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Abstract Facemilling is extremely popular in industrial mass
production of spiral bevel and hypoid gears because of its high
productivity and the superior contact performance of the gear
pairs it produces. This method, however, includes many cut-
ting systems that must be implemented on numerous dedicat-
ed traditional machines with differently designed mecha-
nisms. The five-axis CNC machine, in contrast, has enough
degrees of freedom to handle all these cutting systems. As a
result, the use of a general five-axis machine to produce
face-milled bevel gears is attracting growing attention because
it is so much more flexible than dedicated machines in
small-scale diverse production. This paper therefore proposes
a face-milling system with flank correction for bevel gears on
a five-axis CNC machine. First, a mathematical model of the
tooth surface is established based on a trunnion table type
machine, after which the five coordinates of the five-axis ma-
chine are derived using the machine settings of a virtual cradle
type bevel gear cutting machine. These five coordinates are
degenerated to a function of the generating angle, and each
coordinate is approximated as a polynomial in a Maclaurin
series. Because flank topographic errors can be systematically
reduced by adjusting the polynomial coefficients, a flank cor-
rection technology is developed based on a sensitivity analysis

that investigates flank topographic deviations in terms of
changes in coefficients. Based on this sensitivity matrix and
the tooth surface errors measured, corrections are made to the
five-axis coefficients using the least squares method. Finally,
following a program accuracy check using NC verification
software, several cutting experiments are performed to verify
the correctness of the mathematical models.
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1 Introduction

Face milling (FM) and face hobbing (FH), the two primary
methods used in the industrial mass production of spiral bevel
and hypoid gears, have for decades been implemented on
dedicated bevel gear cutting machines, which require numer-
ous complex features such as cradle, helical motion, and mod-
ified roll ratio mechanisms. The modern CNC bevel gear cut-
ting machine, in contrast, is a six-axis structure with enough
degrees of freedom to handle for all cutting systems. Basically,
this machine has five-axis synchronous interpolation for FM
cutting systems and an additional electric gear box that en-
ables synchronized movement in the cutter and workpiece
rotation axes of FH cutting systems. FM gears can also be
produced, however, on a general type five-axis machine, a
highly feasible option whose low cost and flexibility in
small-scale diverse production have prompted increasing at-
tention. Five-axis machines may have three types of construc-
tions: trunnion-table type (two rotation axes in table side),
rotary-table and swivel-head type, or tilting head (two rotation
axes in head side). The first two, which have a rotary work-
piece table, are particularly suitable for machining gear tooth
surfaces; however, even though several applications of these
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machines have been introduced into industry, their technical
details—in particular, their mathematical models—have not
been revealed because of commercial considerations.

The mathematical models of bevel gear tooth sur-
faces, in contrast, are widely available in the literature,
being most commonly based on a virtual cradle type
bevel gear cutting machine. The first complete mathe-
matical models of FM hypoid gears were established by
Litvin and Gutman [1–3] using formate and helixform
methods. Litvin et al. [4] then derived the machine set-
tings for bevel gears using a cutter tilting method.
Somewhat later, Fong [5] proposed a universal mathe-
matical model for FM bevel gears that involves all sup-
plemental motions for flank modification, and Shih
et al. [6] then established a universal mathematical mod-
el for FH bevel gears. These models successfully im-
prove gear pair contact performance at the design stage
and enable the derivation of machine settings for all
types of real-world cutting machines. More recently,
Deng et al. [7] proposed an application for bevel gear
production on a five-axis machine in which a disk cut-
ter replaces an FM cutter head to provide greater flex-
ibility in manufacturing large size gears. This method,
however, has lower productivity. Shih et al. [8] also
derived the coordinates for a trunnion table type
five-axis machine from universal machine settings but
without considering flank correction. Shih and Fong
[10] also applied the bevel gear flank correction method
developed by Litvin and Fuentes [9] for traditional ma-
chines on a modern CNC bevel gear cutting machine.
Its application on a five-axis machine, however, has not
yet been reported.

This paper therefore develops a mathematical model
of flank correction for FM bevel gears on a five-axis
machine by first deriving the five-axis coordinates as
separate functions of a cradle angle approximated by a
Maclaurin series. This derivation allows the cutting mo-
tion to be changed by adjusting these coefficients to
reduce flank errors. A sensitivity matrix of the tooth
surface coefficients is then determined that, when com-
bined with measures of the flank topographic errors,
enables least squares estimation of the five axes’ correc-
tive coefficients for minimizing deviations. Lastly, after
an NC (VERICUT) verification is performed to simulate
the correctness of the CNC data, several cutting exper-
iments are conducted to verify the correctness of the

mathematical models. The produced gear workpieces
are shown in Fig. 1.

2 Mathematical model of FM bevel gears based
on a virtual cradle type bevel gear cutting machine

As previously emphasized, the virtual cradle type bevel gear
cutting machine has adequate degrees of freedom to simulate
the motion of bevel gear cutting using all types of FM and FH
cutting methods. Hence, according to the motions for cutting a
gear given by the virtual machine, traditional machines use
additional mechanisms for cradle generation or the several
supplemental motions (e.g., cutter tilt, helical motion, modi-
fied roll) that these latter require for a generating process and
flank modification. FM cutting methods use FM cutter heads
for the mass production of bevel gears because of their high
precision and productivity. In this method, a plurality of inner
(IB) and outer (OB) cutting blades are mounted alternately on
a cutter head (see Fig. 2). The blade edge profile can be
straight lined or circular, which latter achieves profile
crowning for better contact performance. Here, the profile
angle is represented by parameter αb, the fillet radius by ρb,
the cutter radius by r0, the nominal cutter radius by rc, the
cutter height parameter by Ht, and the tool rotation angle by
β. The cutter profile for the example gear pair and the adopted
cutter are shown in Figs. 6 and 10, respectively.

If the blade edge is a straight line (r lð Þ
a ) with a circular arc

tip fillet (r fð Þ
a ), its position vector is

r lð Þ
a uð Þ ¼ x lð Þ

a uð Þ 0 z lð Þ
a uð Þ 1

h iT
r fð Þ
a uð Þ ¼ x fð Þ

a uð Þ 0 z fð Þ
a uð Þ 1

� �T
8<
: ;

x lð Þ
a uð Þ ¼ �usinαb

z lð Þ
a uð Þ ¼ ucosαb

�
;

x fð Þ
a uð Þ ¼ � xcf −ρbcosu

� �
z fð Þ
a uð Þ ¼ zcf þ ρbsinu

(
ð1Þ

Pinion

Gear

Fig. 1 Produced gear workpieces
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Fig. 2 Coordinate systems for an
FM cutter head

1

Machine plane

2
3

4

5

6

7

8

9

1. Cutter spindle

2. Tilt drum

3. Swivel drum

4. Eccentric drum

5. Cradle

6. Sliding base

7. Machine root angle

10

8. Blank offset

9. Machine center to back

10. Work spindle

1y

fyey

dy cy

dx

, ,b a toRS

,d co

eo

1, fo

fzez

1z

ex

1, fxA

B

mE

j
i

cc 

1

m

,d cz

,a ty

tz

tx

,b az ,c bx

by

ax

Fig. 3 Coordinate systems of a virtual cradle type bevel gear generator
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and the fillet center is

xcf ¼ ρbtan π
.
4−αb

.
2

� �
zcf ¼ −ρb

(
where u is a curve parameter and symbol ± indicates the

inner and outer blade edges, respectively. The position vector
of the blade edge may be represented in the tool coordinate
system St using the following homogeneous coordinates:

rt u;βð Þ ¼ xa þ r0ð Þcosβ xa þ r0ð Þsinβ za 1½ �T ð2Þ

Table 1 Basic and
manufacturing parameters for the
example pair

Pinion Ring gear

Items Convex Concave Convex Concave
(A) Basic gear data
Number of teeth z 16 33
Outer module met 3.500
Pressure angle αn 20.000°
Spiral angle βm 35.000° L.H. 35.000° R.H.

(B) Gear blank data
Pitch angle δ 25.866° 64.133°
Face angle δa 30.727° 66.464°
Outer diameter dae 63.408 117.221
Outer whole depth he 6.869 6.869
Face width b 19.500 19.500
Mounting distance Md 75.000 36.000

(C) Assembly data
Shaft angle Σ 90.000°
Offset V 0.000 −
Axial setting H 0.000 0.000

(D) Cutter data
Profile angle αb 24° 16° 24° 16°
Cutter radius r0 54.250 55.750 54.250 55.750
Fillet radius ρb 0.700 0.700 0.700 0.700

(F) Five-axis machine tool
Offset along xd kx 0.085
Offset along zd kz 0.06
Fixture height (measured) Ht 140.408 97.826

Fig. 4 Coordinate systems for
bevel gear cutting on a trunnion
table type five-axis machine
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According to the literature [10], the virtual cradle type ma-
chine has nine machine settings: (1) the tilted angle i, (2) the
swivel angle j, (3) the radial distance SR, (4) the initial cradle
angle setting θc, (5) the vertical offset Em, (6) the sliding base
ΔB, (7) the machine root angle γm, (8) the increment of ma-
chine center to backΔA, and (9) the roll ratio Ra (see Fig. 3).
All these can be determined by the calculation formulas pro-
vided by the machine manufacturers. Two other settings move
the machine axes for positioning the tool and work gear to
enable the generating process and flank modification for bevel
gear production: parameter ϕ1, the work gear rotation angle;
and parameter ϕc, the cradle rotation angle.

As Fig. 2 shows, coordinate systems St and S1 are fixedly
connected to the cutting tool and work gear, respectively. Sa
and Sf are auxiliary coordinate systems for the cutting posi-
tions and motions of the tool and work gear. The transforma-
tionmatrix from St to S1 yields the locus of the tool in the work
gear coordinate systemwhose position vector is represented in

Eq. (3). The envelope for a one-parameter family of surfaces
generates the bevel gear tooth surface, which can be deter-
mined from the equation of meshing [10] and two boundary
conditions of gear blank.

r Uð Þ
1 u;β;ϕcð Þ

¼ M Uð Þ
1 f ϕ1ð ÞM Uð Þ

ft i; j; SR; θc;Em;ΔB; γm;ΔA;ϕcð Þrt u;βð Þ
ð3Þ

Here, the transformation matrices from St to S1 for the
cradle type machine are

M Uð Þ
1 f ϕ1ð Þ ¼

1 0 0 0
0 cosϕ1 −sinϕ1 0
0 sinϕ1 cosϕ1 0
0 0 0 1

2
664

3
775

Give (a) gear parameters, (b) cutter parameters, 

(c) blank parameters, (d) machine settings, and 

(e) constants of five-axis machine

Begin

Positions and normal vectors of tooth 

surface (Eq.(4) to (6))-                 -

Sensitivity matrix corresponding to 

coefficients of coordinates-         -

, , , , ,et n m dz m b M 
, , , , ,  ,  ,  ,  c R m m ai j S E A B R  

Calculate theoretical data

Five-axial coordinates (Eqs.(8) and (9))
,  ,  ,  ,  x y z a cC C C  

Kinematic axis functions (Eq. (10))
6

0

( ) ,  , , , ,k
c k c x y z a c

k
f a f C C C   



 

[ ]ijS

Calculate corrective coefficients  by the 

least squares method (Eq.(14))

Generate NC codes according to the  

corrective coefficients of coordinates 

Trial cut using a five-axis machine

Measure flank topographic errors by the 

gear measurement center-    -
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Sum of squared errors<2,000m
2
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

Fig. 5 Flow chart of flank
correction method for a five-axis
machine

Table 2 Universal cradle type
machine settings for the example
pair

Items Pinion Gear

Convex Concave Convex Concave

Tilt angle i 1.106° 0.995°
Swivel angle j 28.332° −67.396°
Initial cradle angle setting θc 64.598° −63.349°
Radial setting SR 50.171 50.234
Vertical offset Em −0.236 0.000
Increment of machine center to back ΔA −0.332 −0.459
Sliding base feed setting ΔB 0.965–2.910ϕc 2.399
Machine root angle γm 21.339° 58.508°
Roll ratio Ra 2.27513 1.10112
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and

M Uð Þ
ft ϕcð Þ ¼

cosγm 0 sinγm −ΔA
0 1 0 0

−sinγm 0 cosγm 0
0 0 0 1

2
664

3
775

1 0 0 0
0 1 0 Em

0 0 1 −ΔB
0 0 0 1

2
664

3
775

cos θc þ ϕcð Þ sin θc þ ϕcð Þ 0 0
−sin θc þ ϕcð Þ cos θc þ ϕcð Þ 0 0

0 0 1 0
0 0 0 1

2
664

3
775

−sin j −cos j 0 SR
cos j −sin j 0 0
0 0 1 0
0 0 0 1

2
664

3
775

cosi 0 sini 0
0 1 0 0

−sini 0 cosi 0
0 0 0 1

2
664

3
775

3Mathematicalmodel based on a trunnion table type
five-axis machine

Because the trunnion-table and rotary-table-swivel-head
types of five-axis machines include a rotary table, they
are very suitable for machining gear tooth surfaces. The
first is therefore used as an example in this paper. In
this trunnion table type machine, coordinate systems St
and S1 are rigidly connected to the cutting tool and
work gear, respectively (see Fig. 4), and Sa and Se
are the auxiliary coordinate systems for the movement
of the five axes. Cx, Cy, and Cz are the three coordi-
nates for translating the axes, and ψa and ψc are the
coordinates for the workpiece rotation angle and table
tilting angle, respectively. These five coordinates are
moved synchronously by a CNC controller so as to
satisfy the movement requirement for cutting bevel
gears. An additional coordinate, ψb, is the angle for
tool rotation, while Δψb and Δψc are the incremental
angles for tool rotation and work gear rotation, respec-
tively. Parameter Hf is the fixture height, and parame-
ters kx and kz are machine constants, the former

representing the distance between the table datum plane
and the table tilting axis yc, and the latter, the offset
between axes yc and xe. Each of these must be mea-
sured out before cutting.

The bevel gear tooth surface is generated by an en-
velope of a family of tool surfaces rt whose position
vector is derived using the following coordinate trans-
formation:

r1 u;β;ϕcð Þ
¼ M1e ϕ1ð ÞMet ψa;Δψb;Δψc;Cx;Cy;Cz

� �
rt u;βð Þ ð4Þ

where the transformation matrices from St to S1 for the
five-axis machine are

M1e ϕ1ð Þ ¼
1 0 0 0
0 cosϕ1 sinϕ1 0
0 −sinϕ1 cosϕ1 0
0 0 0 1

2
664

3
775

Fig. 6 Positions of the cutting edges for both gears
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and

Met ϕcð Þ ¼
1 0 0 0
0 −cosΔψc −sinΔψc 0
0 sinΔψc −cosΔψc 0
0 0 0 1

2
664

3
775

1 0 0 Md þ H f þ kx
0 1 0 0
0 0 1 kz
0 0 0 1

2
664

3
775

sinψa 0 cosψa 0
0 1 0 0

−cosψa 0 sinψa 0
0 0 0 1

2
664

3
775

1 0 0 0
0 1 0 −Cx

0 0 1 0
0 0 0 1

2
664

3
775

1 0 0 − Cy þ kz
� �

0 1 0 0
0 0 1 − Cz þ H f þ kx

� �
0 0 0 1

2
664

3
775

cosΔψb −sinΔψb 0 0
sinΔψb cosΔψb 0 0

0 0 1 0
0 0 0 1

2
664

3
775

The five coordinates for cutting are functions of the cradle
angle ϕc, which in cradle type machines dominates the gener-
ating position, while the workpiece rotation angle ϕ1 is equal to
Raϕcwhere Ra is the roll ratio. The position vector r1 is derived
as a function of three variables: u, β, and ϕc The first two are
variables of the cutter surface, while the last is its motion pa-
rameter. According to differential geometry, a normal vector n1
to a surface is obtained by taking the cross-product at a surface
point of the two tangent vectors that are partial derivatives of r1

with respect to u and β. Relative velocity v 1tð Þ
1 is then a time

differential of r1, while the motion parameter ϕc is a function of
time. These variables are calculated as follows:

n1 u;β;ϕcð Þ ¼
∂r1 u;β;ϕcð Þ

∂u
� ∂r1 u;β;ϕcð Þ

∂β
∂r1 u;β;ϕcð Þ

∂u
� ∂r1 u;β;ϕcð Þ

∂β

				
				

v 1tð Þ
1 u;β;ϕcð Þ ¼ ∂r1 u;β;ϕcð Þ

∂ϕc
ϕc

�

8>>>>>><
>>>>>>:

ð5Þ

The topographic points of the tooth surface can then be
solved using an equation of meshing (Eq. (6)), derived when
the relative velocity is perpendicular to the normal vector,
together with two boundary conditions of the gear blank:

f 1 u;β;ϕcð Þ ¼ n1 u;β;ϕcð Þ⋅v 1tð Þ
1 u;β;ϕcð Þ ¼ 0 ð6Þ

4 Derivation of the five-axis coordinates

If different machines are employed to produce the same gear
using the same tool, the relative motions between the tool and
the work gear should be identical. In other words, the coordinate
transformation matrix of the five-axis machine should equal that
of the cradle type machine so that the following relation is satis-
fied:

Met ψa;Δψb;Δψc;Cx;Cy;Cz
� �
¼ M Uð Þ

ft i; j; SR; θc;Em;ΔB; γm;ΔA;ϕcð Þ

¼
e11 e12 e13 e14
e21 e22 e23 e24
e31 e32 e33 e34
0 0 0 1

2
664

3
775 ð7Þ

According to inverse kinematics, six coordinates (includ-
ing the tool rotation angle) can be determined by equating the
elements in the above two matrices:

ψa ϕcð Þ ¼ −cos−1 e13ð Þ
Δψb ϕcð Þ ¼ tan−1 x; yð Þ ¼ tan−1 −e11; e12ð Þ
Δψc ϕcð Þ ¼ tan−1 e33; e23ð Þ

8<
: ;

Cx ϕcð Þ ¼ e24cosΔψc−e34sinΔψc
Cy ϕcð Þ ¼ Dsinψa−Ecosψa−kz
Cz ϕcð Þ ¼ Esinψa þ Dcosψa−H f −kx

8<
: ð8Þ

where

D ¼ −e14 þ H f þ kx þMd

E ¼ e24sinΔψc þ e34cosΔψc þ kz

�

Here, the incremental angles Δψb can be ignored because
they have no influence on the tooth geometry, but the incremental
angles Δψc must be added into the workpiece rotation angle as

ψc ϕcð Þ ¼ −ϕ1 þΔψc ¼ −Raϕc þΔψc ϕcð Þ ð9Þ

Because the five coordinates are functions of the cra-
dle angle ϕc, each coordinate can be further approximat-
ed by the Maclaurin series below. Degree six is usually
assumed to meet the requirement of machining accura-
cy:

f ϕcð Þ ¼ ∑
n

k¼0

f kð Þ 0ð Þ⋅ϕc
k

k!
þ R nð Þ ϕcð Þ≈ ∑

6

k¼0
akϕc

k

f ¼ Cx;Cy;Cz;ψa;ψc

8<
: ð10Þ
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The polynomial coefficients can then be modulated for
flank correction.

5 Flank correction on a five-axis machine

Because manufacturing deviations of the gear tooth sur-
faces are caused primarily by cutter and machine axes
errors, the flank geometry of a bevel gear has a domi-
nant influence on contact performance, and the gear’s
flank deviations must be reduced as much as possible.
The flank correction method for a bevel gear based on a
cradle type machine, explained in Ref. [9], is well de-
veloped and has been applied on a CNC bevel gear

cutting machine [10] but never on a five-axis machine.
The main procedures in this method are (1) measuring
the flank topographic errors using a coordinate measur-
ing machine (CMM), (2) calculating the sensitivity ma-
trix of the machine settings with regard to variations in
the flank topographic points, and (3) determining the
corrective machine settings based on the sensitivity ma-
trix and the flank topographic errors. More specifically,
these corrective settings are measured using the least
squares method as shown in the following equations.

The generated tooth surface can be represented as a func-
tion of variables (u, β) and the polynomial coefficients aj of
the five-axis motion. It may be expressed as

r1 ¼ r1 u;β; aj
� �

j ¼ 1;…; qð Þ ð11Þ

Fig. 7 Gear blanks for the gear
pair

Table 3 Theoretical five-axis coordinates for the finishing cutting positions of the pinion and gear

Pinion Gear

Coordinate Convex Concave Convex Concave

ϕc cradle angle
(rad)

+0.334≥ϕc≥ − 0.349 −0.290 ≤ϕc≤ + 0.312

Cx x-axis −45:4031−21:9571ϕcþ22:7437ϕ2
c

þ3:8708ϕ3
c−1:9085ϕ

4
c−0:2360ϕ

5
cþ0:0638ϕ6

c

þ45:5517−21:2752ϕc−23:1263ϕ
2
c

þ2:8978ϕ3
cþ2:0644ϕ4

c−0:0078ϕ
5
c−0:0792ϕ

6
c

Cy y-axis −177:7720−44:1399ϕc−11:6318ϕ
2
c

þ7:3729ϕ3
cþ1:0702ϕ4

c−0:3677ϕ
5
c−0:0500ϕ

6
c

−48:0294þ47:5630ϕc−10:0315ϕ
2
c

−8:2338ϕ3
cþ0:4945ϕ4

cþ0:4573ϕ5
cþ0:0324ϕ6

c

Cz z-axis −58:5513þ0:2085ϕc−1:1464ϕ
2
c

−0:5196ϕ3
cþ0:0955ϕ4

cþ0:0260ϕ5
c−0:0032ϕ

6
c

þ18:4622þ1:2014ϕc−0:0425ϕ
2
c

−0:2002ϕ3
cþ0:0035ϕ4

cþ0:0100ϕ5
c−0:0001ϕ

6
c

ψa table tilting
angle −68:0091þ0:8960ϕc−0:3258ϕ

2
c

−0:1514ϕ3
cþ0:0268ϕ4

cþ0:0080ϕ5
c−0:0008ϕ

6
c

−31:4362þ0:9944ϕc−0:0211ϕ
2
c

−0:1663ϕ3
c−0:0018ϕ

4
cþ0:0083ϕ5

cþ0:0005ϕ6
c

ψc work angle þ0:9620−131:0551ϕc−0:4875ϕ
2
c

þ0:1151ϕ3
cþ0:0428ϕ4

c−0:0054ϕ
5
c−0:0017ϕ

6
c

þ1:9040−63:1702ϕc−0:9555ϕ
2
c

−0:0136ϕ3
c−0:0799ϕ

4
cþ0:0061ϕ5

c−0:0024ϕ
6
c
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where q is the number of polynomial coefficients which
equals to 6×7. According to differential geometry, the surface
variation vector is as follows:

δr1 ¼ ∂r1
∂u

δuþ ∂r1
∂β

δβ þ ∑
q

j¼1

∂r1
∂aj

δaj ð12Þ

Because tangent vectors ∂r1
∂u and ∂r1

∂β are both perpendicular

to the surface normal, taking the inner product of both sides of
the above equation with the surface normal n1 yields the fol-
lowing normal surface variation:

δr1⋅n1 ¼ ∂r1
∂u

δuþ ∂r1
∂β

δβ þ ∑
q

j¼1

∂r1
∂aj

δa j

 !
⋅n1

¼ ∑
q

j¼1

∂r1⋅n1
∂aj


 �
δa j ð13Þ

The corrections [δaj] for coefficients can be further derived
as

δaj
� � ¼ Sij

� �T Sij
� �� �−1

Sij
� �T

δRi½ � ð14Þ

where [Sij] is the sensitivity matrix and [δRi] is the flank topo-
graphic errors.

Figure 5 illustrates this method applied in this paper as a
flow chart. First, based on the given settings for the cradle type
machine, the five-axis coordinates are derived and represented
as polynomial approximations. Next, the positions and normal
vectors of the topographic points of the tooth surface are cal-
culated, and the effect on these points of a small variation
(0.01) in each of the five axes’ polynomial coefficients is
evaluated to produce the sensitivity matrix. A five-axis ma-
chine is then adopted for gear production, and its flank topo-
graphic errors are derived using a gear measurement center. If

the sum of squared errors of the work gear is larger than
2000 μm2, a correction must be performed. The corrective
coefficients are also determined using the least squares meth-
od based on the measured errors and sensitivity matrix. This
process allows generation of the corrective NC codes to re-
duce manufacturing errors in the subsequent production of a
work gear.

6 Numerical examples for an FM bevel gear
produced by a five-axis machine

The numerical example is based on an FM spiral bevel gear
pair whose pinion and gear are produced by the duplex helical
method, also called SGDH. This method employs a
double-flank cut that enables very high productivity and uses
the same cutting tool to produce both gears, meaning that the

68.009dega  

0.962degc 

45.403xC mm 

177.772yC mm 

58.551zC mm 
1.904degc 

31.436dega  

48.029yC mm 

45.551xC mm

18.462zC mm

(a) Pinion (b) Gear

Fig. 8 Theoretical kinematic relations of the five-axis coordinates for the pinion and gear

10mmPinion

Ring gear

Fig. 9 3D models of the example pair (built using SolidWorks)
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convex and concave flanks of the tooth surface are cut simul-
taneously. The basic gear parameters, manufacturing parame-
ters, and machine settings of the cradle type machine are listed
in Tables 1 and 2, respectively. Except for the given parame-
ters and those for the five-axis machine, all these are calculat-
ed based on the machine summary provided by Gleason [11].
Based on the machine settings, both gears are produced using
a generating motion, with a helical motion of the sliding base
applied only for flank modification of the pinion. As illustrat-
ed in Figs. 6 and 7, respectively, the profile angle of the inner
edge is larger than that of the outer edge and the gear blanks
have tapered depth teeth in the assembly position.

Substituting the universal machine settings, the machine
constants of the five-axis machine, and the fixture height into
Eqs. (8) and (9) determines the five coordinates for the cutting
positions. The theoretical five-axis coordinates are functions
of the cradle angle, which, based on Eq. (10), can be further
approximated as polynomials of up to the sixth degree (see
Table 3). Figure 8 then shows their kinematic relation, with
cradle angle ϕc ranging from +19.1 to −20.0deg and from
−16.6 to +17.9degfor the pinion and gear, respectively.
These settings enable a generating motion from the toe to
the heel of the tooth surface. The functions of the five coordi-
nates and the cutter parameters are then substituted into
Eqs. (1), (2), (4), and (5) to yield the position and normal
vectors of the work gear with three variables (u, β,ϕc).
These variables are then solved using an equation of meshing
(see Eq. (6)) and two boundary equations of the gear blank

and substituted into Eqs. (4) and (5) to obtain the position and
normal vectors of the topographic points. This process gener-
ates both the nominal data for gear measurement and the to-
pographic points used to build the SolidWorks 3D models of
the gear pair (see Fig. 9).

7 Experimental results for flank correction

The correctness of the proposed models is verified through
several cutting experiments made on a trunnion table type
five-axis machine equipped with a high precision Siemens
840D sl CNC controller with 5 μm repeatability. The experi-
ments were performed using the specially designed and
manufactured solid cutter (material SKH 55, HRC 62) shown
in Fig. 10, whose workpiece was inspected using a CMM (see
Table 4 for the manufacturing errors). This inspection identi-
fied profile angle errors for the inner and outer blades of
−0.159 and +0.039deg, respectively, which directly affect

O.B.

I.B.

eceipkrowrettuC)b(ngisedD3)a(

Fig. 10 Solid cutter (designed
and manufactured by the authors)

Table 4 Manufacturing errors of the cutter workpiece

Items (a) Design (b) Measurement (c) Deviation

Profile angle IB 24.000° 23.841° −0.159°
OB 16.000° 16.039° +0.039°

Cutter radius IB 54.250 54.376 +0.126

OB 55.750 55.845 +0.095

Point width 1.500 1.469 −0.031

Work gear

Cutter

o

o

31.436

1.904

45.552

48.029

18.462

Fig. 11 Theoretical cutting position of the gear when ϕc= 0 on the five-
axis machine
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the pressure angles of the convex and concave flanks of the
bevel gear, respectively. The cutter radius errors, which influ-
ence the tooth flank curvatures, are +0.126 and +0.095 mm,
and the point width error, which increases tooth thickness, is
−0.031 mm.

Two operations are generally used in bevel gear cutting: a
formate motion for roughing, which is enabled by setting ϕc to
zero; and a generating motion for finishing, made possible by
a range of ϕc. Before the cutting experiment, the NC codes for
both gears are programmed according to the five-axis coordi-
nates listed in Table 3 and tested for errors using the NC
verification software VERICUT so as to prevent collisions
and cutting mistake. To illustrate, Fig. 11 shows the cutting

position for gear production when ϕc= 0, with the corre-
sponding cutting simulation illustrated in Fig. 12. After
simulation, the finished workpiece is exported as an
STL (StereoLithography) file whose left side is shown
in Fig. 13. Here, the interpolation tolerance of STL file
during VERICUT simulation is set to 0.05 mm. The flank
topographic deviations between the STL and theoretic
tooth surfaces are then evaluated using a program com-
piled by the authors. As Fig. 13 (right side) shows, the
sum of the square is 2501 μm2, and the tooth thickness
error is +57 μm. These errors, which could be caused by
simulation error, are small enough to confirm the correct-
ness of the NC codes.

Fig. 12 Cutting simulation for the gear using VERICUT

STL model

Theoretic tooth

surface

Average: 4       , Sum of Squared: 2,501

Thickness Error: +57 m
m 2m

Fig. 13 Flank topographic deviations of the gear produced using VERICUT simulation before correction
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Figure 14 illustrates the cutting of the pinion and gear (ma-
terial S20C) using the trunnion table type five-axis machine,
which reveals the disadvantage of weak machining stiffness
because of the large table tilting angle (|ψa| > 45°) for machin-
ing the pinion. The figure also shows the finished workpieces
of both gears, which are then inspected using a Klingelnberg
P40 gear measuring center. Before measurement, the nominal
data [i.e., the basic data for the gear pair (MESINFO.CDS)
and the positions and normal vectors of the topographic points
(SOLL1.CDS)] are prepared and uploaded to the machine.
Figure 15 shows the results: the sum of squares and tooth
thickness error for the pinion are 10 , 077 μm2 (for
2 × 9 × 5points) and −304 μm, respectively, and those for
the gear are 10 , 266 μm2 and +19 μm.

Because the errors caused by cutter and machine axes er-
rors are difficult to correct intuitively, a flank correction meth-
od is developed in which the cutter parameters and coordinate
coefficients can be corrected together. However, only the latter
is taken into account. Because of space constraints, however,
this discussion considers only the coefficients as they apply to
a gear. The first step is evaluation of the flank sensitivity
topographies corresponding to the coefficients up to the sixth
degree, exemplified in Figs. 16 and 17 by the zero and first

degree coefficients, respectively. Because the cutter rotation
angle ψb is a spindle axis, its coefficients have no influence on
the tooth geometry. However, in the zero degree analysis,
coefficients ax0 and az0 affect the tooth geometry in the bias
and lengthwise directions, coefficients ay0 and aa0 affect the
profile angle, and all these coefficients together with coeffi-
cient ac0 affect the tooth thickness. In the first degree analysis,
all the coefficients except coefficient ab1 have an effect in the
bias direction. In total, 42 flank sensitivity topographies of the
various coefficients make up the sensitivity matrix, which is
partly illustrated in Fig. 18.

Based on this matrix, the proposed correction method can
flexibly select which coefficients need to be corrected; for
example, if the elements in the ac0 column are all equal to
zero, then coefficient ac0 does not require correction. Such
correction can be applied to both single- and double-flank
cuts, although the former is likely to have a better outcome
(in reducing manufacturing errors) than the latter because of
its higher degrees of freedom. The single-flank correction is
carried out by providing two sets of columns, one each for the
inner and outer blade coefficients (see Fig. 18). The target
topographic deviations for correction shown in Fig. 19a are
determined based on the reverse of the gear errors measured

Fig. 15 Flank topographic errors of the pinion and gear measured by the Klingelnberg P40 gear measuring center

raeG(b)noiniP(a)

Fig. 14 Cutting the pinion and
gear during the experiment
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(Fig. 15b). (Fig. 19b) shows the flank topographic errors after
correction.The sensitivity matrix is applied here to correct a
single-flank cut. The values of the matrix elements with regard
to aa0 and ac0, the coefficients ofCz, and the coefficients of the
fifth and sixth degrees are zero, meaning that they are not
involved in this correction under manufacturing conditions.

The corrective coefficients are calculated using the least
squares method based on the target flank deviations and given
sensitivity matrix, which reduces the usual calculation time of
about 14 min to less than a second (see Table 4 for the out-
comes). The kinematic relations corresponding to the cradle
angle are shown in Fig. 20.

(f)      +0.01
Tooth thickness dev. At E3= 0.00

I.B.= -8.48      , O.B.= 8.48

(a)      +0.01
Tooth thickness dev. At E3= 0.76

I.B.= 10.07      , O.B.= -9.31

m
m m

0xa (b)      +0.01
Tooth thickness dev. At E3= 0.19

I.B.= -7.11      , O.B.= 7.30

m
m m

0ya

(c)      +0.01
Tooth thickness dev. At E3= 8.80

I.B.= 3.53      , O.B.= 5.27

m
m m

0za (d)      +0.01
Tooth thickness dev. At E3= -2.93

I.B.= 13.66      , O.B.= -16.42

m
m m

0aa

m
m m

0ca(e)      +0.01
Tooth thickness dev. At E3= 0.00

I.B.= 0.00      , O.B.= 0.00

m
m m

0ba

Fig. 16 Flank sensitivity topographies corresponding to the zero degree coefficients for the five-axis coordinates in a gear
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Once the errors are identified, the NC codes are generated
anew and the new codes verified by VERICUT. The tooth
surface deviations produced by the cutting simulation are pic-
tured in Fig. 21, which shows them to have same tendency as
the target (Fig. 19a). Hence, another cutting experiment is

performed after the new correction program has been trans-
ferred to the CNC computer (Table 5). The experimental
workpiece (the gear) displayed in Fig. 22 shows four sequen-
tial cuts, the first two produced by the original NC codes and
the last two, by the corrected codes. Figure 23 then illustrates

(f)      +0.01
Tooth thickness dev. At E3= -0.03

I.B.= -0.03      , O.B.= 0.00

(c)      +0.01
Tooth thickness dev. At E3= 0.01

I.B.= 0.01      , O.B.= 0.00

m
m m

1za

(e)      +0.01
Tooth thickness dev. At E3= 0.00

I.B.= 0.00      , O.B.= 0.00

m
m m

1ba

(a)      +0.01
Tooth thickness dev. At E3= 0.02

I.B.= 0.03      , O.B.= -0.01

m
m m

1xa (b)      +0.01
Tooth thickness dev. At E3= -0.03

I.B.= -0.03      , O.B.= 0.00

m
m m

1ya

(d)      +0.01
Tooth thickness dev. At E3= 0.02

I.B.= 0.04      , O.B.= -0.02

m
m m

1aa

m
m m

0ca

Fig. 17 Flank sensitivity topographies corresponding to the first degree coefficients for the five-axis coordinates in the gear
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Fig. 18 Part of the sensitivity matrix [Sij] for the polynomial coefficients of the five-axis coordinates

Average: 8       , Sum of Squared: 10,498

Thickness Error:

m 2m
19 m

Average: 1       , Sum of Squared: 345

Thickness Error:

m 2m
0 m

(a) Target of topographic deviations for correction (b) Flank topographic errors after correction 

Fig. 19 Simulated flank topographic gear errors after correction

45.575xC mm

48.013yC mm

1.904degc 

31.436dega 

18.462zC mm

45.543xC mm

47.763yC mm

1.904degc 

31.436dega 

18.462zC mm

(a) Convex (b) Concave

Fig. 20 Kinematic relations of
the five-axis coordinates for the
gear after correction
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the outcome of using the corrective method: the maximum
error is reduced from 27.7 to 8.6 μm, and the sum of squares
is dramatically lowered from 10 , 266 to 1253 μm after just
one round of correction. The tooth thickness error +8 μm can
then be further eliminated by intuitively adjusting the work-
piece rotation angle ψc.

8 Conclusions

In view of FM bevel gear manufacturing on a general five-axis
machines is so much cheaper and more flexible than on a
dedicated bevel gear cutting machine, especially in
small-scale diverse production, this paper proposes a novel
FM bevel gear flank correction method for a five-axis ma-
chine. The mathematical model of the tooth surface is
established based on a trunnion-table type machine, after

STL model

(correction)

Theoretic tooth

surface

m
m 2mAverage: 10       , Sum of Squared: 14,398

Thickness Error: +38

Fig. 21 Flank topographic deviations of the gear produced using VERICUT simulation after correction

Table 5 Corrective five-axis coordinates for the gear

Items Convex Concave

ϕc cradle angle (rad) −0.290 ≤ϕc ≤ + 0.312

Cx x-axis þ45:5754−21:5594ϕc−23:0693ϕ
2
c

þ2:8845ϕ3
cþ2:0652ϕ4

c−0:0078ϕ
5
cþ0:0792ϕ6

c

þ45:5425−21:2726ϕc−23:1194ϕ
2
c

þ2:8967ϕ3
cþ2:0636ϕ4

c−0:0078ϕ
5
c−0:0792ϕ

6
c

Cy y-axis −48:0132þ47:4953ϕc−10:0178ϕ
2
c

−8:2375ϕ3
cþ0:4946ϕ4

cþ0:4573ϕ5
cþ0:0324ϕ6

c

−47:7631þ47:5792ϕc−10:0284ϕ
2
c

−8:2331ϕ3
cþ0:4951ϕ4

cþ0:4573ϕ5
cþ0:0324ϕ6

c

Cz z-axis þ18:4622þ1:2014ϕc−0:0425ϕ
2
c

−0:2002ϕ3
cþ0:0035ϕ4

cþ0:0100ϕ5
c−0:0001ϕ

6
c

þ18:4622þ1:2014ϕc−0:0425ϕ
2
c

−0:2002ϕ3
cþ0:0035ϕ4

c þ 0:0100ϕ5
c−0:0001ϕ

6
c

ψa machine root
angle −31:4362þ0:6420ϕcþ2:5108ϕ2

c
þ4:7578ϕ3

cþ0:8757ϕ4
cþ0:0083ϕ5

cþ0:0005ϕ6
c

−31:4362þ 1:3350ϕc−0:7886ϕ
2
c

þ1:5643ϕ3
c−2:2501ϕ

4
cþ0:0083ϕ5

cþ0:0005ϕ6
c

ψc workpiece angle þ1:9040−64:0887ϕcþ5:0144ϕ2
c

þ3:9475ϕ3
cþ0:1223ϕ4

cþ0:0061ϕ5
c−0:0024ϕ

6
c

þ1:9040−62:3019ϕc−3:3055ϕ
2
c

þ3:0086ϕ3
cþ2:5581ϕ4

cþ0:0061ϕ5
c−0:0024ϕ

6
c

First cut

Second cut(correction)

Try 2

Fig. 22 The gear during flank correction
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which the five coordinates are derived from a virtual cradle
type bevel gear cutting machine. Each coordinate is
degenerated to a function of the generating angle and approx-
imated as a polynomial in a Maclaurin series. The flank cor-
rection method itself is based on a sensitivity analysis that
evaluates flank topographic deviations based on changes in
these coordinate coefficients. That is, once the polynomial
coefficients are adjusted, their corrections have been estimated
using the least squares method based on the sensitivity matrix
and the errors measured so as to reduce flank topographic
errors. The correctness of the proposed method is verified in
several cutting experiments using an SGDH gear pair as a
numerical example. These verification results show that when
applied to a gear, just one round of the new flank correction
procedure effectively reduces the maximum error and sum of
squares from 27.7 to 8.6 μm and from 10 , 266 to 1253 μm,
respectively. Hence, even though the five-axis machine itself
is subject to inherent errors of manufacturing, deformation,
and assembly or large errors exist in the cutter, the proposed
method can still be very effective in increasing its accuracy.

ax0∼ac6 i; j; θc; SR;Em, coefficients of the five-axis coor-
dinates; ΔA ,ΔB ,γm ,Ra, machine settings of the universal
cradle type bevel gear cutting machine; r0, cutter radius; u,β,
parameters of the cutting surface; Cx ,Cy ,Cz, translating coor-
dinates for the five-axis machine;Mij, homogeneous transfor-
mation matrix from coordinate system Sj to coordinate system
Si; n1, surface unit normal of the work gear in coordinate
system S1; r1, locus of the cutting tool in coordinate system

S1; v
1tð Þ
1 , relative velocity between the work gear and tool

represented in coordinate system S1; αb, profile angle of the
blade; ϕ1, rotation angle of the work gear; ϕc, cradle rotation

angle; ψa ,ψc, rotation coordinates for the five-axis machine;
ψb, spindle angle for the five-axis machine; [Sij], sensitivity
matrix of the coefficients with regard to the flank topographic
deviations; [δaj], corrections to the coefficients; [δRi], flank
topographic deviations.
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