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Abstract This work discusses the Bayesian parameter infer-
ence method for a mechanistic force model for machining.
Bayesian inference methods have gained popularity recently
owing to their intuitiveness and ease with which empirical
knowledge may be combined with experimental data consid-
ering the uncertainty. The first part of the paper discusses
Bayesian parameter inference and Markov Chain Monte
Carlo (MCMC) methods. MCMC method effectiveness has
been further analyzed by (1) changing the number of particles
in MCMC estimation and (2) changing the MCMCmove step
size. The second part of the paper discusses two example
applications as nonlinear mechanistic force model coefficient
identification. The Bayesian inference scheme performs pre-
diction of the cutting force coefficients from the training data.
Using these coefficients and input parameters to the model,
the cutting force is predicted. This prediction is validated
using experimental data, and it is demonstrated that with very
few parameter updates the predicted force converges with the
measured cutting force. The paper is concluded with the dis-
cussion of future work.

Keywords Bayesian inference .Machining process model
identification .MCMC . Parameter uncertainty

1 Introduction

This work discusses the uncertainty treatment in machining
process model development by applying Bayesian methods
for parameter inference. The uncertainty in the machining pro-
cess can be attributed to the multiphysics nature of a phenom-
enon, coupled with an unknown variation in material and geo-
metrical variations in tool and workpiece [1]. Conventionally,
the machining process models are generated from rigorous ex-
periments. Since the machining process involves effect from
multiple inputs, to generate a reliable model, large sets of ex-
periments are needed. For example, considering machining
force as an output for the process, depth of cut, feed rate, cutting
speed, tool geometry, workpiece geometry, tool wear state, and
other machining conditions have to be accounted for as an input
[2]. Furthermore, as environment variables change state, the
model output may not be reliable. This paper presents an alter-
native model building approach based on sequential learning of
the model parameters with the help of Bayesian probabilistic
methods. In recent years, Bayesian methods have gained im-
portance in the area of robust model construction. Bayesian
methods are attractive to be applied in manufacturing process
modeling because robust and reliable process models can be
generated combining the first principle (physics-based) process
understanding and process measurements (data).

The paper discusses the basics of Bayesian inference along
with the numerical tools necessary to apply these methods to
practical parameter inference. The Markov Chain Monte
Carlo (MCMC) method is discussed in detail which is used
in estimating the parameter distributions. The parameters that
affect the accuracy of the estimate from the MCMC methods
are discussed with the help of numerical simulations. To dem-
onstrate the use of such inference scheme, two case applica-
tions are presented. One of the applications demonstrates the
parameter inference scheme for obtaining the cutting force

* Parikshit Mehta
pariksm@clemson.edu

1 Mechanical Engineering department, Clemson University,
Clemson, SC, USA

2 Manufacturing and Mechanical Engineering Technology
Department, Texas A&M University, College Station, TX, USA

3 Automotive Engineering Department, CU-ICAR, Clemson
University, Greenville, SC, USA

Int J Adv Manuf Technol (2017) 91:3673–3682
DOI 10.1007/s00170-017-0064-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-017-0064-0&domain=pdf


estimation using a machine spindle current transducer. The
parameter values obtained from the inference scheme show
significant improvement over least square estimation. The re-
sults are verified with the help of machining experiments. The
paper also discusses the inference scheme for the mechanistic
force model coefficient estimation. A similar scheme is devel-
oped, and numerical results are discussed. The paper con-
cludes discussing the contribution of present works and con-
tinuing research work.

2 Parameter inference with Bayesian method

In the simplest sense, a Bayesian view of probability indicates
the state of knowledge or belief in a certain hypothesis [3]. In
the context of parameter identification, let ω be the parameter
of interest and D be the data point; the Bayesian theorem can
be written as follows:

p ω Djð Þ ¼ p D ωjð Þp ωð Þ
∫ D ωjð Þp ωð Þdω ð1Þ

In Eq. (1), p(ω) is read as the “probability distribution of
value of parameter ω based on initial belief” often referred to
as a “prior.” p(D|ω) is read as the “probability that the data
point observedwould relate to the parameter value,” called the
“likelihood.” Likelihood often relates the data point to the
parameter of interest via a model; it is a very important part
of the solution as we shall observe in the later sections. And
finally, p(ω|D) is the “probability distribution of value of
parameterω, having observed the data pointD, called a
“posterior.” The denominator is a normalization factor, since
the probability distribution must sum to unity.

Figure 1 shows this process graphically. Few points are
worth noting; the posterior distribution has much less spread
as compared to prior. Also, the definitiveness of both prior and
likelihood dictates the variance of the posterior. Furthermore,
the prior can be uninformative (uniform distribution), thus
showing complete ignorance about the value of the parameter;
in that case, it is the likelihood that dominates the posterior
behavior.
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Fig. 3 Pseudo-code for the random walk Metropolis algorithmFig. 2 Pseudo-code for Metropolis-Hastings Algorithm
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3 Numerical tools: Monte Carlo simulations
and Markov chain Conte Carlo methods

Before discussing the numerical procedure, it is important to
shed light on the tools that enable one to apply Bayesian
techniques in practice. As mentioned in the earlier section,
the closed form solutions of the probability densities are
scarcely obtained.

MCMC methodology is a very important numerical tool
that helps perform numerical integrations that are otherwise
intractable in analytical form. This technique is widely used in
biostatistics, image and video processing, voice recognition,
and machine learning fields. A major applied work in the
MCMC area is reported by [4]. It is essentially Monte Carlo
integration using Markov chains. One of the principle appli-
cations of MCMC is to generate samples from a distribution
which is otherwise difficult to generate samples from. It is
achieved by strategically constructing Markov chains whose
stationary distribution converges to the desired distribution.
To deploy this in practice, there are various algorithms which
include Gibbs sampling, Metropolis Algorithm, and
Metropolis-Hastings Algorithm [4].

In this paper, authors used Metropolis-Hastings Algorithm
to generate samples from the posterior distribution of regres-
sion coefficients. This algorithm is described in detail in the
next section, but in this section, the key points of algorithm are
explained [5]. As described earlier, the Markov chain needs to
be generated whose stationary distribution is the target distri-
bution we want to sample from p(Y). At each iteration step k,
the next state Xk + 1 is generated by sampling a candidate point
Y from a proposal distribution q(Y|Xk). We define an addition-
al variable as follows:

α ¼ min 1;
p Yð Þq Y X kjð Þ
p X kð Þq X k Yjð Þ

� �
ð2Þ

which is known as an acceptance probability; if the candi-
date point is accepted, then the next state becomes Xk + 1=Y,
otherwise the chain does not move and Xk + 1 =Xk. The

pseudo-code for the Metropolis-Hastings (M-H) sampler is
given in Fig. 2.

It is important to make a few observations here. First of all,
the candidate generating frequency specifies the M-H algo-
rithm. Secondly, the calculation of α does not involve calcu-
lation of the normalizing constant since the probability distri-
butions appear in both the numerator and the denominator.
Depending upon the nature of the problem, the calculation
of α can be simplified. For example, in cases where the
candidate generating distributions are symmetric,
q(Y|Xk) =q(Xk|Y), yielding

α ¼ min 1;
p Yð Þ
p X kð Þ

� �
ð3Þ

This is the algorithm that was proposed by [6]. In our work,
we use the random walk Metropolis sampler, initially intro-
duced by [7]. In the following pseudo-code, the algorithm is
described; please refer to Fig. 3.

Now, it will be discussed how MCMC methods can be
used to sample from posterior distribution, which is almost
intractable analytically. It is important to discuss the practical
issues that need consideration while implementing a Bayesian
inference scheme since MCMC is a numerical scheme. The
stability of the mean and variance produced by the method
depends upon the number of particles and sample move step
size. To study this, the following analyses are performed.

& Impact of number of particles on estimation
& Impact of sample move step size

The goal of the above analyses is to compare the output of
the MCMC inference scheme with the maximum likelihood
solution. Although in most of the situations only the maxi-
mum likelihood estimate of the parameter may be required,
the method discussed in this work aims to solve the general
problem by re-creating the posterior distribution to be able to

Fig. 4 Estimation error in scheme as a function of number of samples Fig. 5 Variance estimation slicing illustration
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sample from the same. The input to the MCMC scheme is the
posterior distribution of the parameter in terms of probabilities
associated with each possible value of the parameter within
random variable space. Under consideration is a bivariate nor-
mal distribution of the parameters, in terms of probabilities. At
this point, the analytical expression is not available. The goal
of the scheme is to sample from the posterior distribution and
return the mean and variance of the posterior distribution. The
input to the MCMC scheme is number of samples, input var-
iance of the sample, and posterior distribution. The scheme
generates the samples and takes the mean of the last 70%
samples (to bypass burn in period). It is obvious that the ac-
curacy of the method is dependent upon the length of samples.

Figure 4 shows a particular numerical simulation where the
MCMC scheme is run multiple times with increasing sample

sizes. As the sample size increases, the estimation error re-
duces and oscillates in a ± 2% error. Another factor contribut-
ing to estimation accuracy is the variance expansion factor. As
explained earlier, in every iteration, a candidate sample is
generated from candidate density; in this demonstration, the
candidate density was assumed to be bivariate Gaussian.
Sample generation requires mean and variance to generate
an appropriate sample; the variance was estimated by taking
the “slice” of the posterior distribution and calculating the
difference between maximum and minimum random variable
values associated with the probability. It is worth noting that
by doing so, we are representing the target density variance by
the variance at that slice.

If the variance input for theMCMC scheme is used directly
from the slicing method illustrated in Fig. 5, the samples gen-
erated will refer to the distribution whose base corresponds to
that slice. To counter this problem, the variance expansion
factor is introduced, which simply expands the estimated var-
iance to account for the error introduced because of slicing. In
a numerical simulation, this variance expansion factor was
varied from 0.001 to 2 (0.1% expansion to 100% expansion).
The results indicate that for variance expansion ratios greater
than 0.5, the estimation error is contained within ±3%. It
should also be noted that the variance also represents how
much the candidate sample moves from iteration to iteration.
For the low variance expansion factors, the sample move will
be smaller, while higher variance expansion factors will yield
large jumps in sample generation. This is illustrated in Fig. 6.
The effect of the variance expansion factor on the estimation
error is shown in Fig. 7.

Fig. 6 Effect of variance
expansion factor on sample
generation

Fig. 7 Effect of variance expansion factor on estimation error
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4 Application: mechanistic force model estimation

4.1 Literature review for the machining cutting force
models

The cutting force models descend majorly following the clas-
sic Merchant’s orthogonal two-dimensional force model [8].
This model describes the relationship between measurable
forces in thrust and tangential directions to derived forces
along the idealized shear plane and tool rake face, under the
assumption that shear angle is the same as the angle of grain
elongation. Rao et al. modeled the tool-workpiece dynamic
system and predicted chatter condition in turning operation
[9]. Guo et al. presented the work on the cutting force model
for contour generation for gear indexing cam with flat end

milling [10]. The dynamic cutting force model for milling
was applied to wave the removing process by Wu [11]. The
Bayesian inference has been applied to tool wear coefficient
estimation for Taylor’s tool wear model [2] in the past by
Schmitz [12], but the distributions have been assumed to be
Gaussian and the MCMC approach has not been shown.

What is important to note is that though many extensions
have been applied to the quintessential Merchant’s orthogonal
force model, it still remains to be the most general model for
use. The goal of this presented work is to introduce users to
understand how Bayesian inference may be applied to such a
complex set of equations. It is important to note that Bayesian
inference provides a theoretical construct to estimate posterior
densities of model parameters, and MCMC provides an effi-
cient numerical recipe for the same. The aim of this paper is to

Fig. 8 Prior establishment for
coefficients

Fig. 9 Data likelihood for forces
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provide an example of such regression as is applied in
manufacturing process model parameter estimation. Thus,
for the discussion that follows, the mechanistic force model
given by Merchant has been considered.

4.2 Bayesian inference approach for mechanistic force
model

In this section, the step-by-step procedure of performing
Bayesian inference for the mechanistic force model has been

described. At a high level, the procedure can be summarized
in the following steps.

1. Establishment of priors for coefficients
2. Data likelihood for the force
3. Generating the posterior distribution using MCMC

scheme and updating the coefficient distributions

4.2.1 Establishment of priors

The mechanistic force model is given as follows:

Fc ¼ Kcbhþ ε
Ft ¼ KtbhþΨ

ð4Þ

where b is depth of cut and h is the feed per revolution. ε andψ
represent the uncertainty in measurement of the cutting force
because of variation in force coefficients.

The force coefficients are given as [12] following the or-
thogonal machining theory,

Kc ¼ τcos β−αð Þ
sin ϕð Þcos ϕþ β−αð Þ

Kt ¼ τsin β−αð Þ
sin ϕð Þcos ϕþ β−αð Þ

ð5Þ

where τ is the shear stress during the cutting (assuming or-
thogonal machining model), β is the friction angle, and ϕ is
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Fig. 11 Markov Chain Monte Carlo simulations to generate samples from posterior distribution of coefficients

Fig. 10 Posterior distribution of coefficients
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the shear plane angle. Now, the variability in force is directly
proportional to the variability in force coefficient since depth
of cut and feed are machine parameters usually known and
controlled.

p Kð Þ∝p τ ;β;ϕð Þ ð6Þ

where p(K) indicates the probability distribution of the force
coefficient and p(τ,β,ϕ) is the joint probability distribution of
shear stress, friction angle, and shear plane angle. Shear plane
angle is independent of shear stress and friction angle. Shear
plane angle is a function of chip thickness and tool rake angle.
Thus, Eq. (6) can be reduced to

p Kð Þ∝p τ ;βð Þp ϕð Þ
p Kð Þ∝p τ ;βð Þ ð7Þ

Thus, variability in the force coefficient is directly propor-
tional to variability in shear stress and friction angle.
Therefore, for the estimation of the forces, it is necessary to
observe the joint variability (or joint probability distribution)
of τand β. It is important to note here that for the accurate
update of the force coefficient, it is necessary to have values
of τ,β, and ϕ. However, the (online) measureable quantities
here are only Fc and Ff (cutting and feed force). For the update
of the shear plane angle, with the knowledge of the chip thick-
ness, the following relation can be used.

ϕ ¼ rccosα
1−rcsinα

; rc ¼ tc
tun

ð8Þ

This equation produces an initial belief in the shear plane
angle which can be updated after every cut. In the scenario
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Fig. 12 Force coefficient
update—reduced variability

Fig. 13 Experimental setup of
current sensor calibration
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where the dynamic update of force coefficients has to be
made, one needs to resort to the empirical relationships; one
of the popular ones is given as follows [2]:

ϕ ¼ 45∘−
β
2
þ α

2
ð9Þ

Based on some primary literature search [13–15], for alloy
Ti6-Al4V, shear stress and friction angle joint distribution can
be represented by

p τ ;βð Þ∼N 500
30

� �
;

200 0
0 5

� �� �
ð10Þ

This is a bivariate Gaussian distribution with no covari-
ance. Figure 8 shows the two-dimensional probability distri-
bution of coefficients.

It is important to mention that the convergence to true force
coefficient values depends upon the selection of prior distri-
bution. That is, if the prior is chosen close to the actual value
of the force coefficient, the convergence will be faster. Though
this demonstration assumes a Gaussian prior centered on the

literature-reported values, the scheme is also valid for a uni-
form distribution (noninformative prior).

4.2.2 Data likelihood for the force

An update in the force coefficient is made whenever a new
data point is made available. Since shear stress and friction
angle contribute to cutting and feed forces, both cutting and
feed forces help update the force coefficient value. This is
done by using Eq. (4). The method deployed here is called
discrete grid method [12]. First, the shear stress and friction
angle values are divided in a finite grid, and then, with the
measured force value, the probability of all possible values of
shear stress and friction angles is calculated which will pro-
duce that force. To introduce uncertainty, the measured value
of torque is assumed to have some measurement noise (2–
5%). This way, we get the likelihood function which solves
the inverse problem of “given the data point and my model,
what is the probability that estimated coefficients (parameters)
produce the observed data.” And that selected value of shear
stress and angle will give the measured value of force using a
deterministic model in the presence of uncertainty. The data
likelihood is shown in Fig. 9. The calculation of the posterior
follows from point to point multiplication of the prior density
with the data likelihood.

4.2.3 Sampling from posterior: MCMC scheme

Once the data likelihood is established, the posterior distribu-
tion of the shear stress and friction angle is generated by point
by point multiplication of the prior distribution and the likeli-
hood function. Since at this point, we do not have the analyt-
ical expression that represents posterior distribution, we use

Fig. 14 Data acquisition setup

Fig. 15 Force coefficient
inference and comparison with
experimental data
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MCMCmethods discussed in earlier sections to generate sam-
ples that represent the posterior distribution.

The mean of the posterior distribution indicates the updated
shear stress and friction angle values. These values are then
used in equation to generate updated force coefficient values.

As shown in Figs. 10, 11, and 12, reconstruction for the
force coefficient distribution reveals much reduced variability
before and after the update. The prior distribution is indicated
with the blue solid line, and the posterior distribution is indi-
cated with the red dotted line. This validates the numerical
scheme accuracy and stability.

4.2.4 Experimental setup and data analysis

This section describes the experimental setup to validate the
numerical scheme. The tests were taken on Okuma Lb4000
EX CNC lathe. The lathe was instrumented with a commer-
cially available current transducer-based power monitoring
unit. This commercial product is typically used to give alarms
about the tool breakage, excessive wear, etc. The schematic of
the experimental set up is shown in Fig. 13.

The output from the current transducer [16] is an analog
signal (0–10 V) which represents the power measured in HP.
This signal is acquired with an NI CompactRIO (cRIO-9023)
control prototyping module for signal processing and data
storage. In the same setup, there are additional sensors mea-
suring cutting and feed force and temperatures near the cutting
edge. For this study, temperature measurements were not in-
cluded in the model. But in the experimental setup, there are
twoK typeOmega® thermocouples cemented near the cutting
insert seat.

Experimental data was generated for three cutting speeds
(30, 75, and 120 m/min), and three different feed rates (0.05,
0.15, 0.25 mm/min), while keeping the depth of cut constant
at 1.5 mm. These values were chosen for the machining of the
Ti6-Al4V alloy using an uncoated carbide tool. It is worth
noting that while generating the data, all the cuts were made
using a new tool (new cutting edge).

The data obtained from the current transducer while cutting
the metal was post-processed using MATLAB®.

For the experimental verification of the force coefficient
inference scheme, an online estimation of force coefficient
machining Ti6-Al4-V (grade 5 titanium alloy) was performed.
For a particular machining condition (2 mm depth of cut,
0.3 mm/rev feed rate, 30 m/min cutting speed), Figs. 14 and
15 show the data of cutting force and feed force (solid blue
line). Using the Bayesian inference scheme discussed in the
previous section, the force estimates are shown (red circles).
After about 10 posterior updates, the force estimates show a
good agreement with the experimental data. This can also be
used in an online control scenario—force coefficients of the
workpiece material can be identified online to perform con-
stant force control. Also, should force coefficient change

because of hardness change in the material, the inference
scheme will be able to track the values of the coefficient to
ensure that the cutting force control model is updated.

It is worth mentioning how this method is novel from the
other nonmodel-based (purely feedback-based) methods.
Though the force coefficient values are known to be constants,
they often vary for different speed and feed regimes. If a
deterministic mechanistic model is chosen, it is quite possible
that the prediction of forces might be accurate in a particular
regime, but not across the entire range. This method not only
provides a means for a prediction of forces from a mechanistic
point of view but also provides understanding in the distribu-
tion of friction values, shear stress, and shear plane angles and
how it varies across different cutting load and speed regimes.
From the control theory point of view, it provides an automatic
tuning feature. In the continuing work, authors are investigat-
ing treatment of outliers and in-process identification of shear
plane angles.

5 Conclusion

In the machining process model identification, an extensive
amount of experiments are required to converge to a reliable
model. The idea discussed in this paper helps overcome this
limitation by performing a minimal amount of tests (to estab-
lish priors), and the learning process is continuous. Bayesian
methods offer mathematically robust solutions that treat un-
certainty in deterministic models. MCMC numerical schemes
are proven methods to sample from a distribution it is difficult
to sample from. The MCMC scheme deployed in this work
was able to generate samples from general distribution
(Gaussian and non-Gaussian). And finally, Bayesian updates
provide more accurate models that can be used for the current
torque (or force) estimations and control. Experimental data
shows the validity of the scheme and agreement with the ob-
served data. A similar approach has been applied to a simpler
application of linear model identification for power prediction
in machining [17]. Since Bayesian inference can be extended
to classification problems as well, application of this can also
be found for condition-based maintenance [18].

As the next step, authors wish to integrate the Bayesian up-
date scheme in a closed loop control. Possibility of including the
wear estimation is also one of the future directions. The frame-
work will be similar to the one that involves model learning
using recursive least square (RLS) methods of parameter estima-
tion in the case of linear Gaussian dynamic models for cutting
force control or power control in the turning or milling process.
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