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Abstract To target the accurate and fast joint quality identi-
fication, this work presents a method based on the particle
swarm optimization (PSO) and the kernel extreme learning
machine (KELM) in resistance spot welding (RSW). We per-
form welding and tensile tests to determine the related infor-
mation and extract features from signals combined with the
welding mechanism. Afterward, we optimize the parameters
in the KELMwith the PSO and fivefold cross validation (CV)
and establish an identification model based on the KELM to
classify the joint quality. The comparison results show that the
joint quality identification model has a good generalization
performance with an accuracy of up to 97.83%. Moreover,
the feature extraction is reasonable, providing insight into
the RSW process. The quality identification method based
on the PSO and KELM is effective in RSW.

Keywords Resistance spot welding . Particle swarm
optimization . Kernel extreme learningmachine . Pattern
recognition . Joint quality

1 Introduction

With its higher cost performance, resistance spot welding
(RSW) is widely used in industrial fields. The related product
reliability depends, in part, on the joint quality. However, the
traditional joint quality test is destructive, sampling and offline
[1], which neither guarantees the accuracy and real-time de-
tection nor meets the cost control principles. Therefore, con-
siderable research on joint quality has been conducted by
scholars, which has led to numerous joint quality analysis
methods. Generally, these methods can be divided into the
following two categories: statistical analysis methods [2–5]
and artificial intelligence methods [6–9]. To predict the joint
quality, Luo Y et al. [2] used regression analysis to build a
nonlinear multiple regression to forecast a model between the
welding features and the joint quality indexes (shear strength
and nugget diameter). Due to the high nonlinearity and mul-
tivariable coupling in the RSW process, scholars turn their
attention to the neural network to solve highly nonlinear and
uncertain problems. Wan X et al. [6] designed a BP neural
network, which predicts the weld nugget size and the fatigue
load value. Even though the artificial neural network is widely
used in spot welding quality identification, there are still some
unavoidable deficiencies, such as the excessive reliance on
training samples and the ease of being trapped in a local min-
imum. In recent years, novel methods using intuitive images
to present joint quality have been proposed [10, 11]. Study
[10] used the Chernoff faces technique to present the joint
quality.

Although different methods are adopted in the above stud-
ies, these works can effectively classify the RSW quality.
However, there are some aspects that need further consider-
ation. For instance, obtaining a higher RSW quality identifi-
cation requires complex and labour-intensive work, such as
developing the network structure and the variables to describe
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the intuitive chart. It has been suggested that the support vec-
tor machine (SVM) and the extreme learning machine (ELM)
have improved generalization performance, fast training
speed, and easy implementation. Compared with SVM, the
ELM can achieve better generalization performance at a faster
speed for multiclassification [12, 13]. In addition, there is little
research related to RSW quality identification based on ELM.
Therefore, this study considers the ease of implementation and
improved generalization performance for RSW quality iden-
tification. We propose a joint quality identification method
using the particle swarm optimization (PSO) and kernel ex-
treme learning machine (KELM). The results strengthen our
comprehension of the RSW process and the method based on
PSO and KELM can be a supplement to the joint quality
identification.

The outline of this paper is as follows. The concepts of PSO
and KELM are briefly reviewed in “Section 2”, “Section 3”
presents the RSW data acquisition, “Section 4” provides the
feature extraction in the RSW, and “Section 5” classifies the
RSW quality. Finally, “Section 6” concludes the study.

2 Review of PSO and KELM

2.1 PSO

Particle swarm optimization, proposed by Kennedy and
Eberhart [14] in 1995, is a swarm intelligence optimization
algorithm in the field of computational intelligence and is used
to solve optimization problems. In the algorithm, each particle
represents a potential solution to the optimization problem and
corresponds to a value that is determined by the fitness func-
tion. Each particle’s velocity determines the moving direction
and distance in accordance with its and other particles’motion
to finish the dynamic adjustment. Then, the optimization in
the solution space is achieved [15].

At each iteration, the particles update their velocity and
position by comparing the fitness value, personal optimal so-
lution, and the global optimal solution.
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where ω is the inertial weight that determines the extent of
the previous particle’s velocity affecting the current and plays
a role in balancing the global and local search. k is the current
number of iterations. Vid and Xid are the particle’s velocity and
position, respectively, c1 and c2 are learning factors, and r1 and
r2 are random numbers in [0, 1]. To avoid blind searching, we
limit the velocity and position of these particles to the ranges
[−Vmax,Vmax] and [−Xmax,Xmax].

The PSO algorithm has a fast convergence speed, good
robustness, and strong commonality. In this paper, we use
the PSO to optimize the penalty parameter, C, and kernel
parameter, g, in the KELM. We set the iteration number to
100, and the size of the population is set to 20 in the PSO.
Meanwhile, to avoid the problems of premature convergence
and low iteration efficiency in later periods, we introduce the
mutation into the PSO algorithm, which can expand the search
space to ensure population diversity and improve the ability to
search the optimal solution.

2.2 KELM

The extreme learning machine is a new algorithm of the
single-hidden-layer feed-forward neural network (SFLN).
The hidden layer offset and connection weights between an
input layer and a hidden layer, which remain constant in the
training process, are randomly generated by the algorithm.
The sole interaction is setting the number of hidden layer
neurons. Afterward, the optimal solution is obtained [16, 17].

Given a training data set, xi∈Rn, ti∈Rq, and i=1 , . . . ,N, a
standard SFLN with L nodes in the hidden layer and the acti-
vation function f(x) provides the followingmathematical mod-
el.

∑
L

i¼1
βi f ωi⋅x j þ bi

� � ¼ Oj j ¼ 1; :::;N ð3Þ

where ωi is the input weight between the ith input neuron
and the hidden layer node. bj is the bias of the ith hidden layer
node, βi is the output weight vector connecting the hidden
layer and output layer, and Oj is the output value of the j th
input sample.

Huang et al. proposed and proved that when the hidden layer
nodes and sample number are consistent, there is zero error in
approximating N samples for any input weight and bias.

∑
L

i¼1
βi f ωi⋅x j þ bi

� � ¼ t j; j ¼ 1; :::;N ð4Þ

where tj is the real value of the jth sample. Eq. (4) can be
rewritten as Eq. (5).

Hβ ¼ T ð5Þ

where H is the hidden layer output matrix. The output
weight, β, can be achieved through the least-square solutions.

β ¼ HþT ð6Þ

where H+ is Moore-Penrose of H.
To improve the robustness and generalization performance

of the ELM, Huang et al. introduced the kernel matrix, defined
by Eq. (7) in the ELM, and the proposed kernel extreme learn-
ing machine.
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where K(x, xj) is the kernel function, C is the penalty pa-
rameter that balances the empirical risk and structural risk, I is
the identity matrix, and ΩKELM is the kernel matrix. In this
paper, the RBF kernel, K(u, v) = − ‖u− v‖2/g, is adopted. The
penalty parameter, С, and kernel parameter, g, in the KELM
play crucially important roles in model construction.

3 Spot welding data acquisition

3.1 Signal test system

Figure 1 shows the signal test system. In the spot welding
process, the acquisition system collects the following three
signals: current, voltage, and electrode pressure. The current
signal is transmitted to the acquisition system by a Rogowski
coil (CY-RCTA02-Φ120, UK). The voltage signal can be di-
rectly obtained from the electrode, passing by the shielded
wire and isolation module (ISO-U1-P3-O4, People’s

Republic of China.). The electrode pressure signal is the out-
put pressure of the cylinder converted by the pressure sensor
(MPX5700AP, USA). After a series of filtering and denoising
processes, three signals are displayed and stored in the PC.

3.2 Spot welding test

A DNT3-200 (spot-welding machine, People’s Republic of
China) adopts the constant-current control pattern. The spec-
imen used is the Q235, whose size is 100×20×1.0 mm, and
the overlap distance is 20 mm in the welding test. The speci-
mens need to be processed before the test is conducted to
reduce the influence of the specimen surface on the test
results.

Fig. 1 Layout diagram of the
testing system

Table 2 Parameters of the welding test

Welding current
(I/A)

Welding time
(t/Cycle)

Welding pressure
(F/N)

8800 8 2250

5000 8 2250

5300 8 2250

5600 8 2250

5900 8 2250

6200 8 2250

8800 5 2250

8800 6 2250

8800 7 2250

5000 7 2250

5500 6 2250

6000 5 2250

8800 8 1300

10,000 8 2250

12,000 8 1300

Table 1 RWMA recommended welding parameters

Welding time
(t/Cycle)

Welding current
(I/A)

Welding pressure
(F/N)

8 8800 2250

Int J Adv Manuf Technol (2017) 91:1879–1887 1881



The standard welding parameters for 1-mm steel from
the Resistance Welding Manufacturing Alliance(RWMA)
are shown in Table 1, the specimens need to be proc-
essed before the test is conducted to reduce the influ-
ence of the specimen surface on the test results, and
considering the more accurate relationship between the
welding parameters and joint quality, the welding pa-
rameters for the test are shown in Table 2. The welding
current was in the range of 5000 to 12,000 A, the
w e l d i n g t im e r a n g e d f r om 5 t o 8 C y c l e s
(1 Cycle = 0.02 s), and the welding pressure ranged
between 1300 and 2550 N.

3.3 Tensile test

There are two common indexes to evaluate the joint quality.
One is the nugget size and the other is the shear strength. We
adopt the second index, which can reflect the state of the joint
to a certain extent. For example, when the joint is unfused, the
shear strength is smaller than normal.

The device used in the tensile test is the electro-hydraulic
servo fatigue testing machine (EHF-EV101K1-030-1A,
Japan) produced by SHIMADZU. To obtain the shear
strength, it is necessary to test the specimens welded in the
welding test.

Fig. 2 Current and heat curves
under different parameters

Fig. 3 Comparison of the voltage
curves in the normal state and the
splash state
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4 Feature extraction

4.1 Welding current

The basic principle of the RSW is that, under the effect of
pressure, the joule heat generated by the welding current on
the welding zone forms the joint. Therefore, the important
factors influencing the joint quality are the welding current,
dynamic resistance, and welding pressure.

Q ¼ ∫t2t1 I
2 tð ÞR tð Þdt ð9Þ

where Q is joule heat, I(t) is the welding current, R(t) is the
dynamic resistance, and t is the welding time. When the
welding time and resistance are constant, the joule heat

generated under the welding current is directly proportional
to the square of the current. The current, whose influence on
the joint shear strength is greater than either that of the
welding time and the resistance, is the main influencing factor
generating the heat. Meanwhile, it is demonstrated that the
current can characterize the welding power in the welding
process.

Due to the constant current pattern employed in the RSW
machine, the current effective value shown in Fig. 2a can keep
constant in the welding process. The following welding pa-
rameters are shown in Fig. 2: Normal I = 8800 A, t = 8 Cycle,
and F = 2250 N; Unfused I = 5000 A, t = 8 Cycle, and
F = 2250 N; and Splash I = 12000 A, t = 8 Cycle, and
F = 1300 N. The welding power curves (Fig. 2b) can reflect
the different joint states in the RSW and change with the
current. Thus, the power (P) and the effective value of the
welding current (I x ) are selected as features.

4.2 Welding voltage

As shown in Fig. 3, due to the variation of the welding zone
conductivity and the loop impedance, the voltage changes
based on certain rules in the welding process. For a normal
operation (I = 8800 A, t = 8 Cycle, F = 2250 N), the conduc-
tivity rapidly increases with the temperature at the initial
welding period, causing the associated voltage to also in-
crease. With an increase in temperature, the rate of conductiv-
ity increase diminishes and the contact area increases, which
causes the voltage to gradually increase and reach a peak, Vm.
As the temperature increases further, the voltage decreases and
arrives at a steady state, whose value decreasesΔv compared

Fig. 5 The comparison of the
pressure curves under different
parameters

Fig. 4 The dynamic resistance curves

Int J Adv Manuf Technol (2017) 91:1879–1887 1883



with the peak, Vm. For the splash operation (I = 12,000 A,
t = 8 Cycle, F = 1300 N), the higher current leads to a faster
increased speed in the initial period and a sharp decline.
However, due to an insufficient current (I = 5000 A,
t = 8 Cycle, F = 2250 N) forming a joint, it takes more time
to arrive at steady state conditions, and the nugget size is
smaller on the unfused occasion. Therefore, Δv and Δv/Vm
are selected as the features.

4.3 Dynamic resistance

Dynamic resistance is the resistance of the current loop that
often reflects the dynamic changes in the welding process.
The value of the dynamic resistance is obtained by dividing
the value of the welding voltage by the current. The variation
behaviour between the voltage and the dynamic resistance is
generally consistent. Due to different currents, the normal dy-
namic resistance curve (I = 8800 A, t = 8 Cycle, F = 2250 N)
gradually declines after reaching the peak, α, while the splash
(I = 12,000 A, t = 8 Cycle, F = 1300 N) sharply declines while
the unfused (I = 5000 A, t = 8 Cycle, F = 2250 N) is still
increasing (Fig. 4). Therefore, the resistance mean value (Rm)
after reaching peak, α, can characterize the joint state and Rm
can be a feature.

4.4 Welding pressure

The welding pressure is one of the most basic RSW condi-
tions. The RSW depends on the welding pressure for
compressing artefacts, which is crucial to forming a nugget.
The welding current is large enough to cause excessive current
density, promote the expansion acceleration of the weld zone
metal, and force the melted metal out of the control of pres-
sure, which induces the splash (Fig. 5). In addition, when the
splash occurs, the pressure curve exists as a sharp decline. The
pressure feature can distinguish the different joint states.
Hence, the mean value (Fm) and the mean-squared error
(Fmse) of the pressure are selected as the features of the joint.

5 Quality identification in RSW

5.1 Establishment of the quality identification model

Figure 6 shows the overall process of quality identification
and contains five steps. Step 1: The original data that consists
of the attribute values and labels input. As shown in Table 3,
the attributes are the welding features described in the previ-
ous section and the classification label that represents the joint

Table 3 Description of the original data set

Symbol Description

Label JS The state of the joint. 1 Normal, 2 Unfused, 3 Splash

P The welding power

Ix
The effective value of the welding current

Δv The declining value compared to the peak shown in Fig. 3.

Attribute Δv/Vm The ratio between the peak and the steady state shown in Fig. 3.

Rm The mean value of the dynamic resistance after reaching the peak

Fm The mean value of the welding pressure

Fmse The mean-squared error of the welding pressure

Fig. 6 The process of quality
identification
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Fig. 7 The process of parameter
optimization

Table 4 The welding
information of the training set Welding current (I/A) Time (t/Cycle) Pressure (F/N) Shear strength (Fs/N) Label

8800 8 2250 5861 1

5600 8 2250 5670 1

5900 8 2250 5692 1

6200 8 2250 6039 1

8800 5 2250 5652 1

8800 6 2250 5788 1

8800 7 2250 6041 1

10,000 8 2250 6071 1

10,000 8 2250 5809 1

5000 8 2250 5467 2

5300 8 2250 5519 2

5000 7 2250 5399 2

5500 6 2250 5454 2

6000 5 2250 5338 2

8800 8 1300 5530 2

8800 8 1300 5300 2

8800 8 1300 5496 2

12,000 8 1300 6199 3

12,000 8 1300 6247 3

12,000 8 1300 6185 3

12,000 8 1300 6186 3
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Table 5 The comparison
between the actual and the model
results

Welding current I/A Time t/Cycle Pressure F/N Shear strength Fs/N Real state Predicted label

8800 8 2250 6050 1 1

8800 8 2250 5953 1 1

8800 8 2250 6000 1 1

8800 8 2250 6056 1 1

5600 8 2250 5744 1 2*

5900 8 2250 5698 1 1

6200 8 2250 5811 1 1

8800 5 2250 5748 1 1

8800 5 2250 5616 1 1

8800 5 2250 5677 1 1

8800 6 2250 5722 1 1

8800 7 2250 6009 1 1

8800 7 2250 6041 1 1

8800 7 2250 6048 1 1

10,000 8 2250 5870 1 1

10,000 8 2250 5888 1 1

10,000 8 2250 5906 1 1

10,000 8 2250 6021 1 1

10,000 8 2250 5922 1 1

10,000 8 2250 5836 1 1

10,000 8 2250 5859 1 1

10,000 8 2250 5812 1 1

5000 8 2250 5467 2 2

5300 8 2250 5427 2 2

5000 7 2250 5427 2 2

5000 7 2250 5374 2 2

5000 7 2250 5320 2 2

5500 6 2250 5392 2 2

5500 6 2250 5381 2 2

5500 6 2250 5369 2 2

6000 5 2250 5401 2 2

8800 8 1300 5349 2 2

8800 8 1300 5300 2 2

8800 8 1300 5343 2 2

8800 8 1300 5496 2 2

8800 8 1300 5261 2 2

8800 8 1300 5375 2 2

8800 8 1300 5386 2 2

8800 8 1300 5381 2 2

8800 8 1300 5348 2 2

12,000 8 1300 6257 3 3

12,000 8 1300 6065 3 3

12,000 8 1300 6324 3 3

12,000 8 1300 6148 3 3

12,000 8 1300 6269 3 3

12,000 8 1300 6142 3 3

1886 Int J Adv Manuf Technol (2017) 91:1879–1887



state (1 Normal, 2 Unfused, 3 Splash). Step 2: It is essential
that the attributes are normalized to avoid the influence on the
final predicted result caused by the different sizes of the attri-
butes. In this paper, the attributes are scaled into the interval of
[−1, 1]. Step 3: In order to optimize the penalty parameter, C,
and kernel parameter,g, we adopt the PSO and K-fold cross
validation, which is a useful approach for an unbiased evalu-
ation of the classification (as shown in Fig. 7). This study sets
K to 5 and the data are divided into five subsets. In each
iteration, one of the five subsets is used as the test set and
the remaining four subsets form the training set. Then, the
average of the five trials is obtained to improve the reliability
of the result. Step 4: Use the training set and the optimal
parameters to model the joint quality identification. Step 5:
Utilize the model to classify the testing set, and finally obtain
the predicted label and accuracy of the test samples.

5.2 Comparison experiment

Information regarding 21 selected samples that form the
welding test is presented in Table 4 and the training set of
the RSW quality identification model is selected. The optimal
parameters c=0.1 and g=0.01. Then, the RSW quality iden-
tification model is built. To evaluate the accuracy and reliabil-
ity of the proposed model, the welding test and the shear test
are conducted to obtain the testing set and the real state of
joint.

In Table 5, the asterisk denotes that the model-predicted
label is not consistent with the real state of the joint. Thus,
there is only one predicted label that differs from the real state
of joint. The table shows that for the 46 samples, the proposed
model has an accuracy of 97.83%. It can be concluded that the
RSW quality identification model has a good generalization
performance.

6 Conclusion

In this study, feature extraction combined with an analysis of
the welding signals is effective and reasonable, which in-
creases the understanding of the welding process. A method
for the RSW quality identification based on the PSO and
KELM is proposed, which enables the identification of three
stages in the RSW quality that include the normal, unfused,
and splash. It is demonstrated that the proposed model has a
good generalization performance with an accuracy of 97.83%
in the comparison test.
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