offered by nanofluids, con-
siderable research has been carried out to better understand the
effectiveness of nanoparticles as an additive to lubricants for
contact lubrication applications [124–126]. As an extension to
that, the effects of nanofluids in MQL applications have re-
cently been investigated and have yielded positive results. A
summary of the effects of various nanoparticles in machining
is presented here:

& MoS2-paraffin oil/soybean oil [108]: Better performance
was shown with higher concentrations of nanoparticles. A
minimum friction coefficient of 0.22 and a reduction of
53% in energy consumption were observed with these
nanolubricants whilst wheel life was enhanced.

& MoS2-paraffin oil/soybean oil [109]: A reduction of 45–
50% in the force-ratio and 48–55% in abrasive wheel wear
was observed with these nanolubricants.

& Graphite-LB2000 vegetable-based oil/PriEco 6000 unsat-
urated polyol ester [127]: Graphite oil-based nanofluid

MQL led to a reduction in cutting force and temperature
compared to dry cutting and conventional MQL in turn-
ing. Increasing the mass fraction of nanographite caused a
reduction in the cutting force and temperature, irrespective
of the base oil type. However, with the same mass fraction
of graphite nanoparticles, LB2000 exhibited a lower cut-
ting force and temperature especially at high cutting
speeds.

& Al2O3-pure water [21]: Addition of nanoparticles led to a
reduction in the tangential grinding force and grinding
force ratio. The peak temperature within the cutting zone
of nanofluid MQL grinding was approximately 40 °C
lower than for normal MQL grinding.

& MoS2-paraffin oil/soybean oil [114]: MQL with nanopar-
ticles showed an energy ratio coefficient and specific
grinding energy of 41.4 and 35%, which was lower com-
pared to conventional MQL (52.1 and 45.5%,
respectively).

& ZrO2-oil [114]: The presence of these nanoparticles en-
sured satisfactory cooling performance while the presence
of MoS2 showed satisfactory lubrication performance.
The cooling effects of 2 vol% nanoparticles was consid-
ered ideal.

& MOS2-ECOCUT HSG 905S [128]: The quality of the ma-
chined surface was improved when 0.5 wt% of nanopar-
ticles was added to the MQL as opposed to either pure oil
or any other nanoparticle concentrations.

& MoS2-Eraoil KT/2000 commercial vegetable oil [22]: The
minimum initial tool wear and surface roughness were
obtained using nanofluid MQL at a 40 ml/h flow rate as
compared to conventional MQL and dry cutting.

It is apparent from the previous research that the addition of
nanoparticles to MQL fluid has proven successful. Significant
improvements can be seen in various parameters including
energy consumption [108, 114], cutting and grinding forces
[21, 109, 114], temperature [127], tool wear [22] and surface
quality of the workpiece [22, 128]. Recently, a hybrid ofMoS2
and carbon nanotube (CNT) nanoparticles was investigated by
Zhang et al. in the MQL grinding of Ni-based alloy [129] with
it being reported that a 6% mass fraction of MoS2/CNT nano-
particles with a ratio of 2:1 offered better lubrication compared

Fig. 16 Advancements in MQL

Table 2 Thermal conductivity at room temperature of typical solids
and liquids used in MQL with nanolubricants

Material Thermal conductivity (W/mK)

Carbon nanotubes 3000

Aluminium oxide 40

Water 0.60

Vegetable oils 0.18

Source: [113]
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with pure nanoparticles. However, this approach is relatively
new, and in order to obtain maximum efficiency in machining
processes, research on the compatibility between base fluid
and nanoparticles, nanofluid and workpiece material, in addi-
tion to the lubrication system set up, still needs to be
investigated.

Despite providing positive effects in machining, there are
concerns expressed by manufacturers towards the use of
nanofluids. Although one of these is economic in aspect, for-
tunately, the price of nanofluid is similar to that of the base
fluid. For example, the cost of nanolubricant containing
0.5 wt% MoS2 concentration is only 2.5% higher compared
to the standard lubricant, which is a good trade-off when tak-
ing into account the improved performance [128]. Perhaps, a
more important concern is the toxicology of nanoparticles.
Ironically, the advantageous size of nanoparticles in machin-
ing operations is an issue affecting human health as these
particles can be easily transferred to the human body through
inhalation or transdermally. Once inside the human body, the
nanoparticles will translocate to other tissues and organs,
resulting in damage [130–133]. As there are countless vari-
ables involved in the engineering of nanoparticles, there is no
regulatory framework yet available to accommodate this is-
sue. Nevertheless, it is advised to use the smallest feasible
concentration of nanoparticles in order to minimize any tox-
icity [134].

6.3 MQL with ionic liquid

Studies have also been made on ionic liquid (IL), which is an
organic salt with low melting point (<100 °C), as an additive
for MQL applications [110, 135]. With its excellent lubrica-
tion properties, ILs have had extensive research in the area of
sliding/rolling between different material pairs, for example,
steel to steel [136, 137], steel to aluminium [138–140] and
titanium to steel [141, 142]. In addition, the low volatility of
ILs has encouraged researchers to extend their study into
MQL applications as a step towards green machining [143].
However, the application of IL-based MQL is relatively new
and there is limited literature available. Davis et al. recently
reported a 60 and 15% reduction in tool wear in the machining
of titanium when compared with dry machining and conven-
tional flood cooling, respectively [110]. A milling experiment
on AISI 1045 carbon steel has also been conducted with it
being reported that the surface roughness of the workpiece
under the application of IL-based MQL was comparable with
that of flood cooling whereas MQL without the addition of IL
yielded higher surface roughness [111]. Positive results on
sur face roughness have a lso been noted in the
micromachining of Al 5052 aluminium alloy [112].

The biggest similarity in the aforementioned experiments is
the amount of IL involved with between 0.5 and 1 wt% of IL
typically being added into the base oil for MQL applications.

This is a significant point as it shows that even a small amount
of IL is sufficient to affect the cutting performance in machin-
ing processes, thus highlighting that IL has the potential to
improve the effectiveness of MQL. However, similar to the
case of nanoparticles, the two main concerns associated with
IL are economic and ecological in nature. It has been pointed
out that the price of IL is relatively high with a typical range of
€23 to €100/kg [144]. With respect to ecology, it is proving
challenging for researchers to study its toxicology as the IL
can be significantly engineered based on the desired properties
[145]. Some reports have stated that the toxicity found in IL
was comparable or even greater than that of common solvents
such as methanol, acetone and ethanol [146–148]. However,
such a view is not unanimous between researchers [149] and it
is believed that the contradictory results can be attributed to an
inadequate testing methodology.

6.4 MQL with cooled air/gas

As mentioned earlier, it has been demonstrated that the
cooling properties of MQL are not sufficient [150, 151] with
this being attributed to the common medium used in
transporting lubricant droplets, namely, room-temperature
compressed air. To counter this issue, researchers have started
to combine cooled air/gas and MQL with promising results
[152, 153]. Impingement delivery of MQL has been investi-
gated in an attempt to improve the cooling effect as shown the
need for further investigation [154].

6.4.1 MQL combined with a Ranque-Hilsch vortex tube

The Ranque-Hilsch vortex tube (RHVT) is widely used in
various operations including thermal tests, dehumidification,
gas liquefaction, ice production and mixture separation whilst
also providing cooling and heating applications in machining
processes [23, 155]. RHVT comprises one or more inlet noz-
zles, allowing the flow of compressed air. The separation of
gas takes place in the tube whereupon two streams with dif-
ferent temperatures (hot and cold) will be divided towards
different exits [156]. One of the big advantages of RHVT is
that it does not involve any moving parts and its functionality
requires no chemicals or electricity, thus requiring little in the
way of maintenance [23, 155].

Researchers have evaluated several aspects associated with
RHVT including its cooling performance [157] as well as
influential parameters such as length-to-diameter ratio [158,
159] and types of air [160]. Based on the available literature,
significant improvements have been observed in a comparison
between the cutting tool temperatures with and without the
application of RHVT. For example, it was found that the max-
imum performance of RHVT resulted in a temperature differ-
ence of 97 °C [157] with this decrease in temperature also
leading to the minimization of BUE and thus providing a
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better-quality product for soft materials [161]. Furthermore,
tool wear can be reduced by the application of RHVTcooling,
especially for higher cutting speeds [162].

In accordance to the aforementioned benefits, researchers
have proposed the combination of MQL and RHVT cooling
with a suitable mixture of air and liquid. It is believed that, if
successful, the combination of both techniques will provide a
higher pressure with better lubrication, thus prolonging tool
life [23, 163]. This has led to promising results for the case of a
finite element modelling (FEM) and computational fluid dy-
namics (CFD) study into the tool tip temperature. It was ob-
served that the maximum interface temperature under the con-
dition of combinedMQL and RHVTcooled air was only 10%
higher than that of wet machining, which suggested the pos-
sibility of tool failure to be low [164]. In an experiment on end
milling involving MQL and cooled (−5 °C) air, a comparable
surface finish and a low cutting force were observed as had
been the case for conventional wet milling of aluminium alloy
[153].

However, overall, there is very limited research available
concerning this technique. Therefore, future work incorporat-
ing different materials and machining processes is suggested
in order to allow a more thorough evaluation on the effective-
ness of combined MQL and RHVT cooling.

6.5 Cryogenic MQL

Cryogenic MQL (CMQL) is a combined lubrication system
involving the techniques of cryogenic cooling and minimum
quantity lubrication. Similar to the approach of combined
MQL and RHVT cooling, the main theory behind this tech-
nique is to cool the workpiece. Upon reviewing the available
literature for both combined MQL and RHVT and CMQL, it
is obvious that the main difference between the aforemen-
tioned techniques is the method used in the transportation of
cold air. As the name implies, RHVT is used in the method of
MQL and RHVT [153, 164] whereas a refrigeration system is
used in CMQL [165, 166].

Cryogenic cooling has been studied extensively in different
machining processes including milling [167, 168], turning
[169, 170], drilling [171] and grinding [172] with positive
results. However, the combination of cryogenic cooling and
MQL has only recently been explored. Based on studies made
on the machining of titanium alloys, CMQL showed a signif-
icant reduction in temperature (cutting temperature and ma-
chined workpiece), cutting forces, surface roughness and tool
wear [51, 173]. These positive results are seen in other studies
with Zhang et al. reporting a significant improvement in lo-
calized flank wear during the hard milling of H-13 steel [165]
whilst a 124% improvement in tool life for the machining of
Inconel 718 under CMQL conditions has been noted when
compared to dry machining [166]. Other than practical exper-
iments, computer-aided analysis has been performed to

evaluate factors that may affect the performance of CMQL
with the following parameters being suggested for optimum
performance: lower temperature, higher flow of cold air, 8.5-
mm inlet diameter and 3-mm outlet diameter (for nozzles)
[174].

6.6 MQL combined with carbon dioxide

Another similar approach that has been studied involves the
combination of MQL and CO2 at low temperature with the
aim of creating a frozen layer of oil at the contact interface. In
order to achieve an ideal frozen layer thickness, a CO2 flow
rate of typically 40 l/min is applied at 238 K following the
application of oil by MQL. It has been noted that this new
approach can result in improved surface finish and lower
wheel wear compared to conventional flood grinding in addi-
tion to requiring approximately half the energy compared to
dry grinding [175, 176]. A similar approach involving super-
critical CO2 and soybean oil was carried out in the rough
turning of Inconel 750 with the main reason behind the use
of supercritical CO2 being to counter the issue of limited heat
dissipation offered by compressed air. Supercritical CO2 has
excellent solubility for aliphatic and most aromatic hydrocar-
bons and thus can carry a wide range of metalworking lubri-
cants in solution [151, 177]. The results obtained from the
experiment were extremely promising with an increased tool
life and material removal rate together with a reduced tool
wear rate [152].

Despite yielding positive results, the use of CO2 for ma-
chining operations is controversial due to it being one of the
primary greenhouse gases. It is apparent that the increased
concentration of greenhouse gases may result in further rises
in global temperature, which is undesirable [178]. Whereas
the use of alternative gases such as nitrogen has been sug-
gested by some researchers [179], others have countered oth-
erwise with Lozowski [180] stating that there will be no con-
tribution to the greenhouse effect if the CO2 is initially with-
drawn from the environment and then returned to the environ-
ment following its use. Such an argument was supported by a
life cycle assessment that showed a lower overall environmen-
tal impact for supercritical CO2 compared with aqueous met-
alworking fluid [181]. Furthermore, reusing waste CO2 is en-
couraged in order to reach a net reduction of the respective
global warming potential (GWP) [182].

6.7 Summary of MQL developments

To determine the effectiveness of various types of MQL de-
velopment, four main parameters were looked at in terms of
machining: tool wear, tool life, surface quality and cutting
forces. Based on the trends shown in Table 3,MQL containing
nanofluids (MQL + NP) is the most promising method,
whereas the other four methods have their own strengths and
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weaknesses. However, this result is not totally conclusive as
there exist significant gaps in the literature for MQL + IL,
MQL + RHVT, CMQL and MQL + supercritical (SC) CO2.
Therefore, this gap in the available research needs to be min-
imized by focusing on the aforementioned MQL techniques.

7 Conclusions

The effectiveness of MQL for machining has been presented
in this review drawing on the substantial available literature.
In terms of machining effectiveness, MQL has shown to have
great promise with traditional machining operations, namely
turning, milling and drilling. Improvements resulting from the
use of MQL were reported for various aspects of machining,
such as tool wear, surface roughness, cutting temperature and
cutting force. In addition, workpiece materials of aluminium
and its alloys, steels and even difficult-to-machine materials
have had their cutting process helped by using MQL.

The MQL significant reduction in cutting fluid has the
ability to largely reduce the hazards caused by conventional
flood cooling towards the environment. In addition, the use of
MQL also provides a financial incentive, due to its low oil
consumption and the availability of clean chips for selling.

Recent developments in MQL include the introduction of
nanoparticles and ILs into MQL cutting fluids, as well as
hybrid MQLs by combining cooled air/gas such as RHVT
cooled air and supercritical CO2 with MQL. These develop-
ments have shown to be successful in terms of increasing the
lubricity and cooling effect of a MQL system. As previous
research has shown that the lack of a significant cooling effect
was found to be the main disadvantage of standard MQL
during machining, it is recommended that further research
needs to be carried out on hybrid MQL systems such as
MQL and RHVT.

It was apparent from the lack of reviews on nanoparticle
toxicology that additional research concerning the toxicology
of nanoparticles (and ILs) is urgently required as industrial
applications of nanofluid-based MQL and MQL + RHVTwill
increase dramatically in the near future. On that note, several
future avenues of research are recommended for
consideration:

1. The addition of pure nanoparticles into MQL cutting fluid
has proven to be successful. Significant improvements

were reported in energy consumption [108, 114], cutting
forces [21, 109, 114], temperature [127], tool wear [22] and
surface quality of the workpiece [22, 128]. Recently, a
study was made involving a hybrid of nanoparticles,
MoS2 and CNT, in a grinding experiment of nickel-based
alloy and it was shown that the addition of hybrid nano-
particles led to improved lubricity compared to either of the
pure nanoparticle [129]. Therefore, the authors recommend
the further investigation of hybrid nanoparticle additives.

2. To improve the cooling effect of MQL, researchers have
combined it with cooled air including CPMJ and RHVT,
in addition to supercritical CO2, and have obtained prom-
ising results. From considering the available literature, the
authors have found great potential in the combination of
MQL and RHVT. Future investigation of end milling
using MQL and RHVT is suggested, due to turning hav-
ing previously been the main focus.

3. One final area of MQL that needs further consideration is
the determination of the optimum operating conditions
such as nozzle distance from workpiece, flow rate, angle
of nozzle to the workpiece and operating pressure.

The authors have no doubt thatMQLwill have a promising
future despite it not yet being widely adopted.
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