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Abstract High accuracymanufacturing requires the utilisation
of advanced signal processing and analytics to monitor, man-
age, and control production processes. These systems vary in
size, scope, and complexity and have traditionally required the
skill of multi-disciplinary individuals, for end-to-end applica-
tion. Current research trends in digital manufacturing aim to
remove this complexity through interoperability solutions en-
capsulated in cyber physical systems. These systems provide a
platform for real-time heterogeneous data acquisition, analysis,
and distribution. The focus of this research is to demonstrate the
application of a cyber physical process monitoring system
within an industrial case study. Specifically, a multi-scalable
signal processing and analytic system is developed, for both
user-driven and semi-autonomous production decision support
in CNC turning machining.

Keywords Process andconditionmonitoring .Cyberphysical
systems . Decision support . CNC turning

1 Introduction

To achieve high accuracy part dimensions, engineers have
sought to control the factors influencing the machining process
[1]. Influencing factors can be characterised by the cutting tool
state and the material removal process conditions. The cutting
tool state corresponds to the ability of themechanism tomaintain
its operation effectively, i.e. cutting motions, and feeding motion

[2]. The material removal process conditions corresponds to the
fundamental cutting parameters of machining, i.e. cutting speed,
feed-rate, depth of cut, tool geometry, work-piece material, etc.
[2]. In order to meet the control criteria, engineers have utilised a
variety of multi-sensory monitoring systems to identify optimal
operating parameters [3], tool wear [4], tool breakage [5], ma-
chining chatter detection [6], and work-piece surface roughness
[7]. However both influencing factors affect the same variables.
Root cause analysis of the process can only be achieved through
an understanding of the influences of both the cutting tool state
and the material removal process conditions, in real-time, across
the monitored variables in the system.

The complexity of achieving performance analysis of both
cutting tool state, and/or the material removal process, is evi-
dent in the multi layered requirements of achieving process
and condition-based monitoring [8] [9] [10]. However, cur-
rently, the digital age of manufacturing is aiming to remove
this complexity through the development of reconfigurable
cyber physical systems (CPS). This concept relies on the in-
corporation of decentralised interoperable cloud solutions in
combination with advanced analytics and artificial intelli-
gence, to create the innovative and intelligent machines of
the future [1]. It has been theorised that this collaborative
manufacturing technology trend will produce a fourth indus-
trial revolution, noted as Industry 4.0 [11].

CPS provides a borderless computation and collaborative
space for the creation and deployment of new interactive al-
gorithms to assist in production control, quality, and manage-
ment. Future research directions and challenges within cyber
physical manufacturing have been identified as self-organisa-
tion, control aggregation of multi-dimensional data, symbiotic
human-machine collaboration, and methodologies for
supporting complex heterogeneous manufacturing [12].

Previous research undertaken by Morgan and O’Donnell
[13] explored the integration of manufacturing process
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monitoring methodologies with a CPS. This research identi-
fied the migration of data acquisition, signal processing, and
decision support tools and techniques within a decentralised
cyber physical architecture. Central to this research was the
design and validation of a semi-autonomous process perfor-
mance characterisation system.

Continuing with this focus, this research identifies a means
of achieving performance characterisation of both the cutting
tool state, and the material removal process, in CNC turning.
Continuous and discrete analysis modes are utilised, in com-
bination with aggregated statistics. Furthermore, analytics will
utilise multi-source real-time vibration data, which is intrinsic
to a new and worn cutting tool. The resultant analytics provide
contrasting process performance data for normal and abnor-
mal machining operations.

The aim of this research is to further advance CPS devel-
opment in relation to the migration of analytics and method-
ologies for supporting complex heterogeneous manufacturing,
and human-machine collaboration. The resultant is a highly
dynamic and scalable process analysis system for both online
and offline performance characterisation of machine tools/
manufacturing processes.

2 Cyber physical process monitoring system

The design and configuration of a cyber physical process
monitoring system is detailed in [13]. Fundamentally, the sys-
tem is co-ordinated through the setup of a decentralised signal
processing chain which includes measurement, data acquisi-
tion, signal processing, and decision support/analysis. This
setup requires the definition of (a) global goal of the process-
ing chain, (b) localised goals of the chain components, and (c)
interoperability architecture.

2.1 Global goal

In this work, the global or collaborative goal of the CPS is to
characterise the performance of a monitored process. The pro-
cess being monitored in this case is an OKUMA LT15-M
CNC turning machine tool, see Fig. 1. Process performance
is inferred from spindle and turret vibration, measured via tri-
axial accelerometers mounted on the left spindle, and A turret
housings. Process states are inferred from electric motor cur-
rents measured via current transformers (CT), on the single
phase spindle and axis motor windings. Performance charac-
terisation will be achieved for both cutting tool state, and the
material removal process.

2.2 Local goals

Local goals represent the systematic functional requirements
of each component in the processing chain. The current

functionality of the process chain includes data acquisition,
data storage, signal processing, analogue-to-digital event con-
version, event correlation, and performance characterisation.
Multi-source data acquisition acquires: spindle vibration
12 Hz per axis, turret vibration 12 Hz per axis, and motor
currents 3 Hz per channel. Data storage correlates the multi-
source data streams and efficiently stores data for post process
analysis. Parallel signal processing extracts features from pro-
cess variables. Analogue digital conversion provides digital
events from analogue signals via set limits. Event correlation
identifies the machines operating sequence from multiple
event inputs. The sequence iterations form windows of anal-
ysis for performance characterisation. Performance character-
isation is achieved via time and frequency domain analytics
that are correlated to the sequential machine operations, or
user defined operating points.

2.3 Interoperability architecture

The cloud interoperability architecture defines the interactive
capabilities between the process chain components. In this
work, the Acquire Recognise Cluster (ARC) [14] architecture
is utilised due to its high speed, high capacity, open data mod-
el, and local area network data interoperability. A detailed
review of the ARC architecture is presented in [15].

The resultant decentralised signal processing chain/cyber
physical process monitoring system is represented in Fig. 2.
All software applications are executables (.exe) which operate
independently. Motor current and spindle/turret vibration are
measured and acquired via separate data acquisition devices.
These devices communicate the data to data acquisition soft-
ware adaptors. These signals are processed via ARC signal
processing and fuzzy agents. Data is stored for post process
analysis via the ARC database client. The machine tools op-
erating sequence is identified via a central event processing

Fig. 1 OKUMA LT15-M CNC turning lathe
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(CEP) agent. Process performance characterisation is
achieved via ARC ANS time and frequency domain clients.

All cyber elements of the decentralised signal process chain
are dispersed through two networked Next Unit of Computing
(NUC) computers. The NUC’s have a small form factor,
116.6 mm × 112.0 mm × 34.5 mm, providing a minimal im-
pact to the industrial environment. Furthermore, the ARC-
SVE enables data interoperability across a network. Multiple
NUCs can be networked together to allow for high capacity
decentralised computation.

3 Process analysis and performance characterisation

3.1 Prologue

CNC machine tools utilise a variety of direct and indirect
measurements; power/current, vibration, acoustic emission,
cutting force, etc., to identify a range of different production
deviations; dimension accuracy, surface quality, cutting tool
health, etc. [10]. The direct approach quantifies a variable, e.g.
tool wear, frommeasurement [1]. The indirect approach quan-
tifies a variable through deduction and correlation of auxiliary
measurements. Direct approaches are highly accurate but

limited in application due to access issues during machining.
Indirect approaches are less accurate but are utilised more
practically. However, new mediums are becoming available
for direct measurement through smart tooling solutions [16].

In this work, the desired outputs of the system are non-
invasive process performance characterisation of machine tool
state and the material removal process, within industrial pro-
duction conditions.

Vibration monitoring was selected, due to the fact that ma-
chines are not rigid bodies, but rather systems consisting of
elastic components of relative motions from external and in-
ternal forces [17]. Meaning, a machines vibration are reactive
to machine operations (independent) and material removal
processes (dependant) [1]. Previous research has located ac-
celerometers on the workpiece [10], on the spindle [18], and
on the cutting tool [19]. By placing the sensors on the spindle
and turret housing, the monitoring system becomes non-
invasive [20]. The turret is free to rotate and utilise all the tools
available. The workpiece can be freely replaced with modifi-
cation to the measurement chain.

Vibration analysis involves the identification of determin-
istic and random vibrations, forced and free vibration, linear
and non-linear vibration [21]. Detailed analysis can be made
to determine the health of a machine and identify any faults

Fig. 2 Cyber physical process
monitoring system
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that may be arising or that already exist [22]. Faults include
unbalance, a bent shaft, eccentricity, misalignment, looseness,
bent drive problems, gear defects, bearing defects, electric
faults, oil whip/whirl, cavitation, shaft cracks, rotor rubs, res-
onance, hydraulic and aerodynamic forces, etc. The most fun-
damental analysis in vibration is the determination of ampli-
tude characteristics in the time domain, and spectral distribu-
tion of the signal in the frequency domain [23].

3.2 Cutting tool state

The cutting tool state corresponds to the ability of the mech-
anism to maintain its operation effectively, i.e. cutting mo-
tions, and feeding motion [2]. The cutting tool state will be
characterised independently, which is outside of machining
operations via test programs. These programs will operate
the machine under set parameters to establish normal operat-
ing responses.

This process is an example of preventative maintenance
[24], where the condition of the machine tools state can be
analysed for fault prognosis and diagnosis.

3.2.1 Setup

In this work, three independent CNC machine tool programs
are utilised: (1) spindle speed, (2) z-axis feed, and (3) x-axis
feed. Spindle rotation is set at 700 RPM, and at a Feed at
0.2 mm/rev. The process signals utilise a combination of both
time and frequency domain analytics, with a continuous mode
of analysis. Continuous analysis is user driven and requires
human operation and interpretation. By defining start and stop
points via a push button, a process signal can be recorded and
analysed over a period of time.

3.2.2 Results

The spindle rotation is characterised in both time domain vi-
bration and motor current Fig. 3. The x and z axis spindle
vibration have similar responses: firstly a spike in vibration
amplitude at the start of the operation, followed by a sloping
decease, into a steady amplitude, and eventually a spike at the
end of the operation. Diversely the spindle y-axis vibration
maintains a set amplitude but also has a moderate spike at
the end of the operation.

In order to identify the cause of the vibration responses,
spindle motor current in connection with signal processing
can be utilised to identify different operating states, as seen
in Fig. 3(2). Firstly, a spike in inrush current [25] identifies the
initial start of spindle. Next a high amplitude current is active
during spindle acceleration. After which the current reduces as
it approaches the desired speed and maintains this speed over
the operation. The end of the process is characterised by a
large spike in current which can be attributed to breaking

and/or back EMF [26]. To further understand spindle vibra-
tion, the frequency response needs to be evaluated.

In this work, the OKUMA moves the spindle and not the
turret for z-axis movement. Subsequently, the spindle frequen-
cy response will be reviewed during the z-axis set feed
movement.

The z and x axis feed movements are characterised in the
frequency domain, as seen in Figs. 4 and 5. A power spectra is
utilised with a resolution bandwidth of 1 Hz across the full
6 kHz sensitivity range of the accelerometer. Continuous anal-
ysis identifies the power and frequency changes present across
all axis during feed movements. The aggregate of the spectra
identifies the average power across each frequency over the
feed movement.

Both the spindle x and z axis vibration frequency responses
identify a clear correlation to the varying speed of the spindle,
with dominant high and low frequencies. Diversely, the spin-
dle y-axis vibration response is constant on a single frequency.
This dominant frequency area will be the focus of machining
analysis, as it is the cutting axis of the machining operation.
Movement in the z-axis is difficult to view due to the effects of

Fig. 3 Spindle rotation, time domain: vibration, motor current
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Fig. 4 Spindle vibration,
frequency domain: z-axis feed
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Fig. 5 Turret vibration,
frequency domain: x-axis feed
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spindle rotation. However, a clear low frequency power spike
can be observed in the spindle x-axis, due to rapid movements
to and from the home position.

Turret vibration consists of varying frequency and pow-
er responses to the x-axis feed movement across all mea-
sured axis. These frequencies represent the multiple reso-
nant components on the turret, e.g. tools, turret housing,
turret rotation motor, and feed motor/mechanical slide. The
isolation of the turret from the spindle has resulted in min-
imal interference from spindle rotation, but low power due
to the positioning of the accelerometer. However, low fre-
quency x-axis movement is visible across multiple turret
vibration axis.

3.2.3 Discussion

The metrics produced in this work have favoured continuous
analysis for independent cutting tool state characterisation.
The aggregate of this data produces a 2D metric for reference,
which can be utilised for autonomous validation. However,
vibration is highly sensitive and would require the review of
a skilled engineer to diagnose the fault. Subsequently, the
continuous measurement of vibration power spectra provides
a 3D response of machining operations over time. This en-
ables an engineer to observe the frequency and power re-
sponses and relationships to different operations.

Furthermore, the correlation of different data sources pro-
vides further advantageous perspectives on machine opera-
tions, for cause and effect understanding. Evidently, motor
current measurement is a simplistic and non-invasive process
mapping medium, which can assist in process and perfor-
mance characterisation.

The produced frequency and power metrics identified in
this preventative maintenance process can now act as a datum
point for normal operating criteria. Future measurements can

Fig. 6 Machining criteria

Fig. 7 Cutting tool tips [27]
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now be cross referenced for prognosis and diagnosis
purposes.

3.3 Material removal process

The material removal process conditions corresponds to the
fundamental cutting parameters of machining, i.e. cutting
speed, feed-rate, depth of cut, tool geometry, work-piece ma-
terial, etc. [2]. The material removal process will be
characterised inside of machining operations, via production
programs. These programs operate the machine under normal
machining parameters for the cutting of a defined production
part. Normal machining responses will be defined with the

utilising a new tool tip, and abnormal machining responses
will be defined with utilising a worn tool tip.

This process is an example of condition-based mainte-
nance, where the condition of the machine tool state and ma-
terial removal process can be analysed in-process and in real-
time for fault prognosis [24].

3.3.1 Setup

The machining parameters are represented in Fig. 6(1). In this
work, the machining operation is dry single point oblique
cutting of an aluminium (6082-T6) workpiece, 42 mm in di-
ameter and 200 mm in length. The workpiece is exposed a

Fig. 8 Machining new vs worn tool, spindle vibration y-axis, time and aggregate frequency domain analysis
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distance of 100 mm from the chuck and is pre-machined to a
diameter of 33 mm over a length of 50 mm. Constant surface
speed is utilised and set to 100 m/min. The production part
dimensions are represented in Fig. 6(2). The machining mo-
tion paths undertaken in the process are represented in
Fig. 6(3). A total of 13 roughing cycles are utilised, with a
feed rate of 0.2 mm/rev and depth of cut of 1 mm. Finally, a
finishing cycle will be utilised, with a feed rate of 0.2 mm/rev
and depth of cut of 0.5 mm.

Two Sanvik SNMG12 04 08-23 H13A tool tips are utilised
during the machine of six parts. One of the tool tips is worn
and contains both flank and crater wear [27], as seen in Fig. 7.
Performance characterisation is achieved via a combination of
both time and frequency domain analytics, with continuous,
and discrete modes of analysis. Spindle y-axis vibration is
analysed as it is the cutting axis of the machining operation.

3.3.2 Continuous analysis

Continuous analysis is user driven and requires human oper-
ation and interpretation. By defining start and stop points via a
push button, a process signal can be recorded and analysed
over a period of time. In this instance, the window of analysis
spans the entire machining process of the part.

The time and aggregate frequency response of spindle cut-
ting axis vibration is represented in Fig. 8. Both tools identify
a pattern of increasing and decreasing vibration across rough
cutting iterations. Furthermore, the aggregate frequency re-
sponse in both cases identifies a consistent power area which
is relative to the spindle vibration frequency. Comparing the
average time domain response in both cases, as seen in
Fig. 8(3), identifies a clear separation in performance. The
worn tool has an initial increased power in the initial cuts,
and a marginally increased power over the entire machining

process. Furthermore, the aggregate frequency response of the
worn tool identifies both a substantial increase in power, and
widening of frequency excitation. This power and frequency
response difference is also visible over time via the power
spectra represented in Fig. 9. However, continuous spectra
analysis is highly dense and difficult to interpret in the analysis
windows time frame; 160 s = 3500 power spectrums × 300
spectral (20 Hz) = 1,050,000 data points.

The results identify a varying vibration response over time
with both the new and worn cutting tools. This variation can
be contributed to unmeasured phenomenon occurring in the
machining process, which include temperature, spindle speed,
and part dimensions. The friction caused in dry cutting con-
tinuously adds heat to workpiece. The spindle speed increases
to maintain constant surface speed of the tool over the work-
piece. The cutting cycles change the dimensions of the work-
piece. Each of these variables is not fixed which results in a
dynamic vibration response.

The effect of utilising a new and worn tool is visual in
respect to the surface finish of the part, as seen in Fig. 10.
The blunt worn tool has deformed the surface of the work-
piece. The new tool has a clean surface finish and has received
a thread in another machining operation.

3.3.3 Discrete analysis

Discrete analysis is process driven and requires human pre-
configuration, but can achieve autonomous interpretation. By
defining discrete points in the process with process driven
events, a process signal can be recorded and analysed incre-
mentally and repetitively.

To achieve discrete analysis of spindle vibration, a combi-
nation of spindle and axis operations are detected via motor
current signal processing, as seen in Fig. 11(2). Primarily

Fig. 9 Machining new vs worn
tool, spindle vibration y-axis, time
and aggregate frequency domain
analysis
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spindle rotation and z-axis rapid movements are utilised to
define the start and end of sequential events. Motor current
signals are processed via the signal processing agent, limits on

the these signals indicate whether an event is active or inac-
tive, which is processed by the fuzzy agent and outputted as
Boolean events, as seen in Fig. 11(2). Event is acquired by the

Fig. 11 Discrete process
sequencing

Fig. 10 Post machining surface
finish
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CEP-agent where the current sequential operating state of the
machining process is identified, as seen in Fig. 11(3). The
current sequential operation is available to any software appli-
cation connected to the ARC data cloud, and enables reference
points for discrete analysis. An in-depth review of this
decentralised signal processing chain is represented in [13].

Frequency domain sequence analysis enables the genera-
tion of distinct power spectra that are correlated to machining
operations, as seen in Fig. 12. The resultant spectra are less
dense compared to continuous analysis, providing a clear

visual representation of machining vibration. The results iden-
tify that all three parts machined with the new tool produce a
similar frequency and power response over the sequence of
machining operations. Furthermore, all three parts machined
with the worn tool vary in frequency and power, but have
noticeable similarities, such as the broad frequency excitation
during the initial roughing cycles.

Previously, the comparison of continuous analysis signals
required manual alignment for correlation due to the timing
deviations in manual operation, i.e. push button start and stop

Fig. 12 Sequence analysis:
frequency domain, spindle
vibration y-axis
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analysis. This problem is overcome in discrete analysis, as it is
process driven enabling accurate and autonomous correlation.
A benefit of this can be seen in the identification of deviation
of current results compared to a specified reference value. This
is achieved by setting a baseline reference and subtracting that
value from new values obtained in-process and in real-time.
An example of this can be seen in the setting of the baseline to
the average frequency response obtained during new tool ma-
chining for each sequence. By subtracting the baseline during
worn tool machining, a clear visual representation of vibration
frequency and power deviation is presented in each sequence
iteration, as seen in Fig. 12(3). The deviant power spectrums
identify a clear abnormality in frequency and power response
when machining with the worn tool.

Time domain sequence analysis enables the generation of
discrete statistics, such as mean, maximum, minimum, stand
deviation, which are correlated to machining operations. In
this example, the mean spindle vibration MS value is obtained

during machining, as seen in Fig. 13. In comparison to con-
tinuous analysis, discrete analysis has produced similar pat-
terns of increasing and decreasing vibration across rough cut-
ting iterations. However, uniquely the results are clear to in-
terpret, and enable autonomous correlation for comparison.
Once again, the time domain average new tool spindle vibra-
tion response can be set as a baseline reference, as seen in
Fig. 13(3). By subtracting this baseline from current data in-
process in-real-time, the deviation in spindle cutting axis vi-
bration can be determined and visualised, as seen in
Fig. 13(4). The results show a clear increase in time domain
spindle cutting axis vibration for worn tool machining.

Furthermore, the time domain sequence analysis agent can
process multiple signals in parallel. In previous work, vibra-
tion, tool force, and motor current was utilised for process
characterisation [13]. But since all the signal processing chain
is linked via the ARC data cloud, any process variable can be
utilised.

Fig. 13 Sequence analysis: time
domain, spindle vibration y-axis
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3.3.4 Discussion

Both continuous and discrete modes of analyse provide pro-
found process performance characterisation in similar and
unique ways. Both methods provide an operator the means
to identify machining performance, which in this instance is
via spindle vibration. These metrics enable the operator to
make an informed decision with the comparison of current
data with normal operating data.

A visual validation of part surface finish is an indi-
cator of a worn tool. However, the utilisation of perfor-
mance metrics can identify the level of acceptance be-
fore the tool should be replaced, which reduces lost
time in machining non-specification compliant parts,
and reduces material waste. Furthermore, other failure
modes can also be recognised such as improper tool
or workpiece setup, or in more extreme cases motor
faults and tool breakages.

The utilisation of continuous analysis in this work re-
quires a human machine interface, push button, to specify
the window of analysis. For future application, this opera-
tion could become more automatic through the integration
of the spindle rotation event. This would identify the start
and end of the machining operation, and initiate the ana-
lytics as required. However, continuous analysis would
still require evaluation performed by an operator to identi-
fy the deviation in performance metrics. Potentially the
aggregate of the data obtain within the window of analysis
could be utilised for autonomous AI validation. However,
aggregate analysis is a mean value, providing no insight
in to the cause of devia t ion within the process .
Furthermore, depending on the process being monitored,
aggregate analysis can be affected by interference from
machine operations outside of machining actions, such as
rapid axis movements and spindle activation and
deactivation.

Discrete analysis provides multiples benefits to ma-
chine monitoring. It is process driven and once configured
becomes autonomous in operation, with the option of AI
validation. Process analytics are comparable as they are
correlated to process operations. Furthermore, discrete
analysis separates process operations, enabling the isola-
tion of operations of interest. In machining, for example
spindle activation/deactivation and rapid axis movements
can be separated from cutting operations. Additionally,
discrete analysis reduces the analytical data set enabling
an effective means of process analysis and an efficient
means for historic data archiving. The only disadvantage
to discrete analysis is the increased complexity of process
monitoring system operat ion. However, through
utilisation of a cyber physical architecture, this complex-
ity can be reduced as all tools required are open and
reconfigurable.

4 Conclusion

In conclusion, cyber physical process monitoring systems re-
duce the complexity of manufacturing process analysis,
through dynamic adaption, interoperability, and reconfigura-
tion. Fundamentally, this was demonstrated by the application
of a cyber physical process monitoring system, within CNC
machining, to achieve continuous, and discrete process anal-
ysis through vibration, electrical motor current data, inside
and outside machining operations. Elementally, the utilisation
of a cloud architecture enabled the dynamic integration of
multiple process variables, and higher-level analytical data
streams. The open real-time environment has enabled the in-
cubation of process specific analytics through configuration of
dynamic signal processing modules. The outcome of this
methodology and platform is the creation of a tiered process
characterisation system, for manufacturing decision support,
via traditional user interpretation and more advanced semi-
autonomous AI.
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