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Abstract With the development of the information technology
and logistics industry, industrial production models are more
likely to be innovated than ever before. Therefore, there is a
tendency for a large number of manufacturing enterprises to start
outsourcing their manufacturing activities to more professional
subcontractors so they could pay more attention to their core
business. Cloudmanufacturing (CMfg), as a supplement to cloud
computing and big data, is also a new network manufacturing
mode that is service-oriented. This mode makes it even more
complex and impractical to organize and optimizemanufacturing
resources. Considering this problem, this paper proposes a
manufacturing resource selection strategy based on an improved
distributed genetic algorithm (DGA) for manufacturing resource
combinatorial optimization (MRCO) in CMfg. We divided the
DGA into several sections and distributed and optimized the
process, which not only guaranteed algorithm speed but also
expanded the search range and improved the accuracy. A case
study, a performance comparison between a simple genetic algo-
rithm (SGA) and a working procedure priority-based algorithm
(WPPBA) is presented later in this paper. Experimental results
showed that the proposed method is preferable and a more effec-
tive choice for searching for the optimal solution.

Keywords Cloudmanufacturing .Manufacturing resource
combinatorial optimization . Distributed genetic algorithm .

Parallel optimization

1 Introduction

In recent years, driven by the development and application of
information technology and the logistics industry [1, 2], there
is a tendency for the manufacturing industry to begin
outsourcing its manufacturing activities. Therefore, it is sig-
nificantly important for core manufacturing enterprises
(CMEs) to effectively select the external manufacturing re-
sources and collaborate with other business partners [3, 4].
Even though three typical cooperative manufacturing modes,
i.e., computer-integrated manufacturing [5], network
manufacturing [6], and manufacturing grid [7–10], have been
introduced in recent years, there still exist some issues, such as
flexibility, security, and coverage that limit higher-level
manufacturing collaboration [11]. At the same time, the rapid
development of cloud computing and big data has been iden-
tified as the key technology and development trend, as they
can offer operational models for the manufacturing industry to
resolve the problems they are faced with [12–14]. In this back-
ground, the concept of cloud manufacturing (CMfg) has been
proposed.

CMfg is a new service-oriented network manufacturing
paradigm, which derives from, but is not limited to, traditional
manufacturing modes [15–18]. It provides a third-party CMfg
service platform and collects various types of manufacturing
resources (MRs) in a virtual resource pool [19, 20]. To realize
a rapid and personalized manufacturing mode, we can consid-
er the manufacturing resource optimal selection to be one of
the key technologies for CMfg, which mainly refers to opti-
mization issues at the time of selecting the suitable
outsourcing suppliers and component suppliers for the pur-
pose of strategic cooperation and reducing the cost incurred
from production and improving product quality [21–23].

Manufacturing resource combinatorial optimization (MRCO)
is a traditional problem, and it has been studied by many
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researchers using different manufacturing theories. However,
with the development of advanced manufacturing systems, espe-
cially the CMfg system, it was found that the existing models
lack flexibility and practicality, which can be explained by the
fact that certain studies only collect limited resources or processes
(one-stage or two-stage). Other studies only consider the time
and/or cost, and there are other studies that do not even take
logistics time and the cost of resource provider nodes into ac-
count. In addition to this, MRCO has become more complicated
under the conditions of CMfg owing to the increasing number of
MRs, the extensive distribution of MRs, and the advanced logis-
tics industry, which imposes a great challenge for the models
with respect to computational speed, convergence, searching
ability, flexibility, etc. Therefore, it is necessary to build a mod-
ified mathematical model and algorithm to accommodate new
manufacturing modes in CMfg. An MRCO model based on a
novel encoding scheme and a modified distributed genetic algo-
rithm (DGA) in CMfg are presented in this paper, and corre-
sponding solutions are introduced in detail.

The rest of this paper is organized as follows. Related research
studies are presented in Sect. 2. The problem description and
mathematical model are detailed in Sect. 3. The algorithm design
is explained in Sect. 4. The simulation experiment and discussion
are presented in Sect. 5. Especially, the comparison results are
provided to demonstrate how our model can be better applied to
CMfg. Finally, Sect. 6 provides the conclusion of this paper and
indicates the research direction to a further extent.

2 Literature review

At present, many scholars have carried out many research
studies on the manufacturing resource selection problems of
the manufacturing industry and have come to valuable results
[24–30]. For example, Araz et al. presented a fuzzy goal pro-
gramming approach to improve the methods of evaluating and
selecting outsourcing suppliers [31]. Adiel and de Almeida
established a multi-criteria decision model for outsourcing
contract selection programs by using the ELECTRE method
[32]. Cheng proposed an automated outsourcing selection and
order tracking system (OSOTS) for alliance members within a
particular supply chain [33]. The OSOTS could assist the cen-
tral factory to find suitable outsourcers and track among
outsourcers for a particular customer order. Chaharsooghi pro-
posed a modified version of the ant colony optimization
(ACO) to solve multi-objective resource allocation problems
[34]. Wang selected suppliers in a quantity discount environ-
ment by using multi-objective linear programming, analytical
hierarchy process, and fuzzy compromise programming [35].
Wu et al. proposed a fuzzy multi-objective programming
model to decide supplier selection involving multiple criteria
and risk factors [36]. Wang and Ma proposed a cost optimiza-
tion model based on supply cost, flexible ability, and service

integration to deal with the logistics optimization problem
under demand changes and supply restrictions [37]. Zhou
et al. established job scheduling problems on the basis of an
N-person non-cooperative game theory in networked
manufacturing, and the optimal result for each job is derived
from the Nash equilibrium point of the game [38]. Ivan et al.
developed a hybrid evolutionary algorithm combining
priority-dispatching rules with a genetic algorithm (GA) to
address the issue of efficient scheduling routine and proposed
the application service provider paradigm [39]. Tao et al. pre-
sented a newmanufacturing grid resource service composition
and optimal selection method based on the principles of par-
ticle swam optimization (PSO) algorithm [3, 40]. Liu et al.
proposed a time, quality, cost, and service (TQCS)-based
multi-objective integer programming algorithm by analyzing
the self-organization manufacturing grid and the characteris-
tics of a self-organization manufacturing system [41]. Guo
et al. proposed a multi-objective optimization model and an
improved cluster-based genetic algorithm to solve the MRCO
problem for large complex equipment in group manufacturing
[42]. Du et al. proposed a supplier optimal selection model
that considers the operating stage of a complex product system
to balance the procurement and operating cost [43].

Significant research efforts in the modeling of re-
source selection and production scheduling approaches
have been made. However, the selection objective and
parameters are quite different in the environment of
CMfg. The changes are mainly reflected in several as-
pects such as the amount and distance of MRs, the
transparency of data, the personalized production, the
criteria of optimization (quality of service (QoS), ener-
gy, utility, and trust), etc. Studies on resource selection
and application in CMfg have been conducted only in
recent years, and most of them mainly focus on the
theoretical model. Wu and Yang studied resource shar-
ing in a CMfg environment and developed a cloud
manufacturing service platform by combining theory
with practice [44]. Yin et al. resolved the interoperabil-
i ty and combina t ion problem of heterogeneous
outsourcing resources with one stage; however, the pro-
posed model could not be applied in a complex produc-
tion environment [45]. Yang et al. focused on the need
of the large equipment manufacturing industry to adopt
collaborative operations to transform the industry to
cloud manufacturing services and developed a multi-
level cloud manufacturing service platform by combin-
ing theory with practice [12]. For the problem of dy-
namic migration of virtual machines in the cloud com-
puting platform, Tao et al. established a triple-objective
optimization model that takes energy consumption,
communication between virtual machines, and migra-
tion cost into account [22]. Wang proposed an optimal
selection of a machining equipment model, which
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considered the logistics effectivity not only among the
service suppliers but also from the client to the first
service supplier as well as from the last service supplier
to the client [46]. Cao et al. proposed a novel part
manufacturing service combined with a working proce-
dure manufacturing service (PMS + WPMS) prime col-
laboration mode, which was considered as an essential
guide for CMfg applications [47]. Tao et al. proposed
several intelligent models and algorithms to deal with
service composition optimal-selection problems in
CMfg environment, such as full connection-based par-
allel adaptive chaos optimization with reflex migration,
chaos quantum group leader algorithm, the design
preference-based QoS description model combined with
the PSO a lgo r i t hm, e t c . [21 , 24 , 26 , 48 , 49 ] .
Considering the correlation of QoS, Xu proposed a
correlation-aware QoS model of aggregation service
and an improved discrete bees algorithm based on
Pareto in a CMfg environment [23] . Cao et a l .
established a service selection and scheduling model
that considers the TQCS criteria [2].

The problems of MRCO in CMfg are more compli-
cated than traditional resource optimization models.
Many factors need to be considered for new models,
such as the logistics time and cost of workpiece from
one device to another. Moreover, the traditional model
of shop scheduling or resource selection is usually
solved by a heuristic algorithm such as GA), simulated
annealing, PSO, ACO, etc. [50–63]. However, under the
environment of CMfg and big data, the traditional mod-
el is not appropriate in the following aspects:

(1) The vast resources in different regions could easily lead
to divergence of the algorithm.

(2) There are some new factors needing to be considered
such as logistics time and cost, etc [64–65].

(3) Under the trend of cooperative manufacturing, the occu-
pation and conflict of resources must be considered.

(4) The requirements on calculation speed are higher than
before because of the increasing number of resources.

According to the above problems, this paper provides a
DGA, which has a good effect on the response speed, the rate
of convergence, and the ability to search for the global optimal
solution.

3 Problem description and mathematical model

3.1 Problem description

On the basis of the currentMRCOand shop scheduling problems
in a CMfg environment, this paper presents a multi-agent and

multi-objective manufacturing resource optimal selection model,
shown in Fig. 1. Let us assume that a CME submits some
manufacturing tasks to the cloud manufacturing platform
(CMP), which is called n orders {O1, O2, …, On}. Each of the
orders is split into several different operations {Oi1,Oi2,…,Oim}.
The CMP selects a vast amount of MRs {Ri1, Ri2,…, Riq} from
different suppliers {S1, S2, …, Sk}. Meanwhile, the correspond-
ing candidate resources of Oij are marked as Uij = {Rab, Rcd,…,
Ref}. The processing time, processing cost, logistics time, logis-
tics cost, and quality of each resource are pre-known. The opti-
mal goal of the resource selection and scheduling process is to
find the processing route among MRs from different areas ac-
cording to the demand of customers. The assumptions of our
problem are as follows:

(1) The sequence of operation in the orders is fixed and
immutable.

(2) Each machine can process several operations, and the
process cost and processing time of each operation are
different.

(3) All the machines are available from time zero.
(4) One machine can only process one operation at a time; if

there are more than two operations to be processed by the
same machine, the subsequent operation needs to wait
for the previous one to finish.

To formulate the mathematical model of the problem, we
summarize the related parameters and variables as follows:

i the sequence of the order

j the sequence of an operation

m the sequence of the supplier
n the sequence of the resource

Oi the order i
Oij the jth operation of Oi.

Sm the supplier m
Rmn the nth resource of supplier m
ni the number of Oi

Qi the unit loading quantity for Oi

pc(i, j, m, n) the processing unit cost of operation Oij on
resource Rmn.

pt(i, j, m, n) the processing time of operation Oij on
resource Rmn.

lt(ijmn,
i(j + 1)uv)

the logistics time of Oi from the supplier
where Oij is processed by Rmn to the supplier
where Oi(j + 1) is processed by Ruv.

lt(i0rs, i1rs) the logistics time of Oi from the CME to Rrs,
if Oi1 is the first operation.

lt(imrs,
i(m + 1)rs)

the logistics time ofOi from Rrs to CME, ifm
is the last operation of Oi.

lc(ijmn,
i(j + 1)uv)

the unit logistics cost of Oi from the supplier
where Oij is processed by Rmn to the supplier
where Oi(j + 1) is processed by Ruv.
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lc(i0rs,i1rs) the logistics cost of Oi from the CME to Rrs,
if
Oi1 is the first operation.

lc(imrs,
i(m + 1)rs)

the unit logistics cost of Oi from Rrs to CME,
if m is the last operation of Oi.

Sij the start time of operationOij on resource Rmn.
Eij the end time of operationOij on resourceRmn.
Wij the waiting time of operation Oij.
q(rs) the pass rate of Rrs.
Uij the set of resources which can process the

operation Oij。

Ti the total time of Oi.

3.2 Mathematical model

The most important optimization criteria of resource optimal
selection in a CMfg environment can be summarized as the
QoS. In consideration of the dynamic and service-oriented char-
acter of CMfg, this paper proposes five QoS properties, i.e.,
CTQRS = (C, T, Q, A, S), where C, T, Q, A, and S represent
the use-cost, trading period, pass rate, anti-risk ability, and satis-
faction degree of customers, respectively. Accordingly, we for-
mulate the mathematical optimization model of resource selec-
tion in CMfg as follows.

Set the binary decision variable as:

αi ¼ 1 if the first operation of Oi starts from CME
0 if the first operation of Oi starts from the first supplier

�
ð1Þ

βij;i jþ1ð Þ ¼
1 if Oij and Oi jþ1ð Þ are outsourced by

different subcontractors
0 if Oij and Oi jþ1ð Þ are outsourced by

the same subcontractor

8>><
>>: ð2Þ

xijmn ¼ 1 if Oij is processed by Rmn
0 if Oij is not processed by Rmn

�
ð3Þ

rij ¼ 0 if Rij is not occupied at time t
1 if Rij is occupied at time t

�
ð4Þ

(1) The time mathematical model is

Ti ¼ Eim þ lt im; i mþ 1ð Þð Þ ð5Þ

Eij ¼ Sij þ
Xn
i¼1

Xm
j¼1

Xk
s¼1

Xq
r¼1

pt i; j; s; rð Þxijsr ð6Þ

Sij ¼

Ei j−1ð Þ þ lt i j−1ð Þmn; ijuvð Þ if Oij is processed

by Ruv and Ruv is free when Oi arrives at Su
Ers if Oij is processed by Rrs and Oij

is being processed by Rrs when Oi arrives at Sr

8>>><
>>>:

ð7Þ

Si1 ¼ αilt i0rs; i1rsð Þ ð8Þ

Srankshaft

Wheel

Transmission

Clutch

S11

S12 S13

S21
S22

S31

CME

Resource Pool

S32

Orders form CME Order1

Order2

Order3

Fig. 1 Schematic diagram of the MRCO problem
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Here, formula (5) is the total time objective function of
order Oi, including the end time and logistics time of the last
operation of Oi.

(2) The cost mathematical model is

C ¼ Ct þ Cs ð9Þ

Cs ¼
Xn
i¼1

Xm
j¼1

Xk
s¼1

Xq
r¼1

xijsrpc i; j; s; rð Þpt i; j; s; rð Þ ð10Þ

Ct ¼
Xn
i¼1

ceil ni=Qi

� ��Xk
s¼1

Xq
r¼1

αixi1srlc i0sr; i1srð Þ

þ
Xm−1
j¼1

Xk
s¼1

Xq
r¼1

Xk
u¼1

Xq
v¼1

xijsrxijuvlc ijsr; i jþ 1ð Þuvð Þ

þ
Xk
s¼1

Xq
r¼1

ximsrlc imsr; i mþ 1ð Þsrð Þ
�

ð11Þ

WP1

WP2

WP3

WP4

WP5

WP6

...

WPe

Server

WPs

RWPs

Computer
WP4

RWPsWP5

Computer
WP3

RWPs

WP6

WPe

Computer
WP1

RWPs

WP2

Master

CALC WPs

Assign tasks

Communicate 

and adjust

Output

Output

Output

Master

Find the best 

individual

CALC RWPs for WP1

CALC RWPs for WP2

CALC RWPs for WP4

CALC RWPs for WP5

CALC RWPs for WP3

CALC RWPs for WP6

CALC RWPs for WPe

Fig. 2 Process of the DGA

Fig. 3 Encoding method of the algorithm
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Here, formula (9) is the total cost objective function,
including logistics cost Ct and processing cost Cs; formula
(10) is the total processing cost objective function, and for-
mula (11) is the logistics cost objective function, which

consists of three parts: ceil ni=Qi

� �
∑
k

s¼1
∑
q

r¼1
αixi1srlc i0sr; i1srð Þ

denotes the logistics cost from the CME to the first supplier

of Oi ceil ni=Qi

� �
∑
m−1

j¼1
∑
k

s¼1
∑
q

r¼1
∑
k

u¼1
∑
q

v¼1
xijsrxijuvlc ijsr; i jþ 1ð Þð uvÞ

denotes the logistics cost of two adjacent suppliers of Oi;

and ceil ni=Qi

� �
∑
k

s¼1
∑
q

r¼1
ximsrlc imsr; i mþ 1ð Þð srÞ denotes the

logistics cost of the last supplier to the CME of Oi.

(3) The pass rate of Oi is

Pi ¼
Xm
j¼1

Xk
s¼1

Xq
r¼1

xijsrq s; rð Þ ð12Þ

Table 1 Basic information about the tasks

Task ni Qi αi Resource/number of processing per day/cost for every operations

Oi1 Oi2 Oi3 Oi4 Oi5 Oi6 Oi7

O1 500 100 1 R1,1/200/17.3
R2,1/250/18.-
6

R10,1/150/17.2
R11,1/180/17

R3,1/200/20.6
R4,1/140/23.6

R6,1/150/22
R7,1/180/21.6
R12,1/300/21.-
8

R3,2/100/5.8
R4,2/150/6.2
R6,2/180/6.6

R7,2/250/6
R12,3/260/5.4

R1,2/200/17.2
R2,2/250/17.1
R10,2/150/16.2
R11,2/180/15.6

R5,1/180/30
R8,1/150/28.2
R9,1/230/28
R13,1/160/27.8

R5,2/300/8.6
R8,2/260/9
R9,2/250/9.2

R13.2/250/8.2

R1.3/230/13
R2,3/180/12.6
R10,3/140/13
R11,3/180/12.2

O2 800 200 1 R1,1/300/5.4
R2,1/300/5.2

R10,1/250/4.4
R11,1/280/4.8

R3,3/180/8.6
R4,2/160/9
R6,2/180/8.4
R7,2/200/7.8

R12,2/250/7.4

R1,2/300/5.4
R2,2/300/5
R10,2/250/4.4

R11,2/280/4.6

R5.3/170/18.4
R8,3/200/18
R9,3/160/17.4
R13,3/150/18.6

R5,5/180/26.6
R8,5/250/28
R9,5/200/27
R13,5/200/26

R1,3/200/5.6
R2,3/250/5.4
R10,3/180/5.2
R11.3/260/6

O3 500 100 0 R3.3/80/13
R4,3/60/14

R6,3/80/12.6
R7,3/70/14.4
R12,2/50/12.8

R3,2/200/4.2
R4,2/180/4.6

R6,2/180/3.8
R7,2/250/3.8
R13,3/260/3.6

R5.3/120/14.4
R8,3/100/14.8
R9,3/100/15.2
R13,3/100/13.8

R5,2/80/10.6
R8,2/135/10.8
R9,2/100/10.8
R13.2/100/10

R5,5/80/16.6
R8,5/100/16.4
R9,5/120/15.8

R13,5/120/16

O4 200 200 1 R3.3/200/7
R4,3/150/8.4
R6,3/150/7.6
R7,3/180/8.2

R12,2/300/7.4

R5,4/60/30.8
R8,4/50/29.2
R9,4/60/29.6

R13.4/55/29

R5,5/50/64
R8,5/40/66
R9,5/40/62
R13,5/40/64

O5 300 300 0 R3,1/100/16
R4,1/150/17

R6,1/80/14
R7,1/150/16

R12,1/180/1-
5.6

R3,2/100/6
R4,2/150/6.4

R6,2/80/5.2
R7,2/150/6

R12,3/180/5.8

R1,2/200/4.6
R2,2/150/4.8
R10,2/160/4.2
R11,2/180/4.6

R5,1/80/32.2
R8,1/100/33.6
R9,1/60/31.6

R13,1/80/31.4

R5,5/80/28.4
R8,5/90/27.8
R9,5/50/29.6

R13,5/60/30

R1,3/200/16.8
R2,3/150/16.8
R10,3/160/15.2
R11.3/180/17.8

O6 400 260 1 R3,2/50/40
R4,2/45/42

R6,2/40/38.4
R7,2/40/39.2

R12,3/50/42.4

R5,4/35/66.8
R8,4/45/69.6
R9,4/40/66.2
R13.4/45/68

Fig. 4 Crossover and mutation operation of the algorithm
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(4) The anti-risk ability of Oi is

Ai ¼
Xm
j¼1

Xk
s¼1

Xq
r¼1

xijsrmin ζsAs=Ads ; as
�� ð13Þ

In the process of task execution, there are many risks
caused by different reasons, such as delay of upstream
suppliers, mistake in their own production scheduling,
and so on. Consequently, the anti-risk ability of the sup-
pliers is one of the key signs of the implementation in a
CMfg environment. In this paper, As represents the max-
imum processing capacity per day, Ads is the quantity of
the orders for the day when Oij is processed, and ζs and

as, respectively, represent a factor and a threshold value
depending on the size of subcontractor s.

(5) The satisfaction degree

The satisfaction degree of Oi is a service evaluation of an
order calculated by the satisfaction degree summation of all the
selected resources.

Gi ¼
Xm
j¼1

Xk
s¼1

Xq
r¼1

xijsrgs ð14Þ

Here, gs is the service evaluation of resource Ss evaluated
by the customers.

Therefore, the MRCO model is as follows:

min Tið Þ
min Cð Þ
min 1−Qið Þ
min Aið Þ
min Gið Þ

8>>>><
>>>>:

ð15Þ

Table 2 Time (t) and logistics cost (Lc) among suppliers

t,Lc= 0 320,0 340,0 280,0 350,0 330,0 480,1 540,1 570,1 480,1 820,2 850,2 780,2 820,2

0 320,0 350,0 320,0 320,0 450,1 460,1 500,1 480,1 800,2 850,2 820,2 780,2

0 300,0 300,0 330,0 470,1 480,1 510,1 450,1 800,2 820,2 810,2 780,2

0 320,0 310,0 480,1 500,1 470,1 520,1 850,2 860,2 780,2 850,2

0 300,0 470,1 490,1 500,1 460,1 890,2 880,2 850,2 840,2

0 480,1 470,1 500,1 520,1 780,2 770,2 800,2 850,2

0 200,0 250,0 230,0 1000,2 1050,2 980,2 1000,2

0 200,0 200,0 950,2 920,2 1000,2 900,2

0 210,0 1020,2 980,2 1000,2 1080,2

0 880,2 1000,2 920,2 970,2

0 320,0 330,0 270,0

0 310,0 250,0

0 180,0

0

Table 3 Pass rate of the resources

Resource q(rs) Resource q(rs) Resource q(rs) Resource q(rs)

R1,1 98 R1,2 97.2 R1,3 98.1 R2,1 96

R2,2 96.2 R2,3 92.1 R3,1 93.5 R3,2 96.3

R3,3 93 R4,1 95 R4,2 98 R4,3 95

R5,1 96 R5,2 97 R5,3 94 R5,4 93

R5,5 99 R6,1 96 R6,2 98 R6,3 96

R7,1 98 R7,2 94 R7,3 93 R8,1 92.5

R8,2 96.5 R8,3 98.2 R8,4 97.3 R8,5 95.1

R9,1 89.8 R9,2 95.3 R9,3 96.3 R9,4 98.1

R9,5 92.3 R10,1 96 R10,2 95.3 R10,3 96.2

R11,1 98 R11,2 98.1 R11,3 99.1 R12,1 96.2

R12,2 96.3 R12,3 98.2 R13,1 98 R13,2 97.5

R13,3 97.2 R13,4 97.3 R13,5 99.1

Table 4 ξs, As, and gs of supplier s

Supplier ξs as gs Supplier ξs As gs

S1 1.2 1.6 4.85 S2 1.13 1.55 4.43

S3 1.15 1.48 4.67 S4 1.08 1.43 4.86

S5 0.98 1.62 4.35 S6 1.23 1.48 4.82

S7 1.07 1.47 4.12 S8 0.95 1.58 3.95

S9 1.16 1.53 4.47 S10 0.85 1.37 4.46

S11 1.27 1.58 4.56 S12 0.94 1.46 4.83

S13 1.03 1.62 4.58
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Ti < Tmax

∀i; j;
Xk
s¼1

Xq
r¼1

xijsr ¼ 1

Xk
s¼1

Xq
r¼1

xijsrq r; sð Þ > Qmin ið Þ

8>>>>>><
>>>>>>:

ð16Þ

Minimizing the total cost and the total time while maximiz-
ing the total pass rate, anti-risk ability, and satisfaction degree
is a multi-objective optimization problem. This paper converts
those different objectives into a single objective by a linear
weighted method, as follows:

f Xð Þ ¼
Xn
i¼1

α
Tmax−Ti

Tmax−Tmin
þ β

Cmax−Ci

Cmax−Cmin
þ γ

Qi−Qmin

Qmax−Qmin
þ δ

Ri−Rmin

Rmax−Rmin
þ ε

Gi−Gmin

Gmax−Gmin

	 

ð17Þ

4 Algorithm design

Compared with other factors, processing cost is the most
important factor in resource allocation. Normally, a me-
chanical part includes several major work procedures
(WPs), which account for most of the processing cost
[47]. In [47], Cao et al. proposed a PMS + WPMS prime
machining service mode and an algorithm called working
procedure priority-based algorithm (WPPBA) to solve the
MRCO problem in a CMfg environment. In the PMS +
WPMS mode, they first calculated the optimal combina-
tion of major WPs and then optimized the rest of the WPs
(RWPs). However, the model only obtained one set of
solutions in the first phase of the algorithm, and it was
easy to lose the optimal solution.

This paper provides a DGA, which has a good effect
on the response speed, the rate of convergence, and the
ability to search for the global optimal solution. Similar
to the algorithm in Ref. [47], the DGA is divided into

two phases. The method in the first phase is the same as
in the WPPBA. In the second phase, the DGA divides
the procedure into several parts, which are completed by
different computers. In the process of calculation, every
computer continuously keeps an interaction with the pri-
mary server and the server can adjust the parameters
according to the current result. In this way, the algorithm
not only enhances the search ability and search scope but
also guarantees the convergence speed.

The essentials of the DGA are as follows: preferential-
ly determining several optimal processing routes of ma-
jor WPs, choosing the top e results in the first phase, and
then optimizing in parallel the processing routes of the
RWPs by using several distributed computers.

To select the major WPs of an order Oi, we use c Oij
� �

as the
reference price of operation Oij.

c Oij
� � ¼ average pc i; j;m; nð ÞjRmn∈Uij

� � ð18Þ

Table 6 Results of the comparison experiment

Algorithm Population
size

Stopping
generation

Best
fitness

Worst
fitness

Average
fitness

Rate of
best
fitness (%)

Average
elapsed
time(s)

Average
generations

SGA 50 100 0.7614 0.5543 0.6918 5 10.28 143.24

100 100 0.7723 0.5956 0.7218 5 38.50 183.1

WPPBA 50 100 0.7881 0.7745 0.7815 10 19.32 312.75

100 100 0.7935 0.7814 0.7882 10 79.45 389.28

DGA 50 100 0.7962 0.7825 0.7936 60 27.38 532.12

100 100 0.7962 0.7919 0.7955 80 117.21 567.21

Table 5 Algorithm parameters of
the DAG, SGA, and WPPBA Algorithm Crossover

probability(k1)
Mutation
probability(k2)

α β γ δ ε e Pn G

SGA 0.4 0.2 0.55 0.2 0.1 0.08 0.07

WPPBA 0.4 0.2 0.55 0.2 0.1 0.08 0.07 75%

DGA 0.4 0.2 0.55 0.2 0.1 0.08 0.07 8 75% 100
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Then, we sort the WPs of Oi in descending order of c Oij
� �

to get the WP order (WPO):

WPO ¼ Oia;Oib;Oic; :::jc Oiað Þ > c Oibð Þ > c Oicð Þ > :::
n o

ð19Þ

Thereby, we get the major WPs (MWPSi) of Oi whose
sum processing cost accounts for more than Pn of the
total processing cost:

MWPSi ¼
Oia;Oib;Oic; :::jc Oiað Þ þ c Oibð Þ
þ c Oicð Þ þ :::≥Pn

Xn
j¼0

c Oij
� �

8>><
>>:

9>>=
>>; ð20Þ

As shown in Fig. 2, the steps of the DGA are listed as follows:
Step 1: Calculate c Oij

� �
according to formula (16).

Step 2: Determine the major WPs on the basis of formulas
(17) and (18).

Step 3: Optimize the processing route of the major WPs and
select the top e schemes in the result set.

Step 4: Begin e parallel threads by several computers and
optimize the processing route of the minor WPs of
each scheme using the same method above.

Step 5: After the crossover and mutation operation, check all
the orders whether they meet the constraint or not
(16); otherwise, cross and mutate again.

Step 6: For every G generation, stop all the threads and send
their best individuals to the server. The server will
recalculate the probabilities of the crossover and mu-
tation operation for every thread according to the
fitness value. The probabilities of the crossover and
mutation operation can be set as follows:

Pc ¼
k1 f ≥ f avg

k1 1þ 0:1
f max− f

f max− f avg

 !
f < f avg

8><
>: ð21Þ

Pm ¼
k2 f ≥ f avg

k2 1þ 0:1
f max− f

f max− f avg

 !
f < f avg

8><
>: ð22Þ

Here, fmax is the largest fitness of the group, favg is the
average fitness of the group, f is the fitness of the current
individual of a specific thread, k1 is the initial crossover prob-
ability, and k2 is the initial mutation probability.
Step 7: Find the combinations of RWPs of e individuals and

join them into every thread to expand the diversity of
the populations.

Fig. 5 Evolutionary curves of best fitness with 50 populations

Fig. 6 Evolutionary curves of best fitness with 100 populations Fig. 8 Evolutionary curves of average fitness with 100 populations

Fig. 7 Evolutionary curves of average fitness with 50 populations
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Step 8: When all the threads stop working, mix the results of
every generation and choose the best individual as
the result of the DGA among e threads.

4.1 Chromosome encoding

The model proposed in this paper is a multi-task and multi-
stage problem in a complex external environment. Compared
with the traditional MRCO problem, more factors need to be
taken into consideration, including logistics factors, interfer-
ence of different processes belonging to different tasks, occu-
pation among different resources, etc. Therefore, this paper
proposes a complicated encoding method. As shown in
Fig. 3, with the candidate resources as the vertical coordinate
and the unit time as the horizontal coordinate, they can be
formulated as a matrix. The elements in the matrix denote the
processing route of the tasks. The distance between two oper-
ations of a task is the transportation time or queuing time. The
time in this paper mainly denotes days. The matrix on the right
is the simplified version of the left one, and the two matrixes
can transform each other.

4.2 Crossover and mutation operation

As shown in Fig. 4, when an operation can be processed by
different resources, the processing route will be different. The
crossover is used for exchanging the position of resources that
process the same operation. Mutation is achieved by using a
new resource to replace an old one for a specific operation. For

the two algorithms, either one-point or multi-point operation
is available.

4.3 Stopping criterion

To compare the rate of convergence of the algorithms, we set a
parameter as the stopping generation (Sg). When the fitness
value remains the same in the Sg, the algorithm will be con-
sidered to be convergent or will fall into the local optimum.

5 Simulation experiments and discussion

5.1 Initial data

To demonstrate the effectiveness of the proposed method,
we investigated the outsourcing process in a group
manufacturing enterprise (http://www.sinoma-tec.com.
cn/en/default.aspx) named SINOMA. With reference to
part of the outsourcing data in the company, six tasks
were taken as examples to test the performance of the
DGA. Every task consisted of several operations that
needed to be outsourced. Table 1 shows the information
about the tasks, including the mass, loading quantity
(starting from CME or not), outsourcing resource, pro-
cessing days, and processing cost. An operation can be
outsourced by different resources; therefore, Ri,j denotes
the jth resource from the ith supplier. Table 2 shows the
logistics cost (Ct) and logistics time (Cs). The 1st row and
column denote the CME, and the 2nd to the 13th denote
the 13 suppliers. Table 3 shows the pass rate of the

Fig. 9 Gantt chart of the best
result

Table 7 The best individuals of
the SGA, WPPBA, and DGA Algorithm Populations C T Q A S

SGA 50 253,780 26, 31, 21, 13, 31, 30 95.915 229.86 131.13

WPPBA 50 251,590 22, 31, 32, 14, 38, 31 96.126 238.16 138.21

DGA 50 250,900 22, 31, 23, 22, 17, 30 96.318 236.74 139.43
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resources. Table 4 shows the anti-ability and satisfaction
degree of the suppliers, which refer to the statistical data
evaluated by SINOMA.

5.2 Experiment results

The parameters for the hardware and software platforms are
listed as follows: Windows 7, Intel® Core™ i7-4700MQ
CPU, 2.40 GHz, 8 GB of RAM, and the Hadoop platform.
For the DGA, we used three computers as the subservers to
simulate the distributed calculation.

To verify the advantages of the DGA over other algorithms,
we performed a comparison experiment between a simple
genetic algorithm (SGA), a working procedure priority-
based algorithm (WPPBA) proposed by Cao et al. (2015),
and the DGA. All the algorithms adopted the same operation
strategies: roulette, elite strategy, multi-point cross, and multi-
point mutation. The parameters of the DGA, SGA, and
WPPBA are listed in Table 5. Here, α, β, γ, δ, ε, e, Pn, and
G are the constants mentioned before.

All the algorithms with different populations ran for 20 times,
and the results are shown in Table 6. It can be clearly observed
that the DGA has advantages in solving efficiency and quality.
The DGA has the best quality in the best fitness and average
fitness, and the highest rate of best fitness with an acceptable
elapsed time after running for 20 times. The results of the exper-
iment can be described as follows:
(1) The divergence of data caused the SGA to incur difficult

in obtaining the global optimal solution.
(2) TheWPPBA had a good effect on theMRCO problem in

this paper. However, if the algorithm does not obtain the

optimal solution in the first stage, it will fall into the local
optimum all the time.

(3) The DGA had the best quality in the best fitness and
average fitness and also the highest rate of best fitness
with an acceptable elapsed time.

The evolutionary process of the best and average fitness
of the algorithms is shown in Figs. 5, 6, 7, and 8, respec-
tively. Because of the different operations in two stages,
the curves of the WPPBA and DGA are divided into two
sections. It can be analyzed from the diagrams that the
SGA had difficulty in obtaining convergence with the in-
crease in the amount of data and that the DGA had a
higher convergence than the WPPBA and SGA in the
big data environment. In terms of the average solution
value, the DGA was more stable than the WPPBA and
SGA. As a result, the DGA had the better effect on the
search for the optimal solution than the other two in han-
dling massive amount of concurrent data in the CMfg en-
vironment. The contrast figures of optimization results for
CTQRS = (C, T, Q, A, S) are shown in Table 7, where the
DGA solution had a relative optimal solution. Figure 9
shows a Gantt chart of the optimal solution of the DGA,
and Fig. 10 shows the evolutionary curves with the best
fitness of the DGA containing all the threads. As shown in

Fig. 10 Evolutionary curves with best fitness of DGA Fig. 11 Evolutionary curves with the best fitness of scene 1

Fig. 12 Evolutionary curves with the best fitness of scene 2

Table 8 Different optimization criteria of 3 scenes

α β γ δ ε

Scene 1 0.2 0.1 0.1 0.05 0.55

Scene 2 0.2 0.1 0.5 0.1 0.1

Scene 3 0.2 0.2 0.2 0.2 0.2
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Fig. 10, the left of the curve denotes the first stage of the
algorithm and it ran in the central server first. The right of
the curve denotes the second stage, and it ran in the dis-
tributed subservers. Because of the different standards of
fitness, the curve had a great leap between the two stages.

5.3 Weight simulation

Simulation of the different criteria models of CTQRS = (C, T,
Q, A, S) is applied in this section. According to different op-
timization requirements, we assume three scenes in Table 8:
service-oriented, quality-oriented, and non-oriented.
Figures 11, 12, and 13 separately show the best fitness of the
three scenes, respectively. The DGA had a good performance
in scenes 1 and 2 but fell into the local optimal solution quick-
ly in scene 3. This was because the weight of optimization
objective was quite average, and the algorithm could not look
for the main optimization goals in the first phase.
Consequently, the DGA is suitable for models that have a
certain optimal tendency.

6 Conclusions and future work

Because of the complexity and diversity of a CMfg environ-
ment, the MRCO problem should take into consideration
more factors such as the transportation time, transportation
cost, occupation of resources, increasing amount of data, etc.
To ensure the computing speed and optimal result, this paper
proposed a distributed manufacturing resource selection strat-
egy in a CMfg environment. The method of distributed com-
puting greatly shortens the calculation time of the algorithm,
and real-time data exchange among distributed computers ac-
celerates the convergence speed and enhances the global
searching ability. A set of experiments were carried out to
verify the efficiency of the proposed DGA. The simulation
results demonstrated the effectiveness, high efficiency, and
superiority of the DGA compared to the SGA and WPPBA.
Consequently, with the development of cloud computing and

distributed technology, the DGA could be applied to more
scenes and provide significant methods for the optimal selec-
tion of a resource service in a CMfg environment. In the fu-
ture, it will be interesting to investigate the following issues:

The DGA should be used in a big data environment to
verify its performance. A resource allocation prototype plat-
form system of CMfg will be established on the basis of re-
source selection strategies. Existing combinatorial optimiza-
tion algorithms should be extended to dynamically resource
allocation problems.
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