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Abstract Based on orthogonal polynomial approximation
scheme, this paper presents several stability prediction
methods using different kinds of orthogonal polynomials.
The milling dynamics with consideration of the regenerative
effect is described by time periodic delay-differential equa-
tions (DDEs). Firstly, this work employs the classical
Legendre and Chebyshev polynomials to approximate the
state term, delayed term, and periodic-coefficient matrix.
With the help of direct integration scheme (DIS), the state
transition matrixes which indicate the mapping relations of
the dynamic response between the current tooth pass and the
previous tooth pass are obtained. The stability lobe diagrams
for single degree of freedom (DOF) and two DOF milling
models are generated by using the Legendre and Chebyshev
polynomial approximation-based methods. The rate of con-
vergence of the Legendre and Chebyshev polynomial-based
methods is compared with that of the benchmark first-order
semi-discretizationmethod (1stSDM). The comparison results
indicate that the rate of convergence and the numerical stabil-
ity of the Legendre and Chebyshev polynomial-based
methods are both need to be improved. In order to develop
new methods with high rate of convergence and numerical
stability base on DIS, the monic orthogonal polynomial se-
quences are constructed by using Gram-Schmidt orthogonal-
ization to approximate the state term, delayed term, and
periodic-coefficient matrix. The rate of convergence and the
computational efficiency of the monic orthogonal

polynomial-based methods are evaluated by comparing with
those of the benchmark 1stSDM. The results turn out that the
monic orthogonal polynomial-based methods are advanta-
geous in terms of the rate of convergence and numerical sta-
bility. The stability lobe diagrams for single DOF and two
DOF milling models obtained by the monic orthogonal
polynomial-based methods are compared with those obtained
by the 1stSDM. Finally, the monic orthogonal polynomial-
based methods are proved to be the effective and efficient
methods to predict the milling stability.

Keywords Orthogonal polynomials . Stability prediction .

Regenerative effect . The rate of convergence . Numerical
stability

1 Introduction

In milling process, regenerative chatter is an undesirable self-
excited vibration between cutting tool andworkpiece. It refers to
the unstable phenomenon that a wavy surface left behind by
previous tooth is removed by current tooth [1]. Chatter may
cause poor surface finish, accelerated tool wear, and even accel-
erated machine tool wear [2]. As many literatures mentioned,
regenerative chatter is one of the most common obstacles to
achieve high-performance milling operations. To gain desirable
surface finish, proper parameters should be selected for milling
operations. Stability lobe diagrams which indicate the relations
between the axial depth of cut and the spindle speed of the
machine tool are available for selecting proper parameters.

The mathematical models of milling dynamics with con-
sideration of the regenerative effect can be described as time
periodic delay-differential equations (DDEs). Based on the
DDEs, different methods for chatter stability prediction in
milling have been developed. Altintas et al. [3] proposed a
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zeroth-order approximation (ZOA) method which employs
Fourier series to approximate dynamic cutting force coeffi-
cients. In this method, the axial depth of cut and the spindle
speed are calculated by using real and image part of the char-
acteristic equation of the system in frequency domain. On the
basis of ZOA method, Merdol et al. [4] presented a multi-
frequency method which utilizes higher order harmonics of
the Fourier series expansion to approximate the dynamic cut-
ting force coefficients. Shorr et al. [5] established a compli-
ance feedback model which describes the dynamic behavior
of regenerative chatter for tool-workpiece interaction. Li et al.
[6] presented a time domain method for chatter stability anal-
ysis in milling. In this method, the ratio of the predicted max-
imum dynamic cutting force to the predicted maximum static
cutting force is used as a criterion for chatter stability analysis.
Tangjitsitcharoen et al. [7] developed an in-process detection
method for predicting chatter in milling processes. In this
method, the average variances of the dynamic cutting forces
of three force components are employed to identify the chatter.
Bayly et al. [8] reported a temporal finite element analysis
method, which is based on the use of multiple finite elements
in the time domain. Butcher et al. [9] suggested the Chebyshev
collocation method. In this method, the derivatives of func-
tions are approximated by introducing the spectral differenti-
ation matrix. Xie et al. [10] developed an improved complete
dicretization method to predict milling stability. In this meth-
od, most of the differential terms are discretized with Euler’s
method. Insperger and Stépán proposed the zeroth-order semi-
discretization method (othSDM) [11] and first-order semi-
discretization method (1stSDM) [12] which respectively use
the zeroth-order and first-order piecewise constant function to
approximate the delayed term. These two semi-discretization
methods are widely used to predict the stability in milling.

With the aim of improving the computational efficiency for
obtaining the stability lobe diagram, Ding et al. [13] presented
a full-discretization method (FDM) based on the DIS. Then,
different methods based on the DIS are proposed. Ding et al.
developed the second-order FDM [14] and numerical integra-
tion method [15] to calculate the stability boundary of the
milling process. Liang et al. [16] reported an improved numer-
ical integration method and extended this method to low radial
immersion milling condition where varying time delay has to
be considered. Guo et al. [17] suggested a third-order FDM for
predicting the milling stability. Ozoegwu [18] reported a least-
squares approximation method to obtain the milling stability
lobe diagrams. Compared with the semi-discretization
methods, the DIS-based methods are not only able to improve
the computational efficiency, but also can promote the rate of
convergence which reflects the computational accuracy of
prediction method.

Additionally, the key point of milling stability prediction is to
solve the DDEs for achieving the mapping relations of the dy-
namic response between the current tooth pass and the previous

tooth pass. Orthogonal polynomials can be effectively used to
solve differential equations. Villadsen et al. [19] employed or-
thogonal polynomials to solve computational problems in linear
and nonlinear ordinary differential equations. Funaro [20]
adopted the orthogonal polynomials to solve ordinary differen-
tial equations and time-dependent problems. In this paper, dif-
ferent orthogonal polynomials are used to solve the time period-
ic DDEs of milling process in the framework of DIS. The mo-
tivation of this study is to solve the DDEs using the classical
Legendre and Chebyshev polynomials to obtain stability lobe
diagrams, and analyze the rate of convergence of these two
classical methods. To improve the rate of convergence and nu-
merical stability of the Legendre and Chebyshev polynomial-
based methods, the monic orthogonal polynomials which are
constructed based on Gram-Schmidt orthogonalization are de-
veloped to analyze the milling stability.

The rest of this paper is organized as below. In section 2,
the mathematical model of milling process is introduced. In
section 3, milling stability analysis based on Legendre and
Chebyshev polynomials is presented, and the convergence
rate of the Legendre and Chebyshev polynomial-based
methods is compared with that of the benchmark lstSDM. In
section 4, the monic orthogonal polynomial approximation-
based methods are developed to predict the milling stability
with the aim of improving the convergence rate. Conclusions
are drawn in section 5.

2 Mathematical model of milling process

In this section, the benchmark example for single DOFmilling
model is studied, as shown in Fig. 1. The governing equation
of system motion of a single DOF milling model can be de-
scribed as [11]

€x tð Þ þ 2ζωnx
:
tð Þ þ ω2

nx tð Þ ¼ −
aph tð Þ
m

x tð Þ−x t−τð Þð Þ ð1Þ

where ζ is the damping ratio, ωn is the angular natural frequen-
cy, ap is the axial depth of cut, m is the modal mass, x(t) is the
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Fig. 1 Dynamic model of the single DOF milling system
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displacement in the current tooth pass, x(t− τ) is the displace-
ment in the previous tooth pass, the time delay τ is equal to the
tooth passing period T, and the specific cutting force coeffi-
cient h(t) is defined as

h tð Þ ¼∑
N

j¼1

g φ j tð Þ
h i

sin φ j tð Þ
� �

Ktcos φ j tð Þ
� �

þ Knsin φ j tð Þ
� �h i

ð2Þ

whereKt andKn are the tangential and the normal cutting force
coefficients, respectively, and N is the number of tooth. The
angular position of the jth tooth φj(t) is determined as

φ j tð Þ ¼ 2πΩ
.
60

� �
t þ j−1ð Þ2π

.
N ð3Þ

where Ω denotes the spindle speed in revolutions per minute.
The function g[φj(t)] is a unit step function which deter-

mines whether the tooth is in or out of cut. It is defined as

g φ j tð Þ
h i

¼ 1 if φst < φ j tð Þ < φex
0 otherwise

�
ð4Þ

where φst and φex are the start and exit angles of the jth cutter
tooth, respectively. For up-milling, φst=0 and φex= arccos (1
−2ae/D); for down milling, φst= arccos (2ae/D ‐1) and φex=π,
D is the diameter of cutter, and ae is the radial depth of cut.

The tangential and the radial cutting force acting on the jth
tooth, i.e., Ftj and Frj, can be given by

Ftj ¼ g φ j tð Þ
h i

Ktaph j tð Þ ð5Þ

Frj ¼ g φ j tð Þ
h i

Knaph j tð Þ ð6Þ

Let x tð Þ ¼ x tð Þ
x
:
tð Þ

� �
; Eq. (1) can be rewritten in the follow-

ing state space form:

x
:
tð Þ ¼ Ax tð Þ þ B tð Þx tð Þ−B tð Þx t−τð Þ ð7Þ

where A ¼ 0 1
−ω2

n −2ζωn

� �
is a constant matrix, B tð Þ ¼

0 0

−
aph tð Þ
mt

0

" #
is a periodic-coefficient matrix with

B(t) =B(t+T).
In order to solve Eq. (7) numerically based on DIS, the first

step is to divide the period τ into n equal small time intervals with
the length ofΔt, that is, τ=nΔt, where n is an integer. Equation
(7) is integrated on the ith small time interval [ti, ti +1]; the result
is

xiþ1 ¼ eAΔtxi þ ∫
tiþ1

ti eA tiþ1−sð Þ B sð Þx sð Þ−B sð Þx s−τð Þ½ �ds ð8Þ
With the aim of obtaining the mapping relations of the dy-

namic response between the current tooth pass and the previous

tooth pass, different kinds of orthogonal polynomials are
employed to approximate the state term x(s), delayed term
x(s-τ), and periodic-coefficient matrix B(s) in Eq. (8). Here,
Legendre polynomials and Chebyshev polynomials which are
two kinds of classical and commonly used orthogonal polyno-
mials are adopted for milling stability analysis.

3 Milling stability analysis based on Legendre
and Chebyshev polynomials

Legendre and Chebyshev polynomials are two kinds of clas-
sical orthogonal polynomials, which can be used to solve var-
ious problems in mathematics and engineering effectively.
This section presents the applications of Legendre and
Chebyshev polynomials in milling stability analysis based
on DIS.

3.1 Milling stability analysis based on Legendre
polynomials

Let Ll(z) and z∈ [−1, 1] be the standard Legendre polynomial
of degree l. The shifted Legendre polynomials LT , l(s) and
s∈ [a,b] are defined as

LT ;l sð Þ ¼ Ll
2s− aþ bð Þ

b−a

� �
; l ¼ 0; 1; 2;⋯: ð9Þ

In particular,

LT ;0 sð Þ ¼ 1

LT ;1 sð Þ ¼ 2s− aþ bð Þ
b−a

LT ;2 sð Þ ¼ 3

2
⋅
2s− aþ bð Þ

b−a

� �2
−
1

2

In Eq. (8), the state term x(s) can be approximated by the
shifted Legendre polynomials as

x sð Þ ¼ ∑
l

k¼0
ak ⋅LT ;k sð Þ; k∈ 0; l½ � ð10Þ

where the coefficient ak can be calculated as

ak ¼
x; LT ;k
� �
LT ;k ; LT ;k
� � ¼ ∑wjx jLT ;k s j

� �
∑wjL2T ;k s j

� � ð11Þ

where xj is the nodal value of the node sj, wj is the weight
value, in this paper, and wj≡1.
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3.1.1 First-order shifted Legendre polynomial approximation
method

In the first-order shifted Legendre polynomial approximation
method (1stSLPAM), LT , 0(s) and LT , 1(s) are adopted to ap-
proximate the state term x(s). The nodes ti and ti + 1 and their
nodal values xi and xi + 1 are utilized for calculation.
According to Eq. (9), LT , 0(s) and LT , 1(s) can be represented as

LT ;0 sð Þ ¼ 1; LT ;1 sð Þ ¼ 2s− ti þ tiþ1ð Þ
Δt

ð12Þ

With the substitutions ti = 0 and ti + 1 =Δt, Eq. (12) can be
rewritten as

LT ;0 sð Þ ¼ 1; LT ;1 sð Þ ¼ 2s
Δt

−1 ð13Þ

On the basis of Eq. (10), the state term x(s) is obtained as

x sð Þ ¼ a0LT ;0 sð Þ þ a1LT ;1 sð Þ ¼ a0⋅1þ a1⋅
2s
Δt

−1
	 


ð14Þ

where coefficients a0 and a1 can be acquired according to
Eq. (11) as

a0 ¼
∑
iþ1

j¼i
w jx jLT ;0 s j

� �
∑
iþ1

j¼i
w jL2T ;0 s j

� � ¼ xi þ xiþ1

2
; a1 ¼

∑
iþ1

j¼i
w jx jLT ;1 s j

� �
∑
iþ1

j¼i
w jL2T ;1 s j

� �

¼ ‐xi þ xiþ1

2

The obtained coefficients a0 and a1 are inserted to Eq. (14)
to become

x sð Þ ¼ 1−
s
Δt

� �
⋅xi þ s

Δt
⋅xiþ1 ð15Þ

Similarly the delayed term x(s-τ) and periodic-coefficient
matrix B(s) can be represented as follows:

x s−τð Þ ¼ 1−
s
Δt

� �
⋅xi−n þ s

Δt
⋅xi−nþ1 ð16Þ

B sð Þ ¼ 1−
s
Δt

� �
⋅Bi þ s

Δt
⋅Biþ1 ð17Þ

Substituting Eqs. (15), (16), and (17) into Eq. (8) yields

xiþ1 ¼ Pi
F0 þG11Bi þG12Biþ1ð Þxi− G12Bi þG13Biþ1ð Þxiþ1−n
− G11Bi þG12Biþ1ð Þxi−n
� �

ð18Þ

where

Pi ¼ I‐G12Bi‐G13Biþ1½ �−1 ð19Þ

G11 ¼ 1

Δtð Þ2 Δtð Þ2⋅F1−2Δt⋅F2þ F3
h i

ð20Þ

G12 ¼ 1

Δtð Þ2 Δt⋅F2−F3½ � ð21Þ

G13 ¼ 1

Δtð Þ2 ⋅F3 ð22Þ

F0 ¼ eAΔt ð23Þ
F1 ¼ F0−Ið ÞA−1 ð24Þ
F2 ¼ F1− Δtð Þ⋅Ið ÞA−1 ð25Þ
F3 ¼ 2F2− Δtð Þ2⋅I

� �
A−1 ð26Þ

F4 ¼ 3F3− Δtð Þ3⋅I
� �

A−1 ð27Þ

where I denotes the identity matrix.
If Pi is a nonsingular matrix, the local discrete mapping can

be expressed as matrix form according to Eq. (18)

xiþ1

xi
xi−1
⋮

xiþ1−n

8>>>><
>>>>:

9>>>>=
>>>>;

¼

Mi
11 0 ⋯ 0 Mi

1n Mi
1;nþ1

I 0 ⋯ 0 0 0
0 I ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 I 0

2
66664

3
77775

xi
xi−1
xi−2
⋮
xi−n

8>>>><
>>>>:

9>>>>=
>>>>;

ð28Þ

where

Mi
11 ¼ Pi F0 þG11Bi þG12Biþ1ð Þ ð29Þ

Mi
1n ¼ −Pi G12Bi þG13Biþ1ð Þ ð30Þ

Mi
1;nþ1 ¼ −Pi G11Bi þG12Biþ1ð Þ ð31Þ

The state transition matrix ψ for the dynamic system over
one period T is written as

ψ ¼ MnMn−1⋯M1 ð32Þ

where

Mi ¼

Mi
11 0 ⋯ 0 Mi

1n Mi
1;nþ1

I 0 ⋯ 0 0 0
0 I ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 I 0

2
66664

3
77775; i ¼ 1; 2;⋯; nð Þ ð33Þ

Then, the stability of the system can be determined accord-
ing to Floquet theory, the decision criterion is as follows:

max λ ψð Þj jð Þ
< 1 stable
¼ 1 critical stable
> 1 unstable

8<
: ð34Þ

3.1.2 Second-order shifted Legendre polynomial
approximation method

In the second-order shifted Legendre polynomial approxima-
tion method (2ndSLPAM), LT , 0(s), LT , 1(s), and LT , 2(s) are
adopted to approximate the state term x(s). Three nodes ti − 1,
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ti, and ti + 1 and their nodal values xi − 1, xi, and xi + 1 are utilized
in the calculation process.

According to Eq. (9), and with the substitutions ti − 1 = −Δt,
ti = 0, ti + 1 =Δt, LT , 0(s), LT , 1(s), and LT , 2(s) can be obtained
as follows:

LT ;0 sð Þ ¼ 1 ð35Þ

LT ;1 sð Þ ¼ 2s− ti−1 þ tiþ1ð Þ
tiþ1−ti−1

¼ s
Δt

ð36Þ

LT ;2 sð Þ ¼ 3

2
⋅
2s− ti−1 þ tiþ1ð Þ

tiþ1−ti−1

� �2
−
1

2
¼ 3s2

2 Δtð Þ2 −
1

2
ð37Þ

The coefficients a0, a1, and a2 for LT , 0(s), LT , 1(s), and
LT , 2(s), respectively, are derived from Eq. (11) as

a0 ¼ xi−1 þ xi þ xiþ1

3
; a1 ¼ −xi−1 þ xiþ1

2
; a2

¼ 4

9
xi−1−

1

2
xi þ xiþ1

	 

ð38Þ

Combining Eqs. (10), (35), (36), (37), and (38), the state
term x(s) can be expressed as

x sð Þ ¼ 1

9
−

s
2⋅Δt

þ 2s2

3 Δtð Þ2
" #

⋅xi−1 þ 4

9
−

s2

3 Δtð Þ2
" #

⋅xi

þ 1

9
þ s

2⋅Δt
þ 2s2

3 Δtð Þ2
" #

⋅xiþ1 ð39Þ

The delayed term x(s-τ) and periodic-coefficient ma-
trix B(s) are still approximated by the first-order shifted
orthogonal polynomials with Eqs. (16) and (17),
respectively.

Equations (16), (17), and (39) are inserted into (8) to be-
come

xiþ1 ¼ Pi
G21Bi þG22Biþ1ð Þxi‐1 þ F0 þG23Bi þG24Biþ1ð Þxi
‐ G11Bi þG12Biþ1ð Þxi‐n‐ G12Bi þG13Biþ1ð Þxiþ1‐n

� �
ð40Þ

where

G21 ¼ 1

9
⋅F1−

11

18Δt
⋅F2þ 7

6 Δtð Þ2 ⋅F3−
2

3 Δtð Þ3 ⋅F4 ð41Þ

G22 ¼ 1

9Δt
⋅F2−

1

2 Δtð Þ2 ⋅F3þ
2

3 Δtð Þ3 ⋅F4 ð42Þ

G23 ¼ 4

9
⋅F1−

4

9Δt
⋅F2−

1

3 Δtð Þ2 ⋅F3þ
1

3 Δtð Þ3 ⋅F4 ð43Þ

G24 ¼ 4

9Δt
⋅F2−

1

3 Δtð Þ3 ⋅F4 ð44Þ

G25 ¼ 1

9
F1−

7

18Δt
⋅F2þ 1

6 Δtð Þ2 ⋅F3−
2

3 Δtð Þ3 ⋅F4 ð45Þ

G26 ¼ 1

9Δt
⋅F2þ 1

2 Δtð Þ2 ⋅F3þ
2

3 Δtð Þ3 ⋅F4 ð46Þ

Pi ¼ I−G25Bi−G26Biþ1½ �−1 ð47Þ

If Pi is a nonsingular matrix, the local discrete mapping can
be expressed as matrix form according to Eq. (40)

xiþ1

xi
xi−1
⋮

xiþ1−n

8>>>><
>>>>:

9>>>>=
>>>>;

¼

Mi
11 Mi

12 ⋯ 0 Mi
1n Mi

1;nþ1
I 0 ⋯ 0 0 0
0 I ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 I 0

2
66664

3
77775

xi
xi−1
xi−2
⋮
xi−n

8>>>><
>>>>:

9>>>>=
>>>>;

ð48Þ

where

Mi
11 ¼ Pi F0 þG23Bi þG24Biþ1ð Þ ð49Þ

Mi
12 ¼ Pi G21Bi þG22Biþ1ð Þ ð50Þ

Mi
1n ¼ −Pi G12Bi þG13Biþ1ð Þ ð51Þ

Mi
1;nþ1 ¼ −Pi G11Bi þG12Biþ1ð Þ ð52Þ

The state transitionmatrixψ for the system over one period
T is written as

ψ ¼ MnMn−1⋯M1 ð53Þ

where

Mi ¼

Mi
11 Mi

12 ⋯ 0 Mi
1n Mi

1;nþ1
I 0 ⋯ 0 0 0
0 I ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 I 0

2
66664

3
77775; i ¼ 1; 2;⋯; nð Þ ð54Þ

Then, the stability of milling system can be determined
according to Floquet theory, the decision criterion is the same
as Eq. (34).

3.1.3 Hyper-second-order shifted Legendre polynomial
approximation method

The hyper-second (qth, q > 2)-order shifted Legendre polyno-
mial approximation methods (qthSLPAM) can also be used to
analyze the milling stability on the basis of DIS. In the
qthSLPAM (q > 2), LT , 0(s), LT , 1(s), ⋯, and LT , q(s) are
employed to approximate the state term x(s). The nodes
ti − q + 1, ti − q, ⋯, ti, and ti + 1 and their nodal values xi − q + 1,
xi − q, ⋯, xi, and xi + 1 are utilized in the calculation process.
The delayed term x(s-τ) and periodic-coefficient matrix B(s)
are still approximated by the first-order shifted Legendre poly-
nomials with Eqs. (16) and (17), respectively.

The higher-order shifted Legendre polynomial approxima-
tion methods take more computational time to obtain the sta-
bility lobe diagrams, because the number of the ‘G’ matrices
increase with the increase of the order of approximation
methods. Combining with the qthSLPAM (q > 2) and
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Floquet theory, the stability lobe diagrams of milling opera-
tions can be obtained. In order to avoid spending duplicate
efforts on the similar calculation process, the detailed deriva-
tion process of qthSLPAMwill not be given here.We can refer
to the derivation process of the 1stSLPAM and 2ndSLPAM to
get an in-depth understanding of qthSLPAM.

3.2 Milling stability analysis based on Chebyshev
polynomials

Chebyshev polynomials are a set of orthogonal polynomials
sequence defined on the interval [−1, 1]. Like the Legendre
polynomial approximation methods for milling stability anal-
ysis, the Chebyshev polynomials are also applicable for
predicting the stability in milling. This section presents the
Chebyshev polynomial-based methods for milling stability
analysis.

Let Tl(z) and z∈ [−1, 1] be the standard Chebyshev polyno-
mial of degree l. The shifted Chebyshev polynomials TT , l(s),
s∈ [a,b] are defined as

TT ;l sð Þ ¼ Tl
2s− aþ bð Þ

b−a

� �
; l ¼ 0; 1; 2;⋯: ð55Þ

In particular,

TT ;0 sð Þ ¼ 1

TT ;1 sð Þ ¼ 2s− aþ bð Þ
b−a

TT ;2 sð Þ ¼ 2⋅
2s− aþ bð Þ

b−a

� �2
−1

In Eq. (8), the state term x(s) can be expressed by using the
shifted Chebyshev polynomials as

x sð Þ ¼ ∑
l

k¼0
bk ⋅TT ;k sð Þ; k∈ 0; l½ � ð56Þ

where the coefficient bk can be calculated as

bk ¼
x; TT ;k
� �
TT ;k ; TT ;k
� � ¼ ∑wjx jTT ;k s j

� �
∑wjT2

T ;k s j
� � ð57Þ

where xj is the nodal value of the node sj, and the weight value
wj≡1.

3.2.1 First-order shifted Chebyshev polynomial
approximation method

In the first-order Chebyshev polynomial approximation meth-
od (1stSCPAM), TT , 0(s) and TT , 1(s) are adopted to

approximate the state term x(s). Two nodes ti and ti + 1 and
their nodal values xi and xi + 1 are employed for calculation.

Since TT , 0(s) and TT , 1(s) have the same expressions with
those of LT , 0(s) and LT , 1(s), respectively, the state term x(s),
delayed term x(s-τ) and periodic-coefficient matrix B(s) ob-
tained by 1stSCPAM are the same with that obtained by
1stSLPAM. Consequently, the detailed calculation process
and milling stability lobe diagram calculated by the
1stSCPAM are consistent with those of the 1stSLPAM.
Therefore, the derivation process of the milling stability anal-
ysis based on 1stSCPAM will not be detailed here. We can
refer to the calculation process of 1stSLPAM.

3.2.2 Second-order shifted Chebyshev polynomial
approximation method

In the second-order shifted Chebyshev polynomial approxi-
mation method, TT , 0(s), TT , 1(s), and TT , 2(s) are adopted to
approximate the state term x(s). Three nodes ti − 1, ti, and ti + 1

and their nodal values xi − 1, xi, and xi + 1 are utilized for
calculation.

According to Eqs. (55)–(57), and with the substitu-
tions ti − 1 = −Δt, ti = 0, ti + 1 = Δt, the state term x(s)
approximated by the TT , 0(s), TT , 1(s), and TT , 2(s) can be
obtained as follows:

x sð Þ ¼ −
s

2⋅Δt
þ 2s2

3 Δtð Þ2
" #

⋅xi−1 þ 2

3
−

2s2

3 Δtð Þ2
" #

⋅xi

þ s
2⋅Δt

þ 2s2

3 Δtð Þ2
" #

⋅xiþ1 ð58Þ

The delayed term x(s-τ) and periodic-coefficient matrix
B(s) are approximated by the first-order shifted Chebyshev
polynomials with Eqs. (16) and (17).

Equations (16), (17), and (58) are inserted into (8) to be-
come

xiþ1 ¼ Ri
H21Bi þH22Biþ1ð Þxi‐1 þ F0 þH23Bi þH24Biþ1ð Þxi
− G11Bi þG12Biþ1ð Þxi‐n− G12Bi þG13Biþ1ð Þxiþ1‐n

� �
ð59Þ

where

H21 ¼ −
1

2Δt
⋅F2þ 7

6 Δtð Þ2 ⋅F3−
2

3 Δtð Þ3 ⋅F4 ð60Þ

H22 ¼ −
1

2Δt
⋅F3þ 2

3 Δtð Þ3 ⋅F4 ð61Þ

H23 ¼ 2

3
⋅ F1 −

2

3Δt
⋅ F2 −

2

3 Δtð Þ2 ⋅ F3 þ 2

3 Δtð Þ3 ⋅ F4 ð62Þ
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H24 ¼ 2

3 Δtð Þ2 ⋅F3−
2

3 Δtð Þ3 ⋅F4 ð63Þ

H25 ¼ 1

2Δt
⋅F2þ 1

6 Δtð Þ2 ⋅F3−
2

3 Δtð Þ3 ⋅F4 ð64Þ

H26 ¼ 1

2 Δtð Þ2 ⋅F3þ
2

3 Δtð Þ3 ⋅F4 ð65Þ

Ri ¼ I−H25Bi−H26Biþ1½ �−1 ð66Þ

IfRi is a nonsingular matrix, the local discrete mapping can
be expressed as matrix form according to Eq. (59)

xiþ1

xi
xi−1
⋮

xiþ1−n

8>>>><
>>>>:

9>>>>=
>>>>;

¼

Mi
11 Mi

12 ⋯ 0 Mi
1n Mi

1;nþ1
I 0 ⋯ 0 0 0
0 I ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 I 0

2
66664

3
77775

xi
xi−1
xi−2
⋮
xi−n

8>>>><
>>>>:

9>>>>=
>>>>;

ð67Þ

where

Mi
11 ¼ Ri F0 þH23Bi þH24Biþ1ð Þ ð68Þ

Mi
12 ¼ Ri H21Bi þH22Biþ1ð Þ ð69Þ

Mi
1n ¼ −Ri G12Bi þG13Biþ1ð Þ ð70Þ

Mi
1;nþ1 ¼ −Ri G11Bi þG12Biþ1ð Þ ð71Þ

The state transitionmatrixψ for the system over one period
T is written as

ψ ¼ MnMn−1⋯M1 ð72Þ

where

Mi ¼

Mi
11 Mi

12 ⋯ 0 Mi
1n Mi

1;nþ1
I 0 ⋯ 0 0 0
0 I ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 I 0

2
66664

3
77775 ð73Þ

Then, the stability of milling system can be determined
according to Floquet theory; the decision criterion is the same
as Eq. (34).

3.2.3 Hyper-second-order shifted Chebyshev polynomial
approximation method

The hyper-second (qth, q >2)-order shifted Chebyshev
polynomial approximation methods (qthSCPAM) can al-
so be used to analyze the milling stability on the basis
of DIS. In the qthSCPAM (q > 2), TT , 0(s), TT , 1(s), ⋯,
and TT , q(s) are employed to approximate the state term

x(s). The nodes ti − q + 1, ti − q, ⋯, ti, and ti + 1 and their
nodal values xi − q + 1, xi − q, ⋯, xi, and xi + 1 are utilized
for calculation. The delayed term x(s-τ) and periodic-
coefficient matrix B(s) are still approximated by the
first-order shifted Chebyshev polynomials with
Eqs. (16) and (17), respectively.

Combining the qthSCPAM (q > 2) and Floquet the-
ory, the stability lobe diagram of milling operations can
be obtained. The detailed derivation process for
qthSCPAM will not be given here. We can refer to
the calculation process of 1stSCPAM and 2ndSCPAM
to gain a better understanding of the qthSCPAM.

3.3 Stability lobe diagrams

To demonstrate the applicability of the Legendre and
Chebyshev polynomial approximation-based methods in
milling, the single DOF and two DOF milling models
are taken as the examples for analysis. The 1stSDM is
an experimentally validated and widely used method for
milling stability prediction. Therefore, this paper takes
the 1stSDM as benchmark for the comparison of pre-
diction results. The stability lobe diagrams obtained by
1stSLPAM, 2ndSLPAM, 3rdSLPAM, 1stSCPAM,
2ndSCPAM, and 3rdSCPAM are compared with that
obtained by benchmark 1stSDM.

3.3.1 Single DOF milling model

The stability lobe diagrams are generated over 100 × 100
sized grid of parameters of spindle speed Ω and axial
depth of cut ap. The radial depth of cut ratio ae/D is
chosen as 0.1, 0.5, and 1. The machining parameters are
chosen as the same as literature [13] to generate stability
lobe diagrams. The parameters are as follows: the number
of tooth N = 2, the natural frequency fn = 922 Hz, the
relative damping is ζ = 0.011, the modal mass is
m = 0.03993 kg, the cutting force coefficients are
Kt = 6 × 108 N/m2, and Kn = 2 × 108 N/m2, down milling.
The program is conducted using Matlab 2010a software
on a computer with Intel (R) Core (TM) i3-2120 and
2 GB memory. The stability lobe diagrams calculated by
1stSDM with n = 100 are taken as the ideal results.
Stability lobe diagrams for single DOF milling model ob-
tained by 1stSDM, 1stSLPAM, 2ndSLPAM, 3rdSLPAM,
1stSCPAM, 2ndSCPAM, and 3rdSCPAM are shown in
Table 1.

In Table 1, the red line curves represent the ideal
stability lobe diagrams; the blue line curves represent
the actual stability lobe diagrams. The prediction results
of the 1stSLPAM and 1stSCPAM are the same, so the
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stability lobe diagrams of these two methods are listed in
one line. As shown in Table 1, for different radial depth

of cut ratios ae/D, the stability lobe diagrams obtained by
1stSLPAM, 2ndSLPAM, 3rdSLPAM, 1stSCPAM,

Table 1 Stability lobe diagrams for single DOF milling model obtained by 1stSDM, 1stSLPAM, 2ndSLPAM, 3rdSLPAM, 1stSCPAM, 2ndSCPAM,
and 3rdSCPAM

Methods n=30, ae/D=0.1 n=40, ae/D=0.5 n=50, ae/D=1
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2ndSCPAM, and 3rdSCPAM are consistent with the ideal
stability lobe diagrams, which indicates that the
Legendre and Chebyshev polynomial approximation-
based methods are reliable and applicable for milling
stability prediction. In order to make the predicted results
more applicable to actual situation, the two DOF milling
model considering the flexibility of the milling tool in
both X and Y direction is also analyzed.

3.3.2 Two DOF milling model

The governing equation of system motion of a two DOF mill-
ing model can be expressed in the following state space form:

u
:
tð Þ ¼ Au tð Þ þ B tð Þu tð Þ−B tð Þu t−τð Þ ð74Þ

where

A ¼
0 0 1 0
0 0 0 1

−ω2
n 0 −2ζωn 0

0 −ω2
n 0 −2ζωn

2
664

3
775;B tð Þ ¼

0 0 0 0
0 0 0 0

−aphxx tð Þ
m

−aphxy tð Þ
m

0 0

−aphyx tð Þ
m

−aphyy tð Þ
m

0 0

2
666664

3
777775

u tð Þ ¼
x tð Þ
y tð Þ

x
:
tð Þy: tð Þ

2
4

3
5

In matrix B
(t), four projections of the specific cutting force coefficient,
i.e., hxx, hxy, hyx, hyy, are expressed as

hxx tð Þ ¼∑
N

j¼1

g φ j tð Þ
h i

sin φ j tð Þ
� �

Ktcos φ j tð Þ
� �

þ Knsin φ j tð Þ
� �h i

ð75Þ

hxy tð Þ ¼∑
N

j¼1

g φ j tð Þ
h i

cos φ j tð Þ
� �

Ktcos φ j tð Þ
� �

þ Knsin φ j tð Þ
� �h i

ð76Þ

hyx tð Þ ¼∑
N

j¼1

g φ j tð Þ
h i

sin φ j tð Þ
� �

−Ktsin φ j tð Þ
� �

þ Kncos φ j tð Þ
� �h i

ð77Þ

hyy tð Þ ¼∑
N

j¼1

g φ j tð Þ
h i

cos φ j tð Þ
� �

−Ktsin φ j tð Þ
� �

þ Kncos φ j tð Þ
� �h i

ð78Þ

On the basis of DIS, the stability lobe diagrams for two
DOF milling model can also be obtained by using Legendre
and Chebyshev polynomial approximation-based methods.
The parameters used for two DOF milling model are the same
with those used in single DOF milling model and assumed to
be equal in X and Y directions. The stability lobe diagrams are
calculated over 100 × 100 sized grid of spindle speed Ω and
the axial depth of cut ap. The stability lobe diagrams for two
DOF milling model calculated by 1stSDM with n = 100 are
taken as the ideal results. The stability lobe diagrams for two
DOF milling model obtained by 1stSDM, 1stSLPAM,
2ndSLPAM, 3rdSLPAM, 1stSCPAM, 2ndSCPAM, and
3rdSCPAM are shown in Table 2.

As shown in Table 2, the stability lobe diagrams for two
DOF milling model obtained by 1stSLPAM, 2ndSLPAM,
3rdSLPAM, 1stSCPAM, 2ndSCPAM, and 3rdSCPAM are
consistent with the ideal stability lobe diagrams. The compar-
ison results of the stability lobe diagrams indicate that the
Legendre and Chebyshev polynomial approximation-based
methods are also applicable to the two DOF milling model.
Additionally, as the parameter n increase, the stability lobe
diagrams are closer to the ideal ones.

3.4 The rate of convergence analysis

The rate of convergence respects the local errors between the
absolute value of the maximal critical eigenvalues of the state
transition matrix |μ(n)| and the exact eigenvalue μ0, where
|μ(n)| is a function of computational parameter n. The exact
eigenvalue μ0 is determined by the 1stSDM with n = 200. To
study the rate of convergence of the Legendre and Chebyshev
polynomial approximation-based methods, the radial depth of
cut ratio ae/D is set as 1 to avoid intermittent milling, the
spindle speed is Ω = 5000 rpm, and the axial depth of cut is
chosen as ap = 0.2 and 0.5 mm, respectively. The rate of
convergence of the 1stSLPAM, 2ndSLPAM, 3rdSLPAM,
1stSCPAM, 2ndSCPAM, and 3rdSCPAM is analyzed by
comparing with that of the 1stSDM.

The program is conducted using Matlab 2010a software on
a computer with Intel (R) Core (TM) i3-2120 and 2 GBmem-
ory. The parameters used for the rate of convergence analysis
are the same with those used in section 3.3. Figure 2 illustrates
the convergences of the eigenvalues with different computa-
tional parameters n for different methods.

As shown in Fig.2a, b, the 1stSLPAM and 1stSCPAMhave
the same rate of convergence because the state transition ma-
trixes ψ obtained by these two methods are the same. The
local errors calculated by 1stSLPAM and 1stSCPAM are both
greater than that calculated by 1stSDM, which means the rate
of convergence of the 1stSDM is higher than that of the
1stSLPAM and 1stSCPAM.

As shown in Fig.2a, b, with regard to the second-order
approximation methods, the local errors of 2ndSLPAM
cannot reach numerical stability, because when the param-
eter n approaches to 100 gradually, the local errors calcu-
lated by 2ndSLPAM still have an increasing trend, that is,
the local errors of 2ndSLPAM do not reach a stable state
eventually. The 2ndSCPAM has the numerical stability
because the local errors obtained by 2ndSCPAM decrease
with the increase of parameter n, and eventually the local
approximation errors reach steady state. It is also seen
from Fig. 2a, b that the 1stSDM is of higher computation
accuracy than that of 2ndSCPAM. According to Fig. 2a,
when the parameter n is greater than 41, the computation
accuracy of 2ndSLPAM is higher than that of 1stSDM.
When the parameter n is equal to 69, the minimum local
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error is obtained, and then the local approximation errors
increase with the increase of parameter n.

As for the third-order approximation methods, the rates
of convergence of the 3rdSLPAM and 3rdSCPAM are

Table 2 Stability lobe diagrams for twoDOFmillingmodel obtained by 1stSDM, 1stSLPAM, 2ndSLPAM, 3rdSLPAM, 1stSCPAM, 2ndSCPAM, and
3rdSCPAM

Methods n=30, ae/D=0.1 n=40, ae/D=0.5 n=50, ae/D=1
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sensitive to the parameter n. As shown in Fig. 2a, b, the
variation trends of the rate of convergence for 3rdSLPAM
and 3rdSCPAM vary with the parameter n; they do not
exhibit the monotonic increasing or decreasing features
with respect to n. In Fig. 2a, when the parameter n is less
than 34, the computation accuracy of 3rdSCPAM is supe-
rior to other methods; when the parameter n is less than 31,
the local errors decrease with the decrease of parameter n,
and the minimum local error is obtained when n is equal to
31. Unlike the 3rdSCPAM of which the local approxima-
tion errors do not reach a stable state, the local errors cal-
culated by 3rdSLPAM remain stable state at last. As the
parameter n is close to 100 gradually, the local errors cal-
culated by 3rdSCPAM are much greater than those of
3rdSLPAM. The comparison results of Fig. 2b have the
similar trend with Fig. 2a although these two figures reflect
two different milling operations (stable and unstable).

In mathematical theory, higher-order approximation methods
may lead to more accurate results. However, in this section, the
higher-order Legendre and Chebyshev approximation-based
methods do not result inmore accurate results. In order to predict
the milling stability precisely, the methods which have both
numerical stability and high rate of convergence are required.
With the aim of developing new orthogonal polynomial
approximation-based methods to predict milling stability based
on DIS, a kind of monic orthogonal polynomial sequence which
can be deduced by Gram-Schmidt orthogonalization [21] is
employed to approximated the state term x(s), delayed term
x(s-τ), and periodic-coefficient matrix B(s).

4 Monic orthogonal polynomials for milling stability
prediction

In this section, the monic orthogonal polynomials are con-
structed using Gram-Schmidt orthogonalization. The con-
structed monic orthogonal polynomials can be used to obtain
the state transition matrix ψ. Unlike the Legendre and
Chebyshev approximation-based methods in which the inter-
val conversion should be performed first, the monic orthogo-
nal polynomial approximation-based methods can be used
without interval conversion.

Without loss of generality, on the basis of Gram-Schmidt
orthogonalization, the monic orthogonal polynomials can be
generated by the following recurrence:

P0 sð Þ ¼ 1
P1 sð Þ ¼ s−α1

Pl sð Þ ¼ s−αlð ÞPl−1−βlPl−2 sð Þ l≥1ð Þ

8<
: ð79Þ

where

αl ¼ ∫T0 swP
2
l−1 sð Þds

∫T0wP
2
l−1 sð Þds

¼ ∑wjs jP2
l−1 s j
� �

∑wjP2
l−1 s j
� � ; βl

¼ ∫T0wP
2
l−1 sð Þds

∫T0wP
2
l−2 sð Þds

¼ ∑wjP2
l−1 s j
� �

∑wjP2
l−2 s j
� � ð80Þ

where wj≡1, sj represents the selected node.
In Eq. (8), the state term x(s) can be approximated by the

monic orthogonal polynomials as

x sð Þ ¼ ∑
l

k¼0
ck ⋅Pk sð Þ; k∈ 0; l½ � ð81Þ

where the coefficient ck can be calculated as

ck ¼ x;Pkð Þ
Pk ;Pkð Þ ¼

∑wjx jPk s j
� �

∑wjP2
k s j
� � ð82Þ

where xj is the nodal value of the node sj.
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Fig. 2 The rates of convergence of the 1stSDM, 1stSLPAM,
2ndSLPAM, 3rdSLPAM, 1stSCPAM, 2ndSCPAM, and 3rdSLPAM. a
ap = 0.2 mm, |μ0| = 0.81923867 (stable). b ap = 0.5 mm,
|μ0| = 1.07260456 (unstable)
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4.1 First-order monic orthogonal polynomial
approximation method

In the first-order monic orthogonal polynomial approximation
method (1stMOPAM), P0(s) and P1(s) are employed to ap-
proximate the state term x(s). Two nodes ti and ti + 1 and their
nodal values xi and xi + 1 are used in the calculation process.

On the basis of Eq. (80), α1 can be obtained as

α1 ¼
∑
iþ1

j¼i
w js jP2

0 s j
� �

∑
iþ1

j¼i
w jP2

0 s j
� � ¼ ti þ tiþ1

2

With the substitutions ti = 0 and ti + 1 = Δt, α1 can be

rewritten as α1 ¼ Δt
2 .

According to Eq. (79), P0(s) and P1(s) can be represented
as

P0 sð Þ ¼ 1; P1 sð Þ ¼ s−
Δt
2

ð83Þ

The state term x(s) can be expressed as

x sð Þ ¼ c0P0 sð Þ þ c1P1 sð Þ ¼ c0⋅1þ c1⋅ s−
Δt
2

	 

ð84Þ

where coefficients c0 and c1 can be obtained according to
Eq. (82) as

c0 ¼
∑
iþ1

j¼i
w jx jP0 s j

� �
∑
iþ1

j¼i
w jP2

0 s j
� � ¼ xi þ xiþ1

2
; c1 ¼

∑
iþ1

j¼i
w jx jP1 s j

� �
∑
iþ1

j¼i
w jP2

1 s j
� � ¼ xiþ1−xi

Δt
ð85Þ

Submitting Eq. (85) into Eq. (84) leads to

x sð Þ ¼ 1−
s
Δt

� �
⋅xi þ s

Δt
⋅xiþ1 ð86Þ

Similarly, the delayed term x(s-τ) and periodic-coefficient
matrix B(s) can be represented as

x s−τð Þ ¼ 1−
s
Δt

� �
⋅xi−n þ s

Δt
⋅xi−nþ1 ð87Þ

B sð Þ ¼ 1−
s
Δt

� �
⋅Bi þ s

Δt
⋅Biþ1 ð88Þ

It is obviously found that the state term x(s), delayed term
x(s-τ), and periodic-coefficient matrix B(s) obtained by
1stMOPAM are the same with those obtained by
1stSLPAM. Consequently, the state transition matrix ψ and
the stability lobe diagram obtained by 1stMOPAMare also the
same with those obtained by 1stSLPAM. Therefore, the sub-
sequent derivation process of the milling stability analysis
using 1stMOPAM will not be detailed here. We can refer to
the calculation process of 1stSLPAM.

4.2 Second-order monic orthogonal polynomial
approximation method

In the second-order monic orthogonal polynomial approxima-
tion method (2ndMOPAM), P0(s), P1(s), and P2(s) are
adopted to approximate the state term x(s). Three nodes ti − 1,
ti, and ti + 1 as well as their nodal values xi − 1, xi + 1, and xi are
utilized for calculation.

P0(s), P1(s), and P2(s) satisfy the following three-term re-
currence relation:

P0 sð Þ ¼ 1
P1 sð Þ ¼ s−α1

P2 sð Þ ¼ s−α2ð ÞP1 sð Þ−β2P1 sð Þ

8<
: ð89Þ

According to Eqs. (80) and (89), and with the substitutions
ti − 1 = −Δt, ti = 0, ti + 1 =Δt, the coefficientsα1,α2, and β2 can
be obtained as

α1 ¼
∑
iþ1

j¼i−1
wjs jP2

0 s j
� �

∑
iþ1

j¼i−1
wjP2

0 s j
� � ¼ 0; α2 ¼

∑
iþ1

j¼i−1
wjs jP2

1 s j
� �

∑
iþ1

j¼i−1
wjP2

1 s j
� �

¼ 0; β2 ¼
∑
iþ1

j¼i−1
wjP2

1 s j
� �

∑
iþ1

j¼i−1
wjP2

0 s j
� � ¼ 2

3
Δtð Þ2

Then, P0(s), P1(s), and P2(s) can be rewritten as

P0 sð Þ ¼ 1; P1 sð Þ ¼ s; P2 sð Þ ¼ s2−
2

3
Δtð Þ2 ð90Þ

The coefficients c0, c1, and c2 for P0(s), P1(s), and P2(s),
respectively, are derived from Eq. (82) as

c0 ¼ xi−1 þ xi þ xiþ1

3
; c1 ¼ −xi−1 þ xiþ1

2Δt
; c2

¼ xi−1−2xi þ xiþ1

2 Δtð Þ2 ð91Þ

Combining Eqs. (90) and (91), the state term x(s) can be
expressed as

x sð Þ ¼ s2

2 Δtð Þ2 −
s

2Δt

 !
xi−1 þ 1−

s2

Δtð Þ2
 !

xi

þ s2

2 Δtð Þ2 þ
s

2Δt

 !
xiþ1 ð92Þ

The delayed term x(s-τ) and periodic-coefficient ma-
trix B(s) are still approximated by the first-order monic
orthogonal polynomials with Eqs. (87) and (88),
respectively.
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Substituting Eqs. (87), (88), and (92) into Eq. (8) results in

xiþ1 ¼ Ui
V21Bi þ V22Biþ1ð Þxi−1 þ F0 þ V23Bi þ V24Biþ1ð Þxi
− G11Bi þG12Biþ1ð Þxi−m− G12Bi þG13Biþ1ð Þxiþ1−m

� �
ð93Þ

where

V21 ¼ −
1

2Δt
⋅F2þ 1

Δtð Þ2 ⋅F3−
1

2 Δtð Þ3 ⋅F4 ð94Þ

V22 ¼ −
1

2 Δtð Þ2 ⋅F3þ
1

2 Δtð Þ3 ⋅F4 ð95Þ

V23 ¼ F1−
1

Δt
⋅F2−

1

Δtð Þ2 ⋅F3þ
1

Δtð Þ3 ⋅F4 ð96Þ

V24 ¼ 1

Δt
⋅F2−

1

Δtð Þ3 ⋅F4 ð97Þ

V25 ¼ 1

2Δt
⋅F2−

1

2 Δtð Þ3 ⋅F4 ð98Þ

V26 ¼ 1

2 Δtð Þ2 ⋅F3þ
1

2 Δtð Þ3 ⋅F4 ð99Þ

Ui ¼ I−V25Bi−V26Biþ1½ �−1 ð100Þ

Table 3 Stability lobe diagrams for single DOF milling model obtained by 1stSDM, 1stMOPAM, 2ndMOPAM, and 3rdMOPAM

Methods n=30, ae/D=0.1 n=40, ae/D=0.5 n=50, ae/D=1
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If Ui is a nonsingular matrix, the local discrete map can be
expressed as matrix form according to Eq. (93)

xiþ1

xi
xi−1
⋮

xiþ1−m

8>>>><
>>>>:

9>>>>=
>>>>;

¼

Mi
11 Mi

12 ⋯ 0 Mi
1m Mi

1;mþ1
I 0 ⋯ 0 0 0
0 I ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 I 0

2
66664

3
77775

xi
xi−1
xi−2
⋮
xi−m

8>>>><
>>>>:

9>>>>=
>>>>;
ð101Þ

and

Mi
12 ¼ Ui F0 þ V23Bi þ V24Biþ1ð Þ ð102Þ

Mi
12 ¼ Ui V21Bi þ V22Biþ1ð Þ ð103Þ

Mi
1m ¼ −Ui G12Bi þG13Biþ1ð Þ ð104Þ

Mi
1;mþ1 ¼ −Ui G11Bi þG12Biþ1ð Þ ð105Þ

The transition matrixψ for the system over one period T is
written as

ψ ¼ MmMm−1⋯M1 ð106Þ

and

Mi ¼

Mi
11 Mi

12 ⋯ 0 Mi
1m Mi

1;mþ1
I 0 ⋯ 0 0 0
0 I ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 I 0

2
66664

3
77775 ð107Þ

Then, the stability of milling system can be determined
according to Floquet theory.

4.3 Hyper-second-order monic orthogonal polynomial
approximation method

The hyper-second (qth, q > 2)-order monic orthogonal poly-
nomial approximation methods (qthMOPAM) can also be
used to analyze the milling stability on the basis of DIS. In
the qthMOPAM (q > 2), P0(s), P1(s), ⋯, and Pq(s) are
employed to approximate the state term x(s). The nodes
ti − q + 1, ti − q, ⋯, ti, and ti + 1 and their nodal values xi − q + 1,
xi − q,⋯, xi, and xi + 1 are utilized for calculation. The delayed
term x(s-τ) and periodic-coefficient matrix B(s) are still ap-
proximated by the first-order monic orthogonal polynomials
with Eqs. (87) and (88), respectively.

The higher order monic orthogonal polynomial approxima-
tion methods take more computation time to generate the sta-
bility lobe diagram, because the number of the ‘V’ matrices
increases with the increase of the order of approximation
methods. Combining the qthMOPAM (q > 2) and Floquet
theory, the stability lobe diagram of milling operations can
be obtained. The detailed derivation process of qthMOPAM
is not given here. We can refer to the derivation process of

1stMOPAM and 2ndMOPAM to gain an in-depth understand-
ing of qthMOPAM.

4.4 Stability lobe diagrams

4.4.1 Single DOF milling model

In order to illustrate the applicability and computational
accu racy o f the mon ic o r thogona l po lynomia l
approximation-based methods, the stability lobe diagrams
calculated by 1stMOPAM, 2ndMOPAM, and 3rdMOPAM
are compared with that calculated by benchmark 1stSDM.
The parameters used for the monic orthogonal polynomial
approximation-based methods are the same with those
used in Legendre and Chebyshev approximation-based
methods. The stability charts are calculated over
100 × 100 sized grid with the axial depth of cut ranging
from 0 to 0.01 m, and the spindle speed ranging from
5 × 103 to 25 × 103 rpm. The stability lobe diagrams cal-
culated by 1stSDM with n = 100 are taken as the ideal
results. The stability lobe diagrams for single DOF milling
model obtained by 1stSDM, 1stMOPAM, 2ndMOPAM,
and 3rdMOPAM are shown in Table 3.

It is seen form Table 3 that the stability lobe diagrams
obtained by 2ndMOPAM and 3rdMOPAM are closer to
the ideal curves than that obtained by 1stSDM. As shown
in Table 3, the stability lobe diagrams of 3rdMOPAM
with n = 50 is highly identical to that of 1stSDM with
n = 100. Therefore, compared with benchmark 1stSDM,
the 3rdMOPAM can generate accurate stability lobe dia-
grams with a small value of the parameter n. It is also
indicated form Table 3 that the monic orthogonal polyno-
mial approximation-based methods take less time than the
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Fig. 3 Comparison of the time-consuming convergence for single DOF
milling model of the 1stSDM and the 3rdMOPAM
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1stSDM to generate stability lobe diagrams with the same
parameter n.

In order to make a further study on the computational effi-
ciency of the monic orthogonal polynomial approximation-
based methods, a time-consuming convergence study is con-
ducted. As for the first three monic orthogonal polynomial
approximation-based methods, the stability lobe diagram ob-
tained by 3rdMOPAM is the closest to the ideal one, but the
computational efficiency of the 3rdMOPAM is slightly lower
than that of the 1stMOPAM and 2ndMOPAM. Therefore, the
3rdMOPAM is chosen for time-consuming convergence study
by comparing with the benchmark 1stSDM. The radial depth
of cut ratio ae/D is set as 1, and the parameters are the same

with those used in section 3.3, down milling. The comparison
of the time-consuming convergence for single DOF milling
model of the 1stSDM and the 3rdMOPAM is shown in Fig. 3.

It is seen form Fig. 3 that the 1stSDM takes more
time than 3rdMOPAM to generate stability lobe dia-
grams. Accordingly, the 1stSDM will take much more
time than 1stMOPAM and 2ndMOPAM to generate sta-
bility lobe diagrams. As shown in Fig. 3, the difference
of computational time between the 1stSDM and
3rdMOPAM is growing as the increase of parameter n.
Therefore, compared with the 1stSDM, the 3rdMOPAM
will save more time than the benchmark 1stSDM as the
increase of parameter n.

Table 4 Stability lobe diagrams obtained by 1stSDM, 1stMOPAM, 2ndMOPAM, and 3rdMOPAM for two DOF milling model

Methods n=30, ae/D=0.1 n=40, ae/D=0.5 n=50, ae/D=1
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4.4.2 Two DOF milling model

On the basis of DIS, the stability lobe diagrams for two DOF
milling model can also be obtained by using the monic or-
thogonal polynomial approximation-based methods. The pa-
rameters used for two DOF milling model are the same with
those used in single DOF milling model and assumed to be
equal in X and Y directions. The stability lobe diagrams for
two DOF milling model calculated by 1stSDM with n = 100
are taken as the ideal results. Stability lobe diagrams for two
DOF milling model obtained by 1stSDM, 1stMOPAM,
2ndMOPAM, and 3rdMOPAM are shown in Table 4.

The computational time of 1stSDM, 1stMOPAM,
2ndMOPAM, and 3rdMOPAM for two DOF milling model
to obtain stability lobe diagrams is listed in Table 4. It is
observed from Table 4 that the 2ndMOPAM and
3rdMOPAM take less time than 1stSDM to generate the sta-
bility lobe diagram which is identical to the ideal curve.

We also conduct a time-consuming convergence study for
twoDOFmillingmodel by comparing computational efficien-
cy of the 3rdMOPAM with that of the 1stSDM. The compar-
ison of the time-consuming convergence for two DOF milling
model of the 1stSDM and the 3rdMOPAM is shown in Fig. 4.
It is seen form Fig. 4 that the difference of computational time
of the 1stSDM and 3rdMOPAM is also growing as the in-
crease of parameter n. Therefore, the computational efficiency
for the two DOF milling model of the 3rdMOPAM is also
higher than that of the 1stSDM.

4.5 Convergence rate analysis

To study the convergence rate of the monic orthogonal poly-
nomial approximation-based methods, the radial depth of cut
ratio is set as ae/D = 1, the spindle speed isΩ = 5000 rpm, and
the axial depth of cuts are chosen as ap = 0.2 and 0.5 mm,

respectively. The system parameters are the same with that
used in section 3.3. The exact eigenvalue |μ0| is also deter-
mined by the 1stSDM with n = 200. The convergence rates of
the 1stMOPAM, 2ndMOPAM, and 3rdMOPAM are analyzed
by comparing with the benchmark 1stSDM. Figure 5 illus-
trates the convergences of the eigenvalues with different com-
putational parameters n for 1stMOPAM, 2ndMOPAM,
3rdMOPAM, and 1stSDM.

As shown in Fig. 5, it is obviously found that the
1stMOPAM, 2ndMOPAM, and 3rdMOPAM all have numer-
ical stability. The local errors of these three monic orthogonal
polynomial approximation-based methods converge to a con-
stant eventually. The convergence rate of 1stMOPAM is the
same with that of 1stSLPAM and 1stSCPAM, because the
state transition matrix ψ for the dynamic system over one
period T of the 1stMOPAM, 1stSLPAM, and 1stSCPAM are
same. The 2ndMOPAM has higher rate of convergence than
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that of the benchmark 1stSDM, because the local approxima-
tion errors calculated by 2ndMOPAM are less than those of
the 1stSDM; otherwise, the 2ndMOPAM converges faster
than 1stSDM to a constant. As for 3rdMOPAM, it converges
faster than 2ndMOPAM to a stable state, which indicates that
the convergence rate of 3rdMOPAM is higher than that of the
2ndMOPAM.

Here, the convergence rate of 3rdMOPAM is higher than
that of the 2ndMOPAM, and the convergence rate of
2ndMOPAM is higher than that of the 1stMOPAM. The
hyper-third-order monic orthogonal polynomial approxima-
tion methods may result in higher convergence rate, but these
methods also lead to more computational cost. Besides, much
higher order methods may cause Runge phenomenon. As a
consequence, the 3rdMOPAM can meet the requirement for
high-performance milling process.

Compared wi th the Legendre and Chebyshev
approximation-based methods, the monic orthogonal polyno-
mial approximation-based methods have numerical stability
as well as the high rate of convergence. Recently, Guo et al.
[22] modified the third order FDM to predict the stability
lobes for non-uniform helix tools. Similarly, the proposed
monic orthogonal polynomial approximation-based methods
can also be developed to analyze the stability lobes with mul-
tiple delays on the basis of DIS.

5 Conclusions

This paper focuses on the prediction of milling stability with
orthogonal polynomials. The mathematical models of single
DOF and two DOF milling process take regenerative effect
into account. Different kinds of orthogonal polynomials are
employed to analyze the milling stability. The following con-
clusions can be drawn.

(1) The dynamic models of single DOF and two DOF mill-
ing preocess are established. The dynamic equation of
milling process is represented as DDEs in state space
form.

(2) The classical Legendre and Chebyshev polynomials are
utilized to approximate the state term x(s), delayed term
x(s-τ) and periodic-coefficient matrix B(s). Then, the
state transition matrix ψ is obtained by solving the
DDEs based on DIS. Combining the eigenvalue of ma-
trixψ and the Floquet theory, the stability lobe diagrams
for single DOF and two DOF milling models are gener-
ated. With the aim of evaluating the numerical stability
and the convergence rate of the Legendre and Chebyshev
polynomial-based methods, the 1stSDM is taken as the
benchmark for comparing with these methods. The com-
parison results show that the numerical stabilities of the
Legendre and Chebyshev polynomial-based methods

need to be improved. In addition, the convergence rates
of these methods are sensitive to the parameter n.

(3) In order to develop the methods that have both numerical
stability and high convergence rate. The monic orthogo-
nal polynomials are constructed to approximate the state
term x(s), delayed term x(s-τ), and periodic-coefficient
matrix B(s). To demonstrate the computational accuracy
of the monic orthogonal polynomial-based methods, the
comparison between these methods and 1stSDM is con-
ducted. The comparison results illustrate that the conver-
gence rates of 2ndMOPAM and 3rdMOPAM are higher
than that of the benchmark 1stSDM. In addition, the
numerical stabilities of the monic orthogonal polynomial
approximation-based methods are admirable.

(4) The stabi l i ty lobe diagrams of 1stMOPAM,
2ndMOPAM, 3rdMOPAM, and 1stSDM are obtained
based on Floquet theory. The comparison results show
that the stability charts calculated by 2ndMOPAM and
3rdMOPAM are much closer to the ideal stability lobe
diagrams. Furthermore, the monic orthogonal polyno-
mial approximation-based methods are advantageous in
terms of computational efficiency. The difference of
computational time between 1stSDM and 3rdMOPAM
is growing as the increase of parameter n, and the
3rdMOPAM will save more time than the benchmark
1stSDM as the increase of parameter n.

Acknowledgements This work was partially supported by the National
Natural Science Foundation of China (Grant No. 51375055 and No.
51575050).

References

1. Altintas Y (2000) Manufacturing automation: metal cutting me-
chanics, machine tool vibrations, and CNC design. Cambridge
University Press, Cambridge

2. Quintana G, Ciurana J (2011) Chatter in machining process: a re-
view. Int J Mach Tools Manuf 51(5):363–376. doi:10.1016/j.
ijmachtools.2011.01.001

3. Altintas Y, Budak E (1995) Analytical prediction of stability lobes
in milling. CIRP Ann-Manuf Techn 44(1):357–362. doi:10.1016
/S0007-8506(07)62342-7

4. Merdol SD, Altintas Y (2004) Multi frequency solution of chatter
stability for low immersion milling. J Manuf Sci Eng 126(3):459–
466. doi:10.1115/1.1765139

5. Shorr MJ, Liang SY (1996) Chatter stability analysis for end mill-
ing via convolution modeling. Int J AdvManuf Technol 11(5):311–
318. doi:10.1007/BF01845689

6. Li HZ, Li PX, Chen Q (2003) A novel chatter stability criterion for
the modeling and simulation of the dynamic milling process in the
time domain. Int J Adv Manuf Technol 22:619–625. doi:10.1007
/s00170-003-1562-9

7. Tangjitsitcharoen S, Pongsathornwiwat N (2013) Development of
chatter detection in milling processes. Int J AdvManuf Technol 65:
919–927. doi:10.1007/s00170-012-4228-7

Int J Adv Manuf Technol (2017) 91:4313–4330 4329

http://dx.doi.org/10.1016/j.ijmachtools.2011.01.001
http://dx.doi.org/10.1016/j.ijmachtools.2011.01.001
http://dx.doi.org/10.1016/S0007-8506(07)62342-7
http://dx.doi.org/10.1016/S0007-8506(07)62342-7
http://dx.doi.org/10.1115/1.1765139
http://dx.doi.org/10.1007/BF01845689
http://dx.doi.org/10.1007/s00170-003-1562-9
http://dx.doi.org/10.1007/s00170-003-1562-9
http://dx.doi.org/10.1007/s00170-012-4228-7


8. Bayly PV, Halley JE, Mann BP, Davies MA (2003) Stability of
interrupted cutting by temporal finite element analysis. J Manuf
Sci Eng 125(2):220–225. doi:10.1115/1.1556860

9. Butcher EA, Bobrenkov OA, Bueler E, Nindujarla P (2009)
Analysis of milling stability by the Chebyshev collocation method:
algorithm and optimal stable immersion levels. J Comput
Nonlinear Dynam 4(3):031003. doi:10.1115/1.3124088

10. Xie QZ (2016) Milling stability prediction using an improved com-
plete discretization method. Int J AdvManuf Technol 83(5–8):815–
821. doi:10.1007/s00170-015-7626-9

11. Insperger T, Stépán G (2004) Updated semi-discretization method
for periodic delay-differential equations with discrete delay. Int J
Numer Meth Eng 61(1):117–141. doi:10.1002/nme.1061

12. Insperger T, Stépán G, Turi J (2008) On the higher-order semi-
discretizations for periodic delayed systems. J Sound Vib 313(1–
2):334–341. doi:10.1016/j.jsv.2007.11.040

13. Ding Y, Zhu LM, Zhang XJ, Ding H (2010) A full-discretization
method for prediction of milling stability. Int J Mach Tools Manuf
50(5):502–509. doi:10.1016/j.ijmachtools.2010.01.003

14. Ding Y, Zhu LM, Zhang XJ, Ding H (2010) Second-order
full-discretization method for milling stability prediction. Int
J Mach Tools Manuf 50(10):926–932. doi:10.1016/j.
ijmachtools.2010.05.005

15. Ding Y, Zhu LM, Zhang XJ, Ding H (2011) Numerical integration
method for prediction of milling stability. J Manuf Sci Eng 133(3):
031005. doi:10.1115/1.4004136

16. Liang XG, Yao ZQ, Luo L, Hu J (2013) An improved numerical
integration method for predictingmilling stability with varying time
delay. Int J Adv Manuf Technol 68:1967–1976. doi:10.1007
/s00170-013-4813-4

17. Quo Q, Sun YW, Jiang Y (2012) On the accurate calculation of mill-
ing stability limits using third-order full-discretization method. Int J
Mach Tools Manuf 62:61–66. doi:10.1016/j.ijmachtools.2012.05.001

18. Ozoegwu CG (2014) Least squares approximated stability bound-
aries of milling process. Int J Mach Tools Manuf 79:24–30.
doi:10.1016/j.ijmachtools.2014.02.001

19. Villadsen J, Michelsen ML (1978) Solution of differential equation
models by polynomial approximation. Prentice-Hall, Englewood
Cliffs

20. Funaro D (2008) Polynomial approximation of differential equa-
tions. Springer Science & Business Media, Berlin

21. Mercier B (1989) An introduction to the numerical analysis of
spectral methods. Springer-Verlag New York Inc, New York

22. Guo Q, Jiang Y, Zhao B, Ming P (2016) Chatter modeling and
stability lobes predicting for non-uniform helix tools. Int J Adv
Manuf Technol (on line). doi:10.1007/s00170-016-8458-y

4330 Int J Adv Manuf Technol (2017) 91:4313–4330

http://dx.doi.org/10.1115/1.1556860
http://dx.doi.org/10.1115/1.3124088
http://dx.doi.org/10.1007/s00170-015-7626-9
http://dx.doi.org/10.1002/nme.1061
http://dx.doi.org/10.1016/j.jsv.2007.11.040
http://dx.doi.org/10.1016/j.ijmachtools.2010.01.003
http://dx.doi.org/10.1016/j.ijmachtools.2010.05.005
http://dx.doi.org/10.1016/j.ijmachtools.2010.05.005
http://dx.doi.org/10.1115/1.4004136
http://dx.doi.org/10.1007/s00170-013-4813-4
http://dx.doi.org/10.1007/s00170-013-4813-4
http://dx.doi.org/10.1016/j.ijmachtools.2012.05.001
http://dx.doi.org/10.1016/j.ijmachtools.2014.02.001
http://dx.doi.org/10.1007/s00170-016-8458-y

	Orthogonal polynomial approximation method for stability prediction in milling
	Abstract
	Introduction
	Mathematical model of milling process
	Milling stability analysis based on Legendre and Chebyshev polynomials
	Milling stability analysis based on Legendre polynomials
	First-order shifted Legendre polynomial approximation method
	Second-order shifted Legendre polynomial approximation method
	Hyper-second-order shifted Legendre polynomial approximation method

	Milling stability analysis based on Chebyshev polynomials
	First-order shifted Chebyshev polynomial approximation method
	Second-order shifted Chebyshev polynomial approximation method
	Hyper-second-order shifted Chebyshev polynomial approximation method

	Stability lobe diagrams
	Single DOF milling model
	Two DOF milling model

	The rate of convergence analysis

	Monic orthogonal polynomials for milling stability prediction
	First-order monic orthogonal polynomial approximation method
	Second-order monic orthogonal polynomial approximation method
	Hyper-second-order monic orthogonal polynomial approximation method
	Stability lobe diagrams
	Single DOF milling model
	Two DOF milling model

	Convergence rate analysis

	Conclusions
	References


