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Abstract On-line detection of chatter in the cutting process
can identify the chatter in time or before the chatter happens,
so the initiative to change the cutting parameters can be taken
to avoid chatter and improve the surface quality. At present,
time-frequency analysis technology is performed to extract the
time-frequency features of chatter by scholars. With respect to
the modal aliasing problem in the process of empirical mode
decomposition (EMD), the chatter identification method of
combining EMD and wavelet packets decomposition (WPD)
is proposed to eliminate the influence of modal aliasing. To
fully extract the main features of signal, the intrinsic mode
functions (IMFs) changing consistent with power spectrum
or amplitude-frequency are selected for signal reconstruction.
Then, WPD is used in the reconstructed signal. The two times
reconstruction of signal is based on wavelet packet node with
the maximum energy. The distribution of frequency and ener-
gy in the time domain is presented by Hilbert Huang
Transform (HHT) spectrum, and the mean value and standard
deviation of the HHT spectrum are extracted as the feature
vectors. The chatter features can be extracted from the original
simulation signal by thismethod. Three groups of experiments
with different cutting depth which are on behalf of the three
cutting conditions (stable cutting, slight chatter, and severe
chatter) were carried out. More cutting tests were carried out
under the same cutting condition. Experimental results show
that this method can be used to effectively identify the chatter
features in milling process.
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1 Introduction

Chatter is a frequent phenomenon in machining processing,
which will cause the decrease of surface quality. The predic-
tion methods of chatter to solve the equations are a line of
research, as is shown in [1–5]. A new dynamic model of tool
and workpiece system to consider the thin-walled workpiece
with curved surface is proposed by Yang [6]. A systematic
study to comprehensively model the plowing and shearing
mechanisms in milling process is performed in [7], where
the plowing mechanism is modeled in a generalized way for
predicting both the static plowing forces and the dynamic
stability with the effect of the process damping. The stability
lobe prediction methods are proposed byWan [8] for the mill-
ing process with multiple delays, which are often induced by
cutter run-out. The mechanics and dynamics of thread milling
process are presented by Wang [9]. The process of wear dur-
ing tap forming for threading of cold forged steer parts is
presented by Bustillo [10] from an experimental and a
data-mining perspective. The performance of different config-
urations and types of artificial neural networks (ANNs) for the
prediction of dimensional error on inclined surfaces
manufactured by ball-end milling is compared by Álvar
[11]. A new integrated genetic programming and genetic al-
gorithm approach to predict surface roughness in end-milling
is proposed by Miran [12]. Some optimization algorithms are
induced by [13, 14] for solving manufacturing optimization
problems.

It is important to find the chatter in the machining process
or before and some active measures such as changing the
cutting parameters can be taken to avoid the chatter. A lot of
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research on cutting chatter identification has been done by
scholars. The signal processing method is used to extract the
chatter features, regardless of which signal is chosen to iden-
tify chatter in the cutting process. The observer-based cutting
force monitoring technology for full-closed controlled
ball-screw-driven stages is proposed by Yamada [15]. An ap-
proach using a nonlinear delayed model that describes the tool
oscillations due to self-excited vibrations in turning is pro-
posed by Khasawneh [16]. An identification method using
analytically calculated and experimentally obtained end point
FRFs of the holder-tool assembly at free-free end conditions
for contact parameters at holder-tool interface is presented by
Matthias [17]. In mechanical processing, the chatter phenom-
enon is accompanied by the redistribution of frequency and
energy as demonstrated [18]. For the signal feature selection
and extraction, time-frequency technology is shown in
[19–22]. The method of feature extraction based on support
vector machine was proposed by Yao [23] and Peng [24]. The
effect of tool edge radius on tool edge wear as well as the
corresponding effects of tool edge wear on the cutting forces
and the cutting vibrations have been investigated in [25],
where both the traditional fast fourier transform (FFT) tech-
nique and the modern discrete wavelet transform technique
are used. The cutting force variation is described by Huang
[26] based on time domain analysis, frequency domain anal-
ysis, and wavelet analysis to ascertain the effect of the cutting
speeds on cutting stability. A generic chatter identification
approach is proposed in [27], where the energy ratio of the
dominant frequencies on the FFT spectrum is performed as
occurrence of chatter. A simple method for the detection of
milling chatter is presented by Zhang [28]. The assessment of
milling process stability by recursive drawing method com-
bined with Hilbert Huang transform was proposed by Rafal
[29]. WPTworked as a preprocessor to denoise the measured
signals was proposed by Cao [30] and the performance of the
HHT was enhanced. Later, the ensemble empirical mode de-
composition (EEMD) combined with the nonlinear energy
entropy index was proposed to identify the chatter features
as demonstrated [31]. Cao’s method had problems such as
selection problem of wavelet packet bases was put forwarded
by Fu [32], so the method based on HHT and energy aggre-
gation to characterize the energy distribution in milling pro-
cess is proposed by them, Gaussian mathematical model is
introduced to realize the automatic chatter identification. A
chatter detection method is proposed by [33] based on
synchrosqueezing transform (SST) of sound signals.

In summary, the redistribution of frequency and energy in
the cutting process was shown by the time-frequency analysis
technology, and it has been widely applied in chatter feature
extraction in cutting process. The key of chatter identification
is feature extraction, the state-of-art of feature extraction is to
obtain chatter band. EMD is an effective method to obtain
chatter band, but it is prone to the phenomenon of modal

aliasing as demonstrated in [34]. Modal aliasing refers to that
an IMF characteristic contains different time scales, or similar
time scale distributes in different IMFs. The two IMFs wave-
form result in adjacent aliasing and influence each other, so it
is difficult to identify. Although EEMD which was used by
Cao [31] is an improved method of EMD, the chatter band is
not subdivided enough. So, the chatter identification method
of combining EMD and WPD to eliminate the influence of
modal aliasing and subdivide the frequency band is proposed
in this paper.

The rest paper is organized as follows. The theoretical basis
of EMD is firstly introduced, which shows that why EMD has
problems of modal aliasing and WPD can solve it. To elimi-
nate modal aliasing of EMD and subdivide the frequency, the
chatter identification method of combining EMD andWPD is
proposed. Then to illustrate the effectiveness of the method,
simulation signals containing chatter information is verified
and the process is introduced in detail. Next, milling experi-
ments is carried out to further verify, HHT spectrum is ac-
quired. Finally, the conclusive remarks are laid out.

2 Theoretical basis of EMD and WPD

2.1 EMD

The complex signal z(t) corresponding to a real signal x (t) is
defined according to [32]:

z tð Þ ¼ x tð Þ þ jy tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 tð Þ þ y2 tð Þ

p
ejθ tð Þ ð1Þ

And the instantaneous frequency is defined as the deriva-
tive of the instantaneous phase, that is,

~w tð Þ ¼
d arctan

y tð Þ
x tð Þ

� �
dt

ð2Þ

The purpose of EMD is to obtain the instantaneous fre-
quency. x(t) can be expressed as a sum of components of
IMF, and a residual term,

x tð Þ ¼ ∑n
j¼1Cj tð Þ þ rn tð Þ; ð3Þ

where rn(t) is the residual, which represents the average
trend; each segment contains different frequency compo-
nents which are given by each IMF component Cj(t). The
distribution of the different frequency components is
changed with the signal itself.
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2.2 WPD

Because only low-frequency parts of signal are further
decomposed by the orthogonal wavelet transform, the high
frequency parts of signal are no longer continue to be
decomposed, so the low frequency signal can be well charac-
terized by wavelet transform, but signal containing a lot of
detail information cannot be well decomposed by wavelet
transform, such as non-smooth mechanical vibration signal,
remote sensing image, seismic signals, and biomedical signal.
But the high frequency parts can be decomposed by WPD,
and the decomposition is neither redundant nor omissive. So
the signal containing a large number of middle and high fre-
quency can be better made time-frequency localization analy-
sis byWPD. Because the milling force signal is non-stationary
and high-frequency signal, the method ofWPD can be used to
obtain the chatter frequency.

Wavelet packet decomposition algorithm is given as

d2nj;k ¼ ∑ι∈Zhι−2kd
n
j−1;ι

d2nþ1
j;k ¼ ∑ι∈Zgι−2kd

n
j−1;ι;

(
ð4Þ

where d2nj;k and d
2nþ1
j;k are wavelet packet coefficients, hι−2k and

gι−2k are derivatives of filter coefficients. Wavelet packet re-
construction algorithm is given as

dnjþ1;k ¼ ∑k hl−2kd
2n
j;k þ gl−2kd

2nþ1
j;k

h i
ð5Þ

3 Proposed chatter detection methodology

The IMFs which change only with the signal itself can be ob-
tained by EMD, but IMFs are prone to modal aliasing. To solve

this problem, the methods of EEMD and support vector ma-
chine (SVM) regression prediction and the largest Lyapunov
exponent and so on are used. If the IMFs with modal aliasing
are processed by WPD, the mixed modal will be identified.
Based on this idea, the method of chatter identification is pre-
sented in this paper, which is shown in Fig. 1. First of all, the
signal containing the chatter information is structured or mea-
sured by experiments. Then, the features of the IMFs are pre-
sented by EMD, FFT of IMFs and the power spectral density
(PSD) are compared, FFT of IMFs changing consistent with
PSD is selected to reconstruct the signal for the first time. If
not, the IMFs will be deleted when the first time to reconstruct
the signal. To eliminate the modal aliasing effect caused by
EMD and subdivide the high frequency, the reconstructed sig-
nal is decomposed byWPD. The time-frequency diagram of the
wavelet packet nodes is drawn by WPD. If the chatter happens,
the maximum energy will be consumed. So the node with the
maximum energy is chosen to reconstruct signal for the second
time. Then, the second time reconstructed signal is processed by
the HHT. If the HHT spectrum has some frequency bands, the
above steps need to be repeated until a single frequency band.
The resulting frequency band is chatter frequency band. In order
to direct efficiently express chatter features, mathematical sta-
tistics and analysis of feature vector will bemade. Based on this,
the threshold is set to judge whether chatter happens.

4 The chatter features extraction of simulation signal

In order to show the effectiveness of the above method, the
signal with chatter frequency is simulated by:

y ¼ 4sin 74πtð Þ þ 5sin 30πtð Þ
þ 0:5 1þ 0:6sin 30πtð Þð Þcos 300πtþ 1:5sin 15πtð Þð Þ ð6Þ

The trend of FFT and
PSD is the same

The first time
reconstructed

signal

The second time
reconstructed

signal

HHT spectrum have
other frequency

Feature vector
extraction

Set the
threshold

value

Delete the IMFs

Fig. 1 The flow chart of the
method of combining EMD and
WPD to extract chatter features
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The simulation signal is shown in Fig. 2. The chatter signal
contains three parts: the sinusoidal curves are shown by the
first two parts, which represent the spindle frequency and
tooth passing frequency, the chatter signal is performed by
the third part.

4.1 PSD analysis

The signal is given by x (n),E x nð Þ½ � ¼ 1
2π ∫

π

−π
Pxx wð Þdw, where

E[x(n)] represents the average signal power, and where
Pxx(w) is proportional to the average signal power in
−π ≤w ≤π. So the physical meaning of Pxx(w) is the
average power density of the signal, which is called
the power spectrum density. The purpose of spectral
analysis is to study the energy distribution at different
frequencies. The auto-correlation function and the peri-
odic chart are used to make spectral analysis. Algorithm
of autocorrelation function method is given as:

PN wð Þ ¼ ∑N−1
m¼− N−1ð ÞrN mð Þe−jwm ð7Þ

Among them, PN(w) is the power spectral density of the
fourier transform, rN(m) is a self -correlation function. For
random sequence x (n) of the long N, the specific is divided
into two steps, (1) the estimated value of the autocorrelation
function can be given as,

rN mð Þ ¼ 1

N
∑N−1−m

n¼0 x nð Þx nþmð Þ; 0≤m≤N−1 ð8Þ

For the simulation signals, the power spectrum is obtained
by the auto-correlationmethod, and the larger power spectrum
appears in the f1 = 37 Hz, f2 = 15 Hz and the modulation
frequency in Fig. 3.

4.2 Acquisition of IMFs and reconstruction of signal

The ultimate goal of EMD is to obtain the IMFs. The IMFs are
shown in Fig. 4. The spindle frequency, the tooth passing
frequency and modulation frequency of the signal can be
decomposed, respectively, frequency bands are IMF1, IMF2,
and IMF3 from high to low. To choose IMFs which can rep-
resent the main component of the original signal to recon-
struct, the amplitude-frequency analysis of the IMFs are
shown in Fig. 5. By comparison, the chatter frequency can
be fully expressed by IMF1, and the spindle frequency and
tooth passing frequency are expressed respectively by the
IMF2 and IMF3. So IMF1 is selected to reconstruct the signal.

In addition, there exists another way to select the IMFs. If
the chatter occurs during the cutting process, the energy will
shift to the chatter frequency band. It is indicated that the
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change trend of amplitude-frequency characteristic and PSD
are the same. By comparing the amplitude-frequency charac-
teristic and PSD of each IMF, the change trend of the IMFs,
which are the same as PSD’s, can be chosen to reconstruct the
signal.

4.3 WPD analysis and two times reconstruction of signal

In order to eliminate the modal aliasing of EMD and get
further information of chatter frequency, WPD is used to
extract chatter frequency. The db3 is used as wavelet ba-
sis, three levels are selected to analyze. So frequency
bands of the 7–14 node are 0–64 Hz, 64–128 Hz, 128–
192 Hz, 192–256 Hz, 256–320 Hz, 320–384 Hz, 384–
448 Hz, 448–512 Hz. The frequency band of IMFs will
be further subdivided by WPD, and mixed modals are
separated. The time-frequency diagram is drawn in
Fig. 6 based on energy of the frequency band:

It can be seen from Fig. 7, energy is mainly concentrated in
the 10th node, the frequency with 192–256 Hz, and the rest
energy is concentrated in the 8th node (64–128 Hz) and the
7th node (0–64 Hz), so the 10th node is selected for signal
reconstruction, the reconstructed signal is shown in Fig. 7.

The period of the reconstructed signal in Fig. 8 can
be seen, that is, T = 15, so the chatter information is
represented by the reconstructed signal. In addition, the
amplitude of reconstructed signal is in [−1, 1], the am-
plitude of raw signal is in [−10, 10], some useless in-
formation including spindle frequency and tooth passing
frequency are deleted by the first time reconstructed
signal.

4.4 HHT spectrum analysis and chatter feature vectors

EMD is based on the local characteristic of time scale of the
signal, and EMD is an adaptive decomposition. The signal is
decomposed by EMD into several IMFs, which makes that the
instantaneous frequency of the concept has the practical sig-
nificance. So the instantaneous frequencies and amplitudes of
each IMF can be calculated. Hilbert transform is given as,

h
̂

i tð Þ ¼ 1

π
∫∞−∞

hi tð Þ
t−τ

dτ ð9Þ

Structural analytical signal is given as:

zi tð Þ ¼ hi tð Þ þ j hi
̂
tð Þ ¼ ai tð Þejθi tð Þ ð10Þ
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Further the instantaneous frequency is obtained by:

f i tð Þ ¼ 1

2π
wi tð Þ ¼ 1

2π
� dφi tð Þ

dt
ð11Þ

So the instantaneous frequency can be obtained by HHT
spectrum. HHT spectrum of the second time and the fourth
time reconstructed signals is shown in Fig. 9.

In Fig. 9a, the chatter frequency can be clearly seen from
the second time reconstructed signal, but the other frequency
also can be seen too. To obtain a single frequency band, the
above steps are repeated. The details have been expressed in
part 3. A single frequency band can be seen from Fig. 9b. So
the method can be effectively used to extract the chatter fea-
tures. The mean value and standard deviation of HHT spec-
trum are extracted as feature vectors, respectively, the mean
value of the frequency is 0.1464 × 512 = 75 Hz and standard
deviation is 0.0094 × 512 = 4.8128 Hz.

5 Results and analysis of milling experiment

5.1 Experimental setup

The proposed chatter identification methodology has been
validated on a CNC milling machine named DMU50
(Fig. 10), the diameter of cutter used in test is D = 10 mm,
whose number of teeth are N = 4. The aluminum alloy
(100 mm × 100 mm × 80 mm) is slot milled. The geometry
of workpiece is shown in Fig. 11. Kistler 9257B is used to
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collect the force signal, which can measure forces in x, y, and z
axis. The dynamometer is fixed by pressure plate and both are
on the workbench, and the workpiece and the dynamometer
are fixedly connected with the bolt. In order to make the dy-
namometer accurate, the dynamometer is preheated more than
half an hour. The whole cutting process is carried out under
dry milling conditions.

In the experiment, the milling force is affected by the mill-
ing parameters such as axial cutting depth ap, feed rate F,
speed n, and so on, but the change of the milling force is the
greatest influenced by the axial cutting depth. To well select
the cutting parameters, the stability lobes diagram (SLD) is
drawn based on the modal tests. The SLD is shown in Fig. 12.
The cutting parameters are shown in Table 1.

Three cutting conditions (stable cutting, slight chatter, se-
vere chatter) are represented by three groups of the milling
experiment in which the axial cutting depth is changed.

5.2 Results and analysis

The measured signals are shown in Fig. 13. It can be seen that
with the increase of cutting depth, the amplitude of cutting
force increases. The three cutting conditions (stable cutting,

slight chatter, and severe chatter) are verified by the FFT.
During the stable cutting, the vibration is mainly focused on
the spindle frequency (also called dominant frequency), the
tooth passing frequency, and the resonant frequency. When
the chatter occurs, the vibration will be focused on the chatter
frequency. The FFT of the third group is shown in Fig. 14,
where the chatter frequency is marked and the spindle
frequency is denoted by f. The spindle frequency of ma-
chine is stimulated by tool, which belongs to a forced
vibration. If the tool has two teeth, the tooth passing fre-
quency will be two times of the spindle frequency. The
frequency of forced vibration is the integer multiples of
spindle frequency. The chatter frequency is not the integer
multiples of spindle frequency. In FFT, the frequency,
which has the larger amplitude and not the integer multi-
ples of dominant frequency, is chatter frequency. Next,
according to the method of combining EMD and WPD

Table 1 The cutting parameters

Experimental
group number

Spindle
speed n (r/min)

axial cutting
depth ap (mm)

feed rate F
(mm/min)

1 7000 1 700

2 7000 2 700

3 7000 3 700
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proposed in this paper, the EMD is done. The FFT of first
three IMFs is shown in Fig. 15. It can be concluded rich
chatter information is contained in IMF1, spindle frequen-
cy, and tooth passing frequency and the resonance fre-
quency is contained in IMF2 and IMF3.

As discussed before, IMF1 is used for the first time to
reconstruct signal. Then, for the elimination of modal aliasing
phenomenon and further subdivision of the frequency, WPD
of the first time reconstructed signal is made. Based on the
energy distribution of the wavelet packet nodes, the node with
the maximum energy distribution is selected for the second
time to reconstruct the signal. The second time reconstruction
of the third group is shown in Fig. 16. It can be seen that the
amplitude of the second time reconstructed signal is very
clear. Next, the signal is analyzed by HHT transform, which
aim is to determine the frequency distribution in the time

domain. The HHT spectrum of groups 1, 2, 3 are respectively
shown in Table 2.

It can be concluded from Table 2, with increase of cutting
depth, the frequency band is becomingmore andmore narrow.
In the stable cutting condition, the frequency components dis-
tribute dispersedly in the range of normalized frequency 0.18–
0.22. In the slight chatter case, the frequency components
gather a little. In the severe chatter case, the features are quite
clear. The frequency components almost gather in a line. It can
be seen that HHTafter EMD andWPD can be used efficiently
for chatter detection. Although it is obvious to identify chatter
from Hilbert-Huang spectrum, the mathematical features is
simple to judge. The mean value and standard deviation of
the Hilbert-Huang spectrum are calculated to find proper in-
dices for chatter identification, which is listed in Table 3.
When chatter happens, the vibration is strengthened and the
mean value will be increased. When chatter happens, the vi-
bration energy is centralized around the chatter frequencies
and hence the uneven degree is increased, which lead to in-
crease of the standard deviation. In the stable cutting process,
the mean value and standard deviation are 699.3 and 0.0141.
In the slight chatter case, the mean value and standard devia-
tion are increased to 708.75 and 0.0184, and in the severe
chatter case, these values are increased to 715.75 and
0.0241. Therefore, the mean value and standard deviation of
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Table 2 The HHT spectrum of three cutting parameters

Stable cutting
(Group 1)

Slight chatter
(Group 2)

Severe chatter
(Group 3)

Normalized frequency 0.18–0.22 0.19–0.21 0.198–0.203
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the Hilbert-Huang spectrum can be used as indices to simply
identify the chatter.

More cutting tests are carried out under the same cutting
condition (i.e., spindle speed 7000 r/min, feed rate 700 mm/
min, slotting), the threshold of mean value is set to 710 Hz, the
threshold of standard deviation is set to 0.02. If the mean value
and standard deviation is higher than the threshold value, it
will show that chatter has already happened in the milling
process.

6 Conclusions

To eliminate the influence of modal aliasing and subdivide the
frequency after EMD, the chatter identification method of
combining EMD and WPD is proposed in this paper. The
IMFs changing consistent with PSD or amplitude-frequency
are selected for the first time reconstruction. The second time
reconstruction is based on wavelet packet node with the max-
imum energy. In this way, the energy and frequency distribu-
tion features of the whole milling process can fully be
expressed by the reconstructed signal. Contrast to Cao’s meth-
od, the method can get a single frequency band which don’t
contain other frequency bands.

1) The other frequency band can also be seen from HHT
spectrum of the second time reconstructed signal. To
eliminate the influence of the other frequency band and
subdivide the frequency, the method of combining EMD
andWPD is repeated until a single frequency band. So the
method of combining EMD and WPD is needed to be
repeated at least once.

2) During the milling process, if the chatter occurs, the en-
ergy will be redistributed, and the energy will be concen-
trated to the chatter frequency. From the analysis of the
chatter feature vector, it can be seen that the mean value
and standard deviation of the HHT spectrum can be used
as indictors to identify chatter.

3) The trend of amplitude-frequency curve and PSD of milling
force signal is the same. So the IMFs can be chosen by
comparing the amplitude-frequency feature and signal itself.
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