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Abstract Face milling is extremely popular in industrial mass
production of spiral bevel and hypoid gears because of its high
productivity and the superior contact performance of the gear
pairs it produces. This method, however, includes many cut-
ting systems that must be implemented on numerous dedicat-
ed traditional machines with differently designed mecha-
nisms. The five-axis CNC machine, in contrast, has enough
degrees of freedom to handle all these cutting systems. As a
result, the use of a general five-axis machine to produce
face-milled bevel gears is attracting growing attention because
it is so much more flexible than dedicated machines in
small-scale diverse production. This paper therefore proposes
a face-milling system with flank correction for bevel gears on
a five-axis CNC machine. First, a mathematical model of the
tooth surface is established based on a trunnion table type
machine, after which the five coordinates of the five-axis ma-
chine are derived using the machine settings of a virtual cradle
type bevel gear cutting machine. These five coordinates are
degenerated to a function of the generating angle, and each
coordinate is approximated as a polynomial in a Maclaurin
series. Because flank topographic errors can be systematically
reduced by adjusting the polynomial coefficients, a flank cor-
rection technology is developed based on a sensitivity analysis
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that investigates flank topographic deviations in terms of
changes in coefficients. Based on this sensitivity matrix and
the tooth surface errors measured, corrections are made to the
five-axis coefficients using the least squares method. Finally,
following a program accuracy check using NC verification
software, several cutting experiments are performed to verify
the correctness of the mathematical models.

Keywords Bevel gear - Face milling - Five-axis machine -
Flank correction method

1 Introduction

Face milling (FM) and face hobbing (FH), the two primary
methods used in the industrial mass production of spiral bevel
and hypoid gears, have for decades been implemented on
dedicated bevel gear cutting machines, which require numer-
ous complex features such as cradle, helical motion, and mod-
ified roll ratio mechanisms. The modern CNC bevel gear cut-
ting machine, in contrast, is a six-axis structure with enough
degrees of freedom to handle for all cutting systems. Basically,
this machine has five-axis synchronous interpolation for FM
cutting systems and an additional electric gear box that en-
ables synchronized movement in the cutter and workpiece
rotation axes of FH cutting systems. FM gears can also be
produced, however, on a general type five-axis machine, a
highly feasible option whose low cost and flexibility in
small-scale diverse production have prompted increasing at-
tention. Five-axis machines may have three types of construc-
tions: trunnion-table type (two rotation axes in table side),
rotary-table and swivel-head type, or tilting head (two rotation
axes in head side). The first two, which have a rotary work-
piece table, are particularly suitable for machining gear tooth
surfaces; however, even though several applications of these
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machines have been introduced into industry, their technical
details—in particular, their mathematical models—have not
been revealed because of commercial considerations.

The mathematical models of bevel gear tooth sur-
faces, in contrast, are widely available in the literature,
being most commonly based on a virtual cradle type
bevel gear cutting machine. The first complete mathe-
matical models of FM hypoid gears were established by
Litvin and Gutman [1-3] using formate and helixform
methods. Litvin et al. [4] then derived the machine set-
tings for bevel gears using a cutter tilting method.
Somewhat later, Fong [5] proposed a universal mathe-
matical model for FM bevel gears that involves all sup-
plemental motions for flank modification, and Shih
et al. [6] then established a universal mathematical mod-
el for FH bevel gears. These models successfully im-
prove gear pair contact performance at the design stage
and enable the derivation of machine settings for all
types of real-world cutting machines. More recently,
Deng et al. [7] proposed an application for bevel gear
production on a five-axis machine in which a disk cut-
ter replaces an FM cutter head to provide greater flex-
ibility in manufacturing large size gears. This method,
however, has lower productivity. Shih et al. [8] also
derived the coordinates for a trunnion table type
five-axis machine from universal machine settings but
without considering flank correction. Shih and Fong
[10] also applied the bevel gear flank correction method
developed by Litvin and Fuentes [9] for traditional ma-
chines on a modern CNC bevel gear cutting machine.
Its application on a five-axis machine, however, has not
yet been reported.

This paper therefore develops a mathematical model
of flank correction for FM bevel gears on a five-axis
machine by first deriving the five-axis coordinates as
separate functions of a cradle angle approximated by a
Maclaurin series. This derivation allows the cutting mo-
tion to be changed by adjusting these coefficients to
reduce flank errors. A sensitivity matrix of the tooth
surface coefficients is then determined that, when com-
bined with measures of the flank topographic errors,
enables least squares estimation of the five axes’ correc-
tive coefficients for minimizing deviations. Lastly, after
an NC (VERICUT) verification is performed to simulate
the correctness of the CNC data, several cutting exper-
iments are conducted to verify the correctness of the
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Fig. 1 Produced gear workpieces

mathematical models. The produced gear workpieces
are shown in Fig. 1.

2 Mathematical model of FM bevel gears based
on a virtual cradle type bevel gear cutting machine

As previously emphasized, the virtual cradle type bevel gear
cutting machine has adequate degrees of freedom to simulate
the motion of bevel gear cutting using all types of FM and FH
cutting methods. Hence, according to the motions for cutting a
gear given by the virtual machine, traditional machines use
additional mechanisms for cradle generation or the several
supplemental motions (e.g., cutter tilt, helical motion, modi-
fied roll) that these latter require for a generating process and
flank modification. FM cutting methods use FM cutter heads
for the mass production of bevel gears because of their high
precision and productivity. In this method, a plurality of inner
(IB) and outer (OB) cutting blades are mounted alternately on
a cutter head (see Fig. 2). The blade edge profile can be
straight lined or circular, which latter achieves profile
crowning for better contact performance. Here, the profile
angle is represented by parameter ay, the fillet radius by p,
the cutter radius by rp, the nominal cutter radius by ., the
cutter height parameter by H,, and the tool rotation angle by
(. The cutter profile for the example gear pair and the adopted
cutter are shown in Figs. 6 and 10, respectively.

If the blade edge is a straight line (rl) ) with a circular arc

tip fillet (r\/) ), its position vector is

x) () = £ (xy—pycosu) (1)
() = 2 + pysina
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Fig. 2 Coordinate systems for an
FM cutter head
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Fig. 3 Coordinate systems of a virtual cradle type bevel gear generator
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Fig. 4 Coordinate systems for
bevel gear cutting on a trunnion
table type five-axis machine

and the fillet center is

X = pptan (77/4—a;,/2)
=P

Zcf

where u is a curve parameter and symbol + indicates the
inner and outer blade edges, respectively. The position vector
of the blade edge may be represented in the tool coordinate
system S, using the following homogeneous coordinates:

r(u, 3) = [(xs +7ro)cosf  (x, +ro)sinfd  z, I]T (2)

Table 1 Basic and

manufacturing parameters for the Pinion Ring gear
example pair
Items Convex Concave Convex Concave
(A) Basic gear data
Number of teeth z 16 33
Outer module Mes 3.500
Pressure angle y, 20.000°
Spiral angle B 35.000° L.H. 35.000° R.H.
(B) Gear blank data
Pitch angle 0 25.866° 64.133°
Face angle O 30.727° 66.464°
Outer diameter dye 63.408 117.221
Outer whole depth he 6.869 6.869
Face width b 19.500 19.500
Mounting distance My 75.000 36.000
(C) Assembly data
Shaft angle by 90.000°
Offset Vv 0.000 -
Axial setting H 0.000 0.000
(D) Cutter data
Profile angle ap 24° 16° 24° 16°
Cutter radius o 54.250 55.750 54.250 55.750
Fillet radius b 0.700 0.700 0.700 0.700
(F) Five-axis machine tool
Offset along x, ke 0.085
Offset along z, k. 0.06
Fixture height (measured) H, 140.408 97.826
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Table 2 Universal cradle type
machine settings for the example Items Pinion Gear
pair
Convex Concave Convex Concave
Tilt angle i 1.106° 0.995°
Swivel angle J 28.332° —67.396°
Initial cradle angle setting 0. 64.598° —63.349°
Radial setting Sr 50.171 50.234
Vertical offset E, -0.236 0.000
Increment of machine center to back AA —0.332 —0.459
Sliding base feed setting AB 0.965-2.910¢,. 2.399
Machine root angle Yo 21.339° 58.508°
Roll ratio R, 2.27513 1.10112

According to the literature [10], the virtual cradle type ma-
chine has nine machine settings: (1) the tilted angle 7, (2) the
swivel angle j, (3) the radial distance Sk, (4) the initial cradle
angle setting 6., (5) the vertical offset E,,,, (6) the sliding base
AB, (7) the machine root angle ~,,, (8) the increment of ma-
chine center to back AA, and (9) the roll ratio R, (see Fig. 3).
All these can be determined by the calculation formulas pro-
vided by the machine manufacturers. Two other settings move
the machine axes for positioning the tool and work gear to
enable the generating process and flank modification for bevel
gear production: parameter ¢;, the work gear rotation angle;
and parameter ¢, the cradle rotation angle.

As Fig. 2 shows, coordinate systems S, and S, are fixedly
connected to the cutting tool and work gear, respectively. S,

Eq. (3). The envelope for a one-parameter family of surfaces
generates the bevel gear tooth surface, which can be deter-
mined from the equation of meshing [10] and two boundary
conditions of gear blank.

v, 8, ¢.)

= M (6)MY) (7, /, Sz, Ocs Emy AB, Yy AA, 6111, B)

(3)

Here, the transformation matrices from S, to S, for the
cradle type machine are

and Sy are auxiliary coordinate systems for the cutting posi- 1 0 .O 0
tions and motions of the tool and work gear. The transforma- Mgl){ ) (¢)) = 0 CPS¢1 —sing; 0
tion matrix from S, to S; yields the locus of the tool in the work ’ 0 sing; cosg; 0

. .. . . 0 0 0 1
gear coordinate system whose position vector is represented in
Fig. 5 Flow chart of flank Beai
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Measure flank topographic errors by the
gear measurement center [0R;]

a

v

Calculate theoretical data

Sum of squared errors<2,000pum

C.C,.C.y,v.

Five-axial coordinates (Eqgs.(8) and (9))

No
Y

Kinematic axis functions (Eq. (10))

6
f@)=X as. f=C.C.C.y,v,
k=0

Calculate corrective coefficients by the
least squares method (Eq.(14))

[6a,1=(1S;1"1S, 1) 1S, 1 [6R]

Positions and normal vectors of tooth *
surface (Eq.(4) to (6)) r;, m;

Generate NC codes according to the

Sensitivity matrix corresponding to
coefficients of coordinates [S, ]

corrective coefficients of coordinates
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Fig. 6 Positions of the cutting edges for both gears
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3 Mathematical model based on a trunnion table type
five-axis machine

Because the trunnion-table and rotary-table-swivel-head
types of five-axis machines include a rotary table, they
are very suitable for machining gear tooth surfaces. The
first is therefore used as an example in this paper. In
this trunnion table type machine, coordinate systems .S,
and S; are rigidly connected to the cutting tool and
work gear, respectively (see Fig. 4), and S, and S,
are the auxiliary coordinate systems for the movement
of the five axes. C,, C,, and C, are the three coordi-
nates for translating the axes, and v, and . are the
coordinates for the workpiece rotation angle and table
tilting angle, respectively. These five coordinates are
moved synchronously by a CNC controller so as to
satisfy the movement requirement for cutting bevel
gears. An additional coordinate, v, is the angle for
tool rotation, while A, and A, are the incremental
angles for tool rotation and work gear rotation, respec-
tively. Parameter H, is the fixture height, and parame-
ters k, and k, are machine constants, the former

@ Springer

representing the distance between the table datum plane
and the table tilting axis y., and the latter, the offset
between axes y. and x.. Each of these must be mea-
sured out before cutting.

The bevel gear tooth surface is generated by an en-
velope of a family of tool surfaces r, whose position
vector is derived using the following coordinate trans-
formation:

r (ua /67 ¢L)
- Mle(¢1)Met(wavAwvawam Cyacz)rl‘(uvﬁ) (4)

where the transformation matrices from S, to S; for the
five-axis machine are

1 0 0 0

|0 cosg; sing; O
Mie(¢1) = 0 -—sing, cosp, O
0 0 0 1
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and
1 0 0 Off1 0 0 My+Hjs+k, siny, 0 cosy, O
M,.(6,) = 0 —cosAy, —sinAyp, 0|0 1 0 0 0 1 0 0
T 10 sinAY,  —cosAyw, 0|0 0 1 k, —cosy, 0 sinyp, O
0 0 0 1 0 0 O 1 0 0 0 1
1 00 0 1 00 —(Cy +k) cosAyy, —sinAy, 0 0
01 0 —Cc||0 1 O 0 sinAvy, cosAy, 0 0
001 0 (|0 0 1 —(C.+Hs+ky) 0 0 10
0 0 0 1 0 0 0 1 0 0 0 1
The five coordinates for cutting are functions of the cradle £ (u, 3, ¢.) = n|(u, 3, ¢c).v(l”)(u’ B,p.) =0 (6)

angle ¢, which in cradle type machines dominates the gener-
ating position, while the workpiece rotation angle ¢, is equal to
R, . where R, is the roll ratio. The position vector ry is derived
as a function of three variables: u, (3, and ¢, The first two are
variables of the cutter surface, while the last is its motion pa-
rameter. According to differential geometry, a normal vector n,
to a surface is obtained by taking the cross-product at a surface
point of the two tangent vectors that are partial derivatives of

with respect to « and /3. Relative velocity V(lm is then a time

differential of ry, while the motion parameter ¢.. is a function of
time. These variables are calculated as follows:

arl (uaﬁ7 ¢c) > arl (u’67 ¢C>
B ou a0
n (v, B,¢.) = ‘ o (u.f,6.)  ori(u. 5. .) (5)
ou op
VEH) (u,ﬁ, ¢C> _ ar] (l;;bﬁv ¢c) (bc

The topographic points of the tooth surface can then be
solved using an equation of meshing (Eq. (6)), derived when
the relative velocity is perpendicular to the normal vector,
together with two boundary conditions of the gear blank:

4 Derivation of the five-axis coordinates

If different machines are employed to produce the same gear
using the same tool, the relative motions between the tool and
the work gear should be identical. In other words, the coordinate
transformation matrix of the five-axis machine should equal that
of the cradle type machine so that the following relation is satis-
fied:

Met ('(/)av Awba cha Cx7 CV7 CZ)

= MgiU)(Lja SR7 9C7Em7 AB7 Yms AA’ ¢c)

e en e e
_ |ean exn exn en (7)
€3 exn e exn
0 0 0 1

According to inverse kinematics, six coordinates (includ-
ing the tool rotation angle) can be determined by equating the
elements in the above two matrices:

V(b)) = —cos ' (er3) Ci(¢.) = excosArh.—esinAi),
Ay () = tan”' (x,y) = tan"' (~ei1,en), § Cy(@.) = Dsiny,~Ecosty,—k, (8)
A (p.) = tan”' (e33,€23) C.(¢.) = Esiny), + Dcostp,—H 1k

where Because the five coordinates are functions of the cra-

D=—-ey4+Hp+k.+M;
E = exsinAy, + esscos A, + k.

Here, the incremental angles A, can be ignored because
they have no influence on the tooth geometry, but the incremental
angles A1y, must be added into the workpiece rotation angle as

wc(qbc) = 7‘1)1 + ch = 7Rad)c + ch((bc) (9)

dle angle ¢,, each coordinate can be further approximat-
ed by the Maclaurin series below. Degree six is usually
assumed to meet the requirement of machining accura-

cy:

v f9(0)-¢.F

f(¢) ]EO —

f = Cxa Cy7 sz T/Ja, 7/10

(Yo 3 i
+R (¢C>Nk§0ak¢c (10)
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Table 3  Theoretical five-axis coordinates for the finishing cutting positions of the pinion and gear

Pinion Gear

Coordinate Convex Concave Convex Concave

¢, cradle angle +0.334>¢.> —0.349 -0.290< ¢ < +0.312
(rad)

C, x-axis ) )
—45.4031-21.95716,+22.7437¢? +45.5517-21.2752¢,~23.1263¢2
+3.8708¢°—1.9085¢!—0.2360¢° +0.0638¢° +2.8978¢7 +2.06444!-0.0078¢°—0.0792¢4°

C, y-axis 2 2

: —177.7720-44.1399¢,.—11.6318¢? —48.0294+47.5630¢,~10.0315¢?
+7.3729¢2 +1.0702¢3—0.3677¢7—0.0500¢° —8.2338¢)240.49454,+0.4573¢7+0.0324¢°

C, z-axis ) )
—58.551340.2085¢,—1.1464¢? +18.4622+1.2014¢,—0.042547
—0.51964;+0.0955¢;+0.0260¢.-0.0032¢7 ~0.2002¢; +0.0035¢;+0.0100¢.-0.0001 7

1), table tilting ) )

angle —68.0091+0.8960¢,—0.3258 ¢ —31.4362+0.9944¢,—0.0211¢>
—0.1514¢}40.02684-+0.0080¢,—0.0008¢° ~0.1663¢}—0.0018¢+0.0083 ¢, +0.0005¢°
1. work angle

+0.9620-131 .0551¢c—0.4875¢3

+0.1151¢2+0.0428¢—0.0054¢°—0.0017¢¢

+1.9040-63.1702¢,—0.9555¢2
~0.0136¢;-0.0799¢+0.0061¢,~0.0024¢5

The polynomial coefficients can then be modulated for
flank correction.

5 Flank correction on a five-axis machine

Because manufacturing deviations of the gear tooth sur-
faces are caused primarily by cutter and machine axes
errors, the flank geometry of a bevel gear has a domi-
nant influence on contact performance, and the gear’s
flank deviations must be reduced as much as possible.
The flank correction method for a bevel gear based on a
cradle type machine, explained in Ref. [9], is well de-

cutting machine [10] but never on a five-axis machine.
The main procedures in this method are (1) measuring
the flank topographic errors using a coordinate measur-
ing machine (CMM), (2) calculating the sensitivity ma-
trix of the machine settings with regard to variations in
the flank topographic points, and (3) determining the
corrective machine settings based on the sensitivity ma-
trix and the flank topographic errors. More specifically,
these corrective settings are measured using the least
squares method as shown in the following equations.

The generated tooth surface can be represented as a func-
tion of variables (u, /3) and the polynomial coefficients a; of
the five-axis motion. It may be expressed as

veloped and has been applied on a CNC bevel gear Tl = r(uf,a) (G=1,....9) (11)
Fig. 7 Gear blanks for the gear .
pair 30 /\
20 2
10 =
g
E 0 —=
N prd
~10 =
20 a Ny S
. \/// \\y/
~60 ~40 ~20 0 20 40 60
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Fig. 8 Theoretical kinematic relations of the five-axis coordinates for the pinion and gear

where ¢ is the number of polynomial coefficients which
equals to 6 x 7. According to differential geometry, the surface
variation vector is as follows:

Brl

q
or; = —ou+ o ory
ou

op

ar

Because tangent vectors 7
to the surface normal, taking the inner product of both sides of
the above equation with the surface normal n, yields the fol-
lowing normal surface variation:

and %% are both perpendicular

. ory ory 9 Or
5[‘1'111 = (E(Su + %6ﬁ + JZ:] 87]-5“/) -y

(13)

The corrections [da;] for coefficients can be further derived
as

(6] = ([s3)"[5,]) " [5:) "6k

where [S;] is the sensitivity matrix and [0R,] is the flank topo-
graphic errors.

Figure 5 illustrates this method applied in this paper as a
flow chart. First, based on the given settings for the cradle type
machine, the five-axis coordinates are derived and represented
as polynomial approximations. Next, the positions and normal
vectors of the topographic points of the tooth surface are cal-
culated, and the effect on these points of a small variation
(0.01) in each of the five axes’ polynomial coefficients is
evaluated to produce the sensitivity matrix. A five-axis ma-
chine is then adopted for gear production, and its flank topo-
graphic errors are derived using a gear measurement center. If

(14)

the sum of squared errors of the work gear is larger than
2000 umz, a correction must be performed. The corrective
coefficients are also determined using the least squares meth-
od based on the measured errors and sensitivity matrix. This
process allows generation of the corrective NC codes to re-
duce manufacturing errors in the subsequent production of a
work gear.

6 Numerical examples for an FM bevel gear
produced by a five-axis machine

The numerical example is based on an FM spiral bevel gear
pair whose pinion and gear are produced by the duplex helical
method, also called SGDH. This method employs a
double-flank cut that enables very high productivity and uses
the same cutting tool to produce both gears, meaning that the

Pinion

Fig. 9 3D models of the example pair (built using SolidWorks)
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Fig. 10 Solid cutter (designed
and manufactured by the authors)

(a) 3D design

convex and concave flanks of the tooth surface are cut simul-
taneously. The basic gear parameters, manufacturing parame-
ters, and machine settings of the cradle type machine are listed
in Tables 1 and 2, respectively. Except for the given parame-
ters and those for the five-axis machine, all these are calculat-
ed based on the machine summary provided by Gleason [11].
Based on the machine settings, both gears are produced using
a generating motion, with a helical motion of the sliding base
applied only for flank modification of the pinion. As illustrat-
ed in Figs. 6 and 7, respectively, the profile angle of the inner
edge is larger than that of the outer edge and the gear blanks
have tapered depth teeth in the assembly position.
Substituting the universal machine settings, the machine
constants of the five-axis machine, and the fixture height into
Eqgs. (8) and (9) determines the five coordinates for the cutting
positions. The theoretical five-axis coordinates are functions
of the cradle angle, which, based on Eq. (10), can be further
approximated as polynomials of up to the sixth degree (see
Table 3). Figure 8 then shows their kinematic relation, with
cradle angle ¢, ranging from +19.1 to —20.0deg and from
—16.6 to +17.9degfor the pinion and gear, respectively.
These settings enable a generating motion from the toe to
the heel of the tooth surface. The functions of the five coordi-
nates and the cutter parameters are then substituted into
Egs. (1), (2), (4), and (5) to yield the position and normal
vectors of the work gear with three variables (u, 5, ¢.).
These variables are then solved using an equation of meshing
(see Eq. (6)) and two boundary equations of the gear blank

Table 4 Manufacturing errors of the cutter workpiece

Items (a) Design  (b) Measurement  (c) Deviation
Profile angle 1B 24.000° 23.841° —0.159°
OB  16.000° 16.039° +0.039°
Cutter radius 1B 54.250 54.376 +0.126
OB  55.750 55.845 +0.095
Point width 1.500 1.469 —0.031
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(b) Cutter workpiece

and substituted into Egs. (4) and (5) to obtain the position and
normal vectors of the topographic points. This process gener-
ates both the nominal data for gear measurement and the to-
pographic points used to build the SolidWorks 3D models of
the gear pair (see Fig. 9).

7 Experimental results for flank correction

The correctness of the proposed models is verified through
several cutting experiments made on a trunnion table type
five-axis machine equipped with a high precision Siemens
840D sl CNC controller with 5 pm repeatability. The experi-
ments were performed using the specially designed and
manufactured solid cutter (material SKH 55, HRC 62) shown
in Fig. 10, whose workpiece was inspected using a CMM (see
Table 4 for the manufacturing errors). This inspection identi-
fied profile angle errors for the inner and outer blades of
—0.159 and +0.039deg, respectively, which directly affect

v, =-31.436°
v, =1.904°

Cutter

Work gear

C, =45.552
C, =—48.029
C. =18.462

Fig. 11 Theoretical cutting position of the gear when ¢.=0 on the five-
axis machine
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Fig. 12 Cutting simulation for the gear using VERICUT

the pressure angles of the convex and concave flanks of the
bevel gear, respectively. The cutter radius errors, which influ-
ence the tooth flank curvatures, are +0.126 and +0.095 mm,
and the point width error, which increases tooth thickness, is
—0.031 mm.

Two operations are generally used in bevel gear cutting: a
formate motion for roughing, which is enabled by setting ¢.. to
zero; and a generating motion for finishing, made possible by
arange of ¢... Before the cutting experiment, the NC codes for
both gears are programmed according to the five-axis coordi-
nates listed in Table 3 and tested for errors using the NC
verification software VERICUT so as to prevent collisions
and cutting mistake. To illustrate, Fig. 11 shows the cutting

Theoretic tooth
surface

STL model

position for gear production when ¢.=0, with the corre-
sponding cutting simulation illustrated in Fig. 12. After
simulation, the finished workpiece is exported as an
STL (StereoLithography) file whose left side is shown
in Fig. 13. Here, the interpolation tolerance of STL file
during VERICUT simulation is set to 0.05 mm. The flank
topographic deviations between the STL and theoretic
tooth surfaces are then evaluated using a program com-
piled by the authors. As Fig. 13 (right side) shows, the
sum of the square is 2501 um?, and the tooth thickness
error is +57 um. These errors, which could be caused by
simulation error, are small enough to confirm the correct-
ness of the NC codes.

Concave
sglH G F E D C B A 143
~09 £ L i3
Toe Root Heel|  Gap

) S— 8.2
) N N N N N N N N
(S MWW

P W N N N N A W . G

I H G F E D ( Ve

Convex
Average: 4 m | Sum of Squared: 2,50 lum’
Thickness Error: +57 um

Fig. 13 Flank topographic deviations of the gear produced using VERICUT simulation before correction
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Fig. 14 Cutting the pinion and
gear during the experiment

Figure 14 illustrates the cutting of the pinion and gear (ma-
terial S20C) using the trunnion table type five-axis machine,
which reveals the disadvantage of weak machining stiffness
because of the large table tilting angle (|1/,,| >45°) for machin-
ing the pinion. The figure also shows the finished workpieces
of both gears, which are then inspected using a Klingelnberg
P40 gear measuring center. Before measurement, the nominal
data [i.e., the basic data for the gear pair (MESINFO.CDS)
and the positions and normal vectors of the topographic points
(SOLL1.CDS)] are prepared and uploaded to the machine.
Figure 15 shows the results: the sum of squares and tooth
thickness error for the pinion are 10,077 umz (for
2 x 9 x5points) and —304 pum, respectively, and those for
the gear are 10,266 um? and +19 pm.

Because the errors caused by cutter and machine axes er-
rors are difficult to correct intuitively, a flank correction meth-
od is developed in which the cutter parameters and coordinate
coefficients can be corrected together. However, only the latter
is taken into account. Because of space constraints, however,
this discussion considers only the coefficients as they apply to
a gear. The first step is evaluation of the flank sensitivity
topographies corresponding to the coefficients up to the sixth
degree, exemplified in Figs. 16 and 17 by the zero and first

AVERAGE (Gap 1.5,9)

(a) Pinion

(b) Gear

degree coefficients, respectively. Because the cutter rotation
angle 1, is a spindle axis, its coefficients have no influence on
the tooth geometry. However, in the zero degree analysis,
coefficients a,y and a,, affect the tooth geometry in the bias
and lengthwise directions, coefficients a,o and a,¢ affect the
profile angle, and all these coefficients together with coeffi-
cient a. affect the tooth thickness. In the first degree analysis,
all the coefficients except coefficient a,; have an effect in the
bias direction. In total, 42 flank sensitivity topographies of the
various coefficients make up the sensitivity matrix, which is
partly illustrated in Fig. 18.

Based on this matrix, the proposed correction method can
flexibly select which coefficients need to be corrected; for
example, if the elements in the a.y column are all equal to
zero, then coefficient a.y does not require correction. Such
correction can be applied to both single- and double-flank
cuts, although the former is likely to have a better outcome
(in reducing manufacturing errors) than the latter because of
its higher degrees of freedom. The single-flank correction is
carried out by providing two sets of columns, one each for the
inner and outer blade coefficients (see Fig. 18). The target
topographic deviations for correction shown in Fig. 19a are
determined based on the reverse of the gear errors measured

AVERAGE (Gap 1.2,3)

Sum of Squared: 10,077um* , Thickness Error: - 304um

(a) Pinion

Sum of Squared: 10,266um” , Thickness Error: +19um
(b) Gear

Fig. 15 Flank topographic errors of the pinion and gear measured by the Klingelnberg P40 gear measuring center
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Fig. 16 Flank sensitivity topographies corresponding to the zero degree coefficients for the five-axis coordinates in a gear

(Fig. 15b). (Fig. 19b) shows the flank topographic errors after
correction.The sensitivity matrix is applied here to correct a
single-flank cut. The values of the matrix elements with regard
to a9 and a., the coefficients of C,, and the coefficients of the
fifth and sixth degrees are zero, meaning that they are not
involved in this correction under manufacturing conditions.

The corrective coefficients are calculated using the least
squares method based on the target flank deviations and given
sensitivity matrix, which reduces the usual calculation time of
about 14 min to less than a second (see Table 4 for the out-
comes). The kinematic relations corresponding to the cradle
angle are shown in Fig. 20.
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Fig. 17 Flank sensitivity topographies corresponding to the first degree coefficients for the five-axis coordinates in the gear

Once the errors are identified, the NC codes are generated
anew and the new codes verified by VERICUT. The tooth
surface deviations produced by the cutting simulation are pic-
tured in Fig. 21, which shows them to have same tendency as
the target (Fig. 19a). Hence, another cutting experiment is

@ Springer

performed after the new correction program has been trans-
ferred to the CNC computer (Table 5). The experimental
workpiece (the gear) displayed in Fig. 22 shows four sequen-
tial cuts, the first two produced by the original NC codes and
the last two, by the corrected codes. Figure 23 then illustrates
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Fig. 18 Part of the sensitivity matrix [S;] for the polynomial coefficients of the five-axis coordinates
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Fig. 20 Kinematic relations of
the five-axis coordinates for the
gear after correction
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Fig. 21 Flank topographic deviations of the gear produced using VERICUT simulation after correction

Table 5 Corrective five-axis coordinates for the gear

Items Convex Concave

¢, cradle angle (rad) -0.290<¢.<+0.312

C, x-axis ) )
+45.5754-21.5594¢.—23.0693 ¢ +45.5425-21.2726¢.—23.1194¢7
+2.8845¢7+2.065242-0.0078¢, +0.0792¢° +2.8967¢7 +2.063664:-0.0078¢°—0.0792¢°

C, y-axis 5 2
—48.0132+47.4953¢,~10.0178¢? —47.7631+47.5792¢,~10.0284¢?
~8.2375¢;+0.4946¢;+0.4573¢,+0.0324¢° ~8.2331¢;+0.4951¢;+0.4573¢,+0.0324¢°

C, z-axis

+18.4622-+1.2014¢,-0.0425¢7
—0.2002¢; +0.0035¢;+0.0100¢.-0.0001 ¢

1), machine root

2
angle ~31.436240.64204,+2.5108¢2

+4.75784.+0.8757¢7+0.0083¢>+0.0005¢¢
. workpiece angle

v P € +1.9040—64.0887¢,45.0144¢2

+3.9475¢7+0.1223 42 +0.0061¢°—0.0024¢4°

+18.4622-+1.2014¢,0.0425¢?
—0.2002¢;+0.0035¢; + 0.0100¢>—0.0001¢°

—31.4362 + 1.3350¢,—0.788662
+1.5643¢7—2.2501¢2+0.0083¢>+0.0005¢°

+1.9040-62.3019¢,~3.3055¢7
+3.0086¢7 +2.5581¢¢+0.0061¢°—-0.0024¢°

First cut

Try 2

Second cut(correction

Fig. 22 The gear during flank correction
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the outcome of using the corrective method: the maximum
error is reduced from 27.7 to 8.6 um, and the sum of squares
is dramatically lowered from 10,266 to 1253 wm after just
one round of correction. The tooth thickness error +8 pm can
then be further eliminated by intuitively adjusting the work-
piece rotation angle ...

8 Conclusions

In view of FM bevel gear manufacturing on a general five-axis
machines is so much cheaper and more flexible than on a
dedicated bevel gear cutting machine, especially in
small-scale diverse production, this paper proposes a novel
FM bevel gear flank correction method for a five-axis ma-
chine. The mathematical model of the tooth surface is
established based on a trunnion-table type machine, after



Int J Adv Manuf Technol (2017) 91:3635-3652 3651
Fig. 23 Flank deviations of the AVERAGE (Gap 1.,2.3)

gear after correction measured by

the Klingelnberg P40 gear KLINGELNEERG

measuring center

concave

Sum of Squared: 1,253um” , Thickness Error: +8um

which the five coordinates are derived from a virtual cradle
type bevel gear cutting machine. Each coordinate is
degenerated to a function of the generating angle and approx-
imated as a polynomial in a Maclaurin series. The flank cor-
rection method itself is based on a sensitivity analysis that
evaluates flank topographic deviations based on changes in
these coordinate coefficients. That is, once the polynomial
coefficients are adjusted, their corrections have been estimated
using the least squares method based on the sensitivity matrix
and the errors measured so as to reduce flank topographic
errors. The correctness of the proposed method is verified in
several cutting experiments using an SGDH gear pair as a
numerical example. These verification results show that when
applied to a gear, just one round of the new flank correction
procedure effectively reduces the maximum error and sum of
squares from 27.7 to 8.6 pm and from 10,266 to 1253 pm,
respectively. Hence, even though the five-axis machine itself
is subject to inherent errors of manufacturing, deformation,
and assembly or large errors exist in the cutter, the proposed
method can still be very effective in increasing its accuracy.
axo~aes I, J,0:,Sr, Ey, coefficients of the five-axis coor-
dinates; AA, AB,%,,,R,, machine settings of the universal
cradle type bevel gear cutting machine; ry, cutter radius; u,(,
parameters of the cutting surface; C,, C,, C., translating coor-
dinates for the five-axis machine; M;;, homogeneous transfor-
mation matrix from coordinate system S; to coordinate system
S;; my, surface unit normal of the work gear in coordinate
system S7; ry, locus of the cutting tool in coordinate system

St VEU), relative velocity between the work gear and tool

represented in coordinate system S}; oy, profile angle of the
blade; ¢, rotation angle of the work gear; ¢, cradle rotation

angle; 1), , 1., rotation coordinates for the five-axis machine;
¥, spindle angle for the five-axis machine; [S;], sensitivity
matrix of the coefficients with regard to the flank topographic
deviations; [da;], corrections to the coefficients; [0R;], flank
topographic deviations.
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