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Abstract The present work concerns an experimental study
dealing with cutting parameters’ effects on the surface rough-
ness, cutting force, cutting power, and productivity during
turning of the polyoxymethylene (POM C) polymer. For that,
a cutting tool made of cemented carbide was used. Thework is
divided into three steps. The first one deals with unifactorial
tests, where the evolution of the machining parameters
(roughness criteria, cutting force components, and cutting
power) is investigated by varying cutting speed, feed rater,
and depth of cut. The second part concerns the modeling of
the output parameters: arithmetic roughness, cutting force,
cutting speed, and material removal rate by using the results
of a full factorial design (L27). The second step concerns the

adoption of the two modeling techniques, which are the re-
sponse surface methodology (RSM) and the artificial neural
network (ANN). The obtained results related to two both tech-
niques are compared in order to discern the most efficient one.
The last step of the present research work concerns the multi-
objective optimization using the desirability function (DF).
The optimization was carried out according to three ap-
proaches, which are the “quality optimization,” “productivity
optimization,” and the combination between the quality and
productivity.

Keywords Polymer POMC . Surface roughness . Cutting
forces .MRR . Cutting power . ANOVA . RSM . ANN .
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1 Introduction

Polymers are increasingly used in industry because of several
advantages such as low density, excellent corrosion resistance,
mass production possibility, friction low coefficient, and the
ability to be processed quietly and without external lubrication
[1, 2]. Among the different types of polymers, thermoplastics
are difficult to be cut due to their distinguished characteristics
such as low elastic modulus, rate of moisture absorption, high
coefficient of thermal expansion, and internal stresses [3]. As
it can be noted in manufacturing processes, the integrity of
finished surface is of great interest to qualify the quality of
the workpiece. For that, surface roughness is an important
parameter characterizing the technological quality of a prod-
uct and a factor that greatly influences the manufacturing cost
[4–6]. Also, it can be underlined that during the cutting of
metal material, cutting power, dimensional accuracy, and chip
formation are influenced by the evolutions of cutting force
components [7–9].

* A. Chabbi
amel_chabbi@yahoo.fr

M.A. Yallese
yallese.m@gmail.com

M. Nouioua
nouiouamourad25@yahoo.fr

I. Meddour
meddour26@yahoo.fr

T. Mabrouki
tarek.mabrouki@enit.utm.tn

François Girardin
francois.girardin@insa-lyon.fr

1 Mechanical Department, Structure and Mechanics Laboratory
(LMS), University May 8, 1945, P.O. Box 401,
24000 Guelma, Algeria

2 ENIT, University of Tunis El Manar, Tunis, Tunisia
3 Laboratoire Vibrations Acoustique, INSA-Lyon, 25 bis avenue Jean

Capelle, 69621 Villeurbanne Cedex, France

Int J Adv Manuf Technol (2017) 91:2267–2290
DOI 10.1007/s00170-016-9858-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-016-9858-8&domain=pdf


In the case of the machining of different polymers, several
researchers have studied also some process qualification
criteria such as surface roughness, cutting forces, cutting pow-
er, and material removal rate. For instance, Xiao and Zhang
[10] tried to assess the machinability of typical thermoplastic
and thermosetting polymers and highlighted the effect of their
viscous properties on the surface integrity, chip formation, and
cutting forces. These authors noted that an increase in the
cutting speed leads to improve the surface roughness.
Nevertheless, at high cutting speed, the effect of temperature
rise on the tool/workpiece interaction can be more significant
than that of the strain rate.

Paulo Davim and Francisco Mata [11] evaluated the influ-
ence of glass fiber reinforcement during the turning of PA6
and PA66 GF30 polymers with cemented carbide tool (K15).
The authors found that the presence of glass fiber PA66 GF30
polymer leads to higher values of cutting forces when com-
pared to PA6 polymer.

Keresztes et al. [12] made a comparative study between
cutting forces for different polymers such as PA6 (magne-
sium), PA6 (Na), polyoxymethylene (POM C), and the
HD1000 (UHMWPE). They found that higher forces are ob-
tained with the PA6 (Mg) and lowest ones with the HD1000
polymer. Cutting forces corresponding to the cutting of the
POM C are almost the half of those recorded in PA6 (Mg),
which is more hard resistant regarding cutting operation than
the other three polymers.

M. Kaddeche et al. [13] studied surface roughness, cutting
force, and temperature rise during the machining of two types
of polymers: HDPE 80 and HDPE 100. They concluded that
improved surfaces are obtained during the machining of
HDPE 80 and surface roughness is affected by feed rate.
Regarding cutting forces, increasing cutting speeds leads to
lower cutting force components (Fr, Fa, and Fv) and Fv is the
dominant component. They found that the temperature gener-
ated in the cutting zone is higher when cutting HDPE 80 than
HDPE 100 and the depth of cut is the most influential factor
on the temperature level.

Tushar U Jagtap et al. [14] proposed a review paper on the
machining of polymers: cases of turning, milling, and drilling.

The authors indicated that the behavior regarding machining
of various polymers is not the same. For this purpose, the
authors have suggested to study the effects of cutting param-
eters on different polymers, separately. The authors declared
that the mechanical properties such as toughness, rigidity,
abrasion resistance, and heat resistance of some polymers
are similar those of metals. For that, these types of polymers
can replace metals.

Manas Ranjan Panda et al. [15] investigated the influ-
ence of machining parameters on surface roughness and
material removal rate in turning of nylon 6/6. Using the
analysis of variance (ANOVA), they found that the sur-
face roughness decreases with an increase of the cutting
speed and decreases with the increase in the feed rate. The
optimum process parameters yielding to optimal surface
roughness are as follows: Vc = 1400 m/min, f = 0.1 mm/
rev, and ap = 0.3 mm.

During the last years, statistical methods were adopted,
among others, for the prediction of surface roughness and
cutting forces during the machining of polymers. Indeed,
Hasan Oktem et al. [16] have adopted artificial neural network
(ANN) methodology for modeling and optimizing cutting pa-
rameters for minimum surface roughness during milling of
POM C.

In the same way, V.N. Gaitond et al. [17] developed an
ANN method to analyze the effect of work materials, tool
materials, cutting speed, and feed rate on machining force,
cutting power, and specific cutting force. They concluded that,
when machining polyamide PA6 polymer, the specific cutting
force is minimal at lower cutting speed and higher feed rate,
whereas the specific cutting force is minimal at higher values
of cutting speed and feed rate when cutting PA66 GF30.

D. Lazarevic et al. [18] proposed a study with the adop-
tion of the Taguchi method to minimize the surface rough-
ness during the turning of polyamide PA6. Using the anal-
ysis of variance (ANOVA) and ANOM, the authors
showed that feed rate, f, is the most significant parameter
followed by insert nose radius, r, and cutting depth, ap. It
can be also mentioned that cutting speed, Vc, has no sig-
nificant effect on the surface roughness evolution. These
results regarding the effect of cutting parameters on surface
roughness evolution were confirmed by M. Madic et al.
[19] when adopting ANN methodology in the case of the
machining of polyamide polymer.

When discussing the prediction capability of the im-
proved harmony search algorithm (IHSA) and ANN
methods for an optimization problem in the case of the
turning of polyamide polymer, Madic et al. [20] de-
clared that ANN can be efficiently used for mathemati-
cal modeling, whereas IHSA can be utilized to find the
optimum cutting parameter settings.

In the field of machining of metallic materials and alloys,
literature is abundant and widely available, but fewer research

Table 1 Physical and mechanical characteristics of POM C

Properties Values

Density 1.41 g/cm3

Absorption of moisture 0.2%

Resistance tensile 67 MPa

Module elasticity tensile 2800 MPa

Melting temperature 165 °C

Thermal conductivity 0.31 W/(m K)
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Turning of POM C

Cutting parameters :

-Cutting speed (Vc)                                                                                             

-Feed rate (f)

-Depth of cut (ap)

Measure of Ra

Surftest SJ-201Mitutoyo

Workpiece

03 measurements (120°)

Typical recorded Roughness profile

Altisurf metrology 500

Measure of Fz

KISTLER (9257B)

Multichannel Amplifier

Software (Dynoware)

Statistical analysis

ANOVA Modeling Optimization 

Fig. 1 Schematic diagram of the experimental setup
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works are carried out about polymer machining. Comparative
literature in this field is very limited, particularly the machin-
ing of POM C.

In this contribution, firstly, we investigate the evolu-
tion of the technological parameters (roughness, cutting
force, and cutting power) as a function of the cutting
condition variations (Vc, f, and ap), during the turning
of the polymer (POM C). Secondly, the modeling of the
cutting process parameters using the response surface
methodology (RSM) and ANN methods is carried out.
Finally, optimizations of the cutting conditions using the
desirability function (DF) according to three objectives
(quality, productivity, and quality + productivity, simul-
taneously) are performed.

2 Experimental procedure

2.1 Workpiece material, cutting insert, and tool holder

The material used in this study is the POM C polymer. This
material has important characteristics such as low moisture
absorption, high hardness, high rigidity, good toughness, and
impact resistance, even at high temperatures, and a high resis-
tance to fatigue. It is widely employed for many applications
such as gears, wheels, and bearings.

The physical and mechanical properties of POM C are
given in Table 1. The workpieces are rods with a diameter of
80 mm with several grooves equally separated by 20 mm in
length.

2.2 Measurement setup

Surface roughness was obtained instantly after each pass
roughing by means of a Mitutoyo Surftest SJ-201 roughness
meter. To prevent errors and recovery for more precision,
roughness measurement was performed directly on the work-
piece without dismounting it from the lathe. The measure-
ments were repeated three times on three axial cylinder lines
separated at 120°. The measurement of surface roughness is
carried out according to the ISO 4287 standard. The tool hold-
er is mounted on a three-component piezoelectric dynamom-
eter (Kistler 9257B) allowingmeasurements from −5 to 5 KN.
The measurement chain includes a charge amplifier (Kistler
5019B130) data acquisition hardware (A/D 2855A3) and
graphical programming environment (DYNOWARE
2825A1-1) for data analysis and visualization. Those instru-
ments are made by Kistler Company.

To properly characterize the surface roughness of the work-
piece, several measurements based on 3D optical metrology
platform modular 500 Altisurf were made. The cutting forces
were measured in real time with a Kistler three-component
dynamometer model 9257B linked via a multichannel charge
amplifier (type 5011B) to high-impedance cable. The illustra-
tion of measured forces and surface roughness is given in
Fig. 1.

2.3 Planning of experiments

To study the effect of various cutting parameters (Vc, f, ap) on
the surface roughness and cutting force, a factorial design of
four factors was adopted and each factor has four levels.
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Fig. 5 Effect of Vc on the cutting force (ap = 1 mm and f = 0.12 mm/rev)
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The values chosen are as follows: cutting speed (220, 310,
440, and 500 m/min), feed rate (0.08, 0.12, 0.16, and
0.24 mm/rev), and depth of cut (0.5, 1, 1.5, and 2 mm). The
levels of the cutting parameters are selected from the intervals
recommended by the manufacturer of cutting tools.

2.4 Response surface methodology

The technique of RSM is an empirical modeling approach
dictated to the determination of a relationship between various
process parameters and responses. The objective is to explore
the effect of these parameters on responses and optimize these
responses [21] consequently.

In the current study, the relationship between cutting con-
ditions and material machinability can be expressed as fol-
lows:

Y ¼ φ Vc; f ; apð Þ ð1Þ
where φ is the response function and Y is the desired machin-
ability aspect. In the present work, the RSM-based second-
order mathematical model is given by the following:

Y ¼ α0 þ
Xk
i¼1

βiX i þ
Xk
i; j

βi; jX iX j þ
Xk
i¼1

βiiX
2
i ð2Þ

where α0 is the free term of the regression equation and the
coefficients β1, β2,…, βk and β11, β22,…, βkk are the linear and
the quadratic terms, respectively, while β12, β13,…, βk − 1 are
the interacting terms [23, 24, 30].

To determine the energy consumed during the machining
operation, the cutting power Pc (W) related to the cutting force
Fz (N) is measured. Another common output used to quantify
the work provided is to calculate the material remove rate
(MRR) (cm3/min). The later can be defined as the volume of
material removed divided by the machining time. Another
way, MRR is to imagine an “instantaneous” material removal
rate as the rate at which the cross-sectional area of the material
being removed moves through the workpiece.

These aspects of machinability such as cutting power (Pc)
and MRR are calculated with the obtained results by tangen-
tial force as follows:

Pc ¼ Fz� Vc
60

ð3Þ

MRR ¼ Vc� f � ap ð4Þ
where Pc is the cutting power (W), Fz is the tangential force
(N), f is the feed rate (mm/rev), ap is the depth of cut (mm), Vc
is the cutting speed (m/min), andMRR is the material removal
rate (cm3/min).

3 Results and discussion

3.1 Unifactorial tests

3.1.1 Effect of cutting parameters on surface roughness

Figures 2, 3, and 4 present the results of the evolution of
different criteria for the surface roughness of POM C depend-
ing on the cutting conditions (Vc, f, and ap).

Figure 2 illustrates the evolution of the criteria (Ra, Rq, Rz,
and Rt) as a function of the cutting speed (Vc). The machining
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is stable; there is a slight decrease in the various roughness
criteria when the Vc increases from 160 to 310 m/min. This
proves that in this interval, the cutting speed does not have a

significant influence on the roughness. In practice, the in-
crease in Vc of 160 to 310 m/min decreases the various rough-
ness criteria (Ra, Rq, Rz, and Rt) of 13.24, 9.10, 16.67, and

Table 2 Experimental results for
Ra, Fz, Pc, and MRR No. Machining parameters Response parameters

Vc (m/min) f (mm/rev) ap (mm) Ra (μm) Fz (N) Pc (W) MRR (cm3/min)

1 314 0.08 1 0.67 22.38 117.12 25.12

2 314 0.08 2 1.22 29.12 152.39 50.24

3 314 0.08 3 1.61 34.99 183.11 75.36

4 314 0.16 1 1.40 28.50 149.15 50.24

5 314 0.16 2 1.61 41.63 217.86 100.48

6 314 0.16 3 1.98 50.45 264.02 150.72

7 314 0.24 1 2.02 32.67 170.97 75.36

8 314 0.24 2 2.58 53.41 279.51 150.72

9 314 0.24 3 3.14 66.60 348.54 226.08

10 440 0.08 1 0.56 19.70 144.47 35.20

11 440 0.08 2 1.13 22.98 168.52 70.40

12 440 0.08 3 1.07 30.82 226.01 105.60

13 440 0.16 1 1.13 24.28 178.05 70.40

14 440 0.16 2 1.22 39.48 289.52 140.80

15 440 0.16 3 1.79 47.11 345.47 211.20

16 440 0.24 1 1.98 28.08 205.92 105.60

17 440 0.24 2 2.18 39.94 292.89 211.20

18 440 0.24 3 3.01 56.41 413.67 316.80

19 628 0.08 1 0.47 10.99 115.03 50.24

20 628 0.08 2 0.87 18.46 193.21 100.48

21 628 0.08 3 1 27.09 283.54 150.72

22 628 0.16 1 1.03 20.94 219.17 100.48

23 628 0.16 2 1.16 32.35 338.60 200.96

24 628 0.16 3 1.42 42.18 441.48 301.44

25 628 0.24 1 1.65 21.33 223.25 150.72

26 628 0.24 2 2.01 32.97 345.09 301.44

27 628 0.24 3 2.98 47.48 496.96 452.16

Table 3 ANOVA result for
surface roughness Ra Source SS DF MS F value P value Cont % (%) Remarks

Model 13.473 9 1.497 53.547 <0.0001 Significant

A-Vc 0.7363 1 0.736 26.330 <0.0001 5.28 Significant

B-f 9.2633 1 9.263 331.345 <0.0001 66.41 Significant

C-ap 2.748 1 2.748 98.283 <0.0001 19.70 Significant

AB 0.0001 1 0.0001 0.005 0.944 0.00 Not significant

AC 0.0105 1 0.010 0.377 0.547 0.08 Not significant

BC 0.187 1 0.187 6.707 0.019 1.34 Significant

A^2 0.0358 1 0.036 1.279 0.274 0.26 Not significant

B^2 0.404 1 0.404 14.446 0.001 2.90 Significant

C^2 0.017 1 0.017 0.598 0.450 0.12 Not significant

Residual 0.475 17 0.028

Total 13.948 26
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17.32%, respectively. Similar results were found by Gaitonde
et al. [17] when machining a polymer.

Figure 3 shows the effect of the depth of cut (ap) on the
surface roughness. It is easy to see that ap does not play a
decisive role in the machined surface quality of POM C.
With its increase, a slight increase in the values of the rough-
ness criteria is observed. From a practical point of view, with
the increase in ap of 0.5 to 3 mm, the different roughness
criteria (Ra, Rz, Rq, and Rt) increase by 13.48, 19.30, 9.82,
and 17.86%, respectively. This observation allows us to say
that if we want maximum productivity and keep the same
roughness, it is advantageous to increase ap since its influence
is low on the surface roughness.

Figure 4 describes the evolution of the surface roughness
criteria as a function of feed rate ( f ). It is noted that the state of
the surface deteriorates with an increase of feed rate and this
degradation is significant beyond f = 0.2 (mm/rev). An

increase in feed rate from 0.08 to 0.28 (mm/rev) induces an
increase in roughness criteria (Ra, Rz, Rq, and Rt) of 341.30,
157.51, 320.35, and 147.91%. It can be said that the effect of
feed rate is the most important on the condition of the ma-
chined surface of the polymer POM C.

3.1.2 Effect of cutting conditions on cutting force

Figure 5 shows the evolution of the three components of the
cutting force (Fx, Fy, and Fz) as a function of the cutting
speed. It is clear that the three components decrease with the
increase of Vc. When Vc increases from 160 to 440 m/min, the
three components decrease by 68.74, 117.26, and 31.14%,
respectively. This is due to the increase of the temperature in
the cutting zone when the cutting speed increases, making the
material more malleable and easy to machine [26].

Table 4 ANOVA result for
tangential force Fz Source SS DF MS F value P value Cont % Remarks

Model 4481.948 9 497.994 99.975 <0.0001 Significant

A-Vc 623.751 1 623.751 125.221 <0.0001 13.66 Significant

B-f 1419.871 1 1419.871 285.047 <0.0001 31.09 Significant

C-ap 2073.715 1 2073.715 416.309 <0.0001 45.41 Significant

AB 33.967 1 33.967 6.819 0.018 0.74 Significant

AC 1.674 1 1.674 0.336 0.570 0.04 Not significant

BC 196.668 1 196.668 39.482 <0.0001 4.31 Significant

A^2 5.198 1 5.198 1.043 0.321 0.11 Not significant

B^2 63.202 1 63.202 12.688 0.002 1.38 Significant

C^2 1.395 1 1.395 0.280 0.603 0.03 Not significant

Residual 84.680 17 4.981

Total 4566.628 26

Table 5 ANOVA result for the
power Pc Source SS DF MS F value P value Cont % Remarks

Model 258,468.167 9 28,718.685 100.389 <0.0001 Significant

A-Vc 33,251.362 1 33,251.362 116.233 <0.0001 12.63 Significant

B-f 80,320.241 1 80,320.241 280.767 <0.0001 30.50 Significant

C-ap 125,900.59 1 125,900.59 440.098 <0.0001 47.81 Significant

AB 1431.590 1 1431.590 5.004 0.039 0.54 Not significant

AC 8075.110 1 8075.110 28.227 <0.0001 3.07 Significant

BC 9802.444 1 9802.444 34.265 <0.0001 3.72 Significant

A^2 372.768 1 372.768 1.303 0.269 0.14 Not significant

B^2 5132.276 1 5132.277 17.940 0.0005 1.95 Significant

C^2 15.837 1 15.837 0.055 0.817 0.01 Not significant

Residual 4863.259 17 286.074

Total 263,331.426 26
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Figure 6 illustrates the evolution of the components of cut-
ting force as a function of depth of cut (ap) during the turning
of POM C. It will be noted that when ap increases by 0.5 to
3 mm, this leads to a successive increase in the three compo-
nents of the cutting force (Fx, Fy, and Fz) of 520.49, 368.60,
and 250.76% successively. With the increase of ap, the cross
section of the removed chip becomes very large, which causes
an increase in the volume of deformed material and requires
significant cutting forces [26].

Figure 7 shows the evolution of the various criteria of the
cutting forces as a function of feed rate ( f ). According to this
figure, it can be observed that with the increase of feed rate ( f )
from 0.08 to 0.24 mm/rev, the cutting forces (Fx, Fy, and Fz)
increase by 11.43, 41.66, and 460.97%, respectively, and this
is due to the increase in cross section of the chip. It is also
noted that beyond f = 0.15 mm/rev, the tangential force pre-
dominates the other two.

3.1.3 Effect of cutting conditions on the cutting power

Figure 8a–c shows the effect of cutting parameters on cutting
power (Pc). Analysis of the results shows that the increase in
Vc, f, and ap leads to an increase in Pc. This is logical since Pc
is closely related to the cutting speed and cutting forces
(Eq. 3). With the increase of Vc from 160 to 440 m/min, Pc
increases by 109.69% (Fig. 8a). By increasing the feed rate
( f ) values from 0.08 to 0.24mm/rev (Fig. 8b) and the depth of
cut (ap) from 0.5 to 3 mm (Fig. 8c), the section of the chip
increases, which implies greater breaking strength and cutting
forces; this leads to an increase in cutting power. In this spe-
cific case, the cutting depth (ap) increase influences more the
increase of the cutting power (Pc) about 2751%.

3.2 Statistical analysis

Table 2 shows all the values of the responses of factors: sur-
face roughness (Ra) and cutting force (Fz), cutting power
(Pc), and MRR. The objective is to analyze the influence of

various combinations of levels of mixing function in cutting
parameters (ap, Vc, f) with full factorial design on the total
variance of the obtained results (Ra, Fz, MRR). The result of
Pc was calculated based on Eq. 3. The surface roughness was
obtained in the range of 0.47–3.14 μm; cutting force, cutting
power, and MRR were obtained in the range of 10.99–66.6 N,
115.03–441.48 W, and 25.12–452.16 cm3/min, respectively.

The analysis of variance (ANOVA) is a standard statistical
technique that is commonly used in order to determine the
significance of the independent variables on the output re-
sponses [22]. It does not analyze the data directly but deter-
mines the percentage of contribution of each factor in deter-
mining the variability (variance) of data.

Tables 3, 4, 5, and 6 illustrate the ANOVA results for sur-
face roughness (Ra), cutting force (Fz), cutting power (Pc),
and MRR, respectively, for a 95% confidence level. In these
tables, the values of DoF, the sum of squared deviations (SS),
mean square (MS), and percentage of contribution (cont %) of
each model terms are listed. The main purpose is to analyze
the influence of the cutting parameters (ap, Vc, f) on the total
variance of the results. The values of “P” in the models are less
than 0.05, indicating that the models are adequate and that the
terms have a significant effect on the responses, which are
desirable.

Table 3 shows the ANOVA results for roughness (Ra). We
can see that f is the most important factor affecting Ra. Its con-
tribution is 66.41%. The second important term affecting Ra is
ap with 19.70% of contribution and Vc with 5.28%. The inter-
action (f × ap) and product (f2) have contributions of less than
1.5%. It can be assumed that the other terms are not significant.
Similar results on the effect of feed rate on roughness have been
reported by Q. Jiang et al. [24], M. Vijaya Kini, and A.M.
Chincholkar [25] when turning of different polymers.

From the analysis of Table 4, it can be apparently seen that
ap and f have a significant effect on Fz. It is clear that ap is the
most significant factor associated for Vc with 45.41%. The
next largest factor influencing Fz is f followed by Vc. Their
contributions are 31.09 and 13.66% of the model. The

Table 6 ANOVA result forMRR
Source SS DF MS F value P value Cont % (%) Remarks

Model 273,238.869 9 30,359.874 403.712 <0.0001 Significant

A-Vc 45,433.037 1 45,433.037 604.149 <0.0001 16.55 Significant

B-f 101,572.791 1 101,572.791 1350.670 <0.0001 37.00 Significant

C-ap 101,572.791 1 101,572.791 1350.67 <0.0001 37.00 Significant

AB 7670.579 1 7670.579 102 <0.0001 2.79 Significant

AC 7670.579 1 7670.579 102 <0.0001 2.79 Significant

BC 16,298.018 1 16,298.018 216.724 <0.0001 5.94 Significant

Residual 1278.430 17 75.202

Total 274,517.299 26
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interaction (f × ap) has 4.31% of contribution and the term (f2)
has 1.38%. The other terms have a contribution lower than
1%. Similar result was found by Mohd Suhail Ansari et al.
[26] and D. Lazarev iće t a l . [18] when turn ing
polytetrafluoroethylene and polyamide polymer, respectively.

Table 5 indicates that all the input parameters are signifi-
cant, but ap is the most significant factor followed by f and Vc.
Their contributions are 47.81, 30.50, and 12.63%, respective-
ly. The interactions (Vc × ap, f × ap) and the term (f2) have
contributions lower than 1%. Other terms do not have a sig-
nificant meaning on Pc.

Table 6 presents the ANOVA results for the material re-
moval rate (MRR). It can be stated that both ap and (f ) have
the highest statistical significance (37%) followed by Vc
(16.55%). The interactions (Vc × f, Vc × ap, and f × ap) are
less important and vary between 5.94 and 2.79%.

In order to have better presentation of the obtained
results, a Pareto graph is built (Fig. 9). This figure ranks
the cutting parameters and their interactions of their
growing influence on Ra, Fz, Pc, and MRR. The effects
are standardized (F value) for a better comparison.
Standardized values in this figure are obtained by divid-
ing the effect of each factor by the error on the estimated

value of the corresponding factor. The more the standard-
ized effect, the higher the factor considered influence. If
the F table values are greater than 4.45, the effects are
significant. On the other hand, if the values of F-table are
less than 4.45, the effects are not significant. The confi-
dence interval chosen is 95%.

3.3 Modeling by response surface methodology

The relationship between the factors and the output parame-
ters was modeled by quadratic regression. The regression
equations obtained are given below by Eqs. (5), (6), (7), and
(8) with coefficients of determination R2 of 96.59, 98.15,
98.15, and 99.53%, respectively. These regression models
are useful in predicting the response parameters with respect
to the input control parameters.

Ra ¼ 2:016−4:047E−3� Vc−7:230� f þ 0:019� ap

þ2:723E−4� Vc� f −1:874E−4� Vc� ap

þ1:563� f � apþ 3:280E−6� Vc2 þ 40:538

� f 2 þ 0:053� ap2

ð5Þ
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Fz ¼ 11:699−0:049� Vcþ 235:130� f þ 5:713� ap

−0:133� Vc� f −2:364� Vc� apþ 50:604� f

�apþ 3:955E−5� Vc2−507:118� f 2−0:482� ap2

ð6Þ

Pc ¼ −13:467þ 0:123� Vc−1178:538� f −44:084

�apþ 0:864� Vc� f þ 0:164� Vc� ap

þ357:261� f � ap−3:349E−4� Vc2−4569:823

� f 2−1:625� ap2

ð7Þ

MRR ¼ 147:431−0:320� Vc−921:333� f − 73:707

�apþ 2� Vc� f þ 0:160� Vc� ap

þ460:667 � f � ap

ð8Þ

The previous models can be used to predict surface rough-
ness (Ra), cutting force (Fz), cutting power (Pc), and material
removal rate (MRR) in the range of selected cutting condi-
tions. Figure 10a–d illustrates the differences between the
measured and predicted responses of Ra, Fz, Pc, and MRR,
respectively. These figures indicate that the quadratic models

are capable for representing the system under the given exper-
imental domain. The comparison results prove that the pre-
dicted values of different technological studied parameters are
closer to those readings recorded experimentally.

In order to better understand the interaction effect of
variables on response factors, 3D plots for the measured
responses and contour graphs were plotted based on the
model equations (Eqs. (5) to (8)). Since each model had
three variables, one variable was held constant at the
center level for each plot; therefore, a total of four re-
sponse surface plots were produced for the responses
(Figs. 11, 12, 13, and 14).

Figure 11a, b shows that the effect of Vc on Ra is neg-
ligible compared to the effects of f and ap. Figure 11c
shows that the increase of both f and ap lead to the increase
of Ra. However, it is noted that the effect of feed rate is
more important as it was demonstrated by V.N. Gaitonde
et al. [17].

Figure 12a, b reveals that the effect of the Vc on Fz is
not significant. Figure 12c illustrates the interaction ef-
fect between f and ap. In fact, at low value of ap, the

Table 7 Confirmation
experiments Test Vc (m/min) f (mm/rev) ap (mm) Experimental value Predicted value Error % (%)

Surface roughness Ra (μm)

1 360 0.14 1 0.99 1.003 1.38

2 534 0.08 2 0.76 0.782 2.94

3 534 0.14 2 1.22 1.266 3.78

Cutting force Fz (N)

1 360 0.14 1 26.30 27.019 2.73

2 534 0.08 2 20.98 21.906 4.41

3 534 0.14 2 32.53 33.476 2.91

Ra (µm)

Fz (N)

0.00%

2.00%

4.00%

6.00%

1 2 3

E
rr

o
r,

 %

Number of test

Ra (µm)

Fz (N)

Fig. 15 Verification results for the responses machining on Ra and Fz

Table 8 Performance of ANN structures of Ra model

Learning Validation

Nodes number R2 RMSE R2 RMSE
Input-hidden-output

3-5-1 0.9891 0.0741 0.9948 0.053

3-4-1 0.989 0.992 0.994 0.042

3-4-1 0.982 0.099 0.994 0.042

3-3-1 0.995 0.048 0.920 0.214

3-7-1 0.946 0.240 0.999 0.021

3-8-1 0.964 0.196 0.905 0.254

3-9-1 0.999 0.005 0.926 0.321

3-12-1 0.999 0.001 0.919 0.334

3-13–1 0.981 0.129 0.581 0.764
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influence of f is not significant. Conversely, when large
values of ap are used, the effect of f becomes important.
It can be concluded that f exhibits the maximum influ-
ence on cutting force (Table 4).

Figure 13 shows the estimated response surface for
power (Pc) in relationship with the cutting parameters
ap and f , while Vc was kept at the middle level.
According to the figures, it can be observed that the
cutting power increases with the increase of the three
input parameters (Vc, f, and ap), according to Fig. 13b,
c, it can be seen that ap has more influence on the Pc,
which confirms the results obtained in Table 5.

From the interaction plot of Fig. 14, it can be observed, on
one hand, that the MRR increases with Vc, f, and ap. It should
be noted that the maximal material removal rate occurred for
the combination of the three highest values of the parameters
(Vc, f, and ap).

In order to verify the validation of the quadratic
models obtained for Ra and Fz, confirmation tests were
carried out. The results obtained are shown in Table 7
and Fig. 15. It can be clearly seen that the calculated
error is very small. The errors between experimental and
predicted values for Ra and Fz are laying 1.38 to 3.78%
and 2.73 to 4.41%, respectively.

3.4 Modeling by artificial neural network

The artificial intelligent (AI)-based models, as the artificial
neuron network models, are the subject of recent works be-
cause of their capability to model the highly nonlinear pro-
cesses. A neural network consists of a directed weighted graph
whose nodes symbolize neurons; these neurons have an acti-
vation function to influence other network neurons.

The ANN was initially tested with 03 input training
patterns. For each input pattern, the experimental values
of surface roughness and tangential cutting force were
compared with the respective predicted values. The per-
centage prediction accuracy of the developed model is
given by the following:

δ ¼ 100

n

Xn
i¼1

yi;exp−yi;pred
� �

yi;pred

������
������ ð9Þ

where yi , exp is the experimental value of desired machinabil-
ity for ith trial, yi , pred is the predicted value of desired machin-
ability for ith trial, and n is the number of trials.

3.4.1 Modeling of the surface roughness Ra by artificial
neural network

The experimental design consists of 27 tests; among them, 23
tests are used for learning the network and 4 are arbitrarily
chosen for validating the network. The neural network learn-
ing is made by backpropagation algorithm, which is based on
the gradient-descent method.

Several network structures were tested as shown in Table 8.
According to the correlation coefficient R2 and the root-mean-
square error (RMSE) for both learning and validation sets, the
adopted is 3-5-1 (Fig. 16). It is composed of three nodes in the
input layer, which corresponds to the number of cutting pa-
rameters, five nodes in the hidden layer having a hyperbolic

Fig. 16 Neural architecture chosen for Ra

Fig. 17 Comparison of
experimental and predicted values
for Ra
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tangent transfer function, and one node in the output layer
having a linear transfer function.

The surface roughness (Ra) ANN model is expressed as
follows:

Ra ¼ −1:6384� H1þ 1:5791� H2þ 0:1739

� H3−2:3481� H4−2:2761� H5þ 2:7517 ð10Þ

where

H1 ¼ tanh 0:5� 0:00102� Vc−2:0243� f −1:3173� apþ 2:4759ð Þð Þ;

H2 ¼ tanh 0:5� 0:0019� Vcþ 14:1623� f −0:1530� ap−4:0373ð Þð Þ;

H3 ¼ tanh 0:5� −0:0044� Vc−6:4026� f þ 0:3529� ap−2:7273ð Þð Þ;

H4 ¼ tanh 0:5� 0:0032� Vc−13:9206� f þ 0:7324� apþ 2:5319ð Þð Þ;

H5 ¼ tanh 0:5� −0:0011� Vcþ 17:0501� f þ 1:3700� ap−4:7352ð Þð Þ;

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð11Þ

Those terms represent the output of the hidden layer.
Figure 17 presents the plot of the experimental values as a

function of their corresponding predicted values. By analyz-
ing this figure, we can notice that the points of intersection
between the experimental and the estimated values are very
close to the median line for both learning and validation sets
(with a slope of 45°), which proves the effectiveness of the
ANN model.

3.4.2 Modeling of the tangential force (Fz) by artificial neural
network

The same steps are considered to model tangential force
(Fz). The statistical results of the tested network struc-
tures are presented in Table 9. According to the corre-
lation coefficient R2 and the root-mean-square error
(RMSE) for both learning and validation sets, the
adopted architecture is 3-7-1.

The chosen architecture for the ANNmodel is illustrated in
Fig. 18.

The tangential force (Fz) ANN model is expressed as fol-
lows:

Fz ¼ 126:5419� H1þ 16:5034� H2−6:4844

�H4−100:8435� H5þ 59:9123� H6

þ41:5666� H7þ 44:7858

ð12Þ

where

H1 ¼ tanh 0:5� 0:0006� Vc−11:7481� f þ 1:4929� apþ 1:1212ð Þð Þ;

H2 ¼ tanh 0:5� −0:0147� Vcþ 8:4132� f −0:3640� apþ 6:5017ð Þð Þ;

H3 ¼ tanh 0:5� −0:0279� Vcþ 42:3032� f þ 2:4317� ap−0:4152ð Þð Þ;

H4 ¼ tanh 0:5� 0:0086� Vcþ 28:9844� f −2:5376� ap−0:0306ð Þð Þ;

H5 ¼ tanh 0:5� 0:0017� Vc−15:0143� f þ 0:0078� apþ 5:1553ð Þð Þ;

H6 ¼ tanh 0:5� 0:0005� Vcþ 18:5188� f −0:4125� ap−2:9456ð Þð Þ;

H7 ¼ tanh 0:5� 0:0004� Vcþ 1:1126� f þ 1:1126� apþ 0:2648ð Þð Þ;

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

ð13Þ

Figure 19 illustrates the plot of the experimental values as a
function of their corresponding predicted values. It is well
seen that the majority of the intersection points are close to
the median line, which confirm the robustness of the ANN
modeling technique.

Table 9 Performance of ANN structures of the tangential force (Fz)

Learning Validation

Nodes number R2 RMSE R2 RMSE
Input-hidden-output

3–5-1 0.9898 1.8856 0.9998 0.2477

3–4-1 0.997 0.674 0.904 4.367

3–3-1 0.992 1.096 0.861 5.250

3–10-1 0.996 0.761 0.967 2.557

3–9-1 0.853 4.946 0.997 0.717

3–8-1 0.999 0.333 0.962 2.729

3–7-1 0.997 0.636 0.972 2.338

3–6-1 0.999 0.318 0.957 2.909

Fig. 18 Neural architecture chosen for Fz
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3.5 Comparison between artificial neural network
and root-mean-square models

Table 10 presents the coefficients of determination (R2)
of both Ra and Fz models developed by using response
surface methodology (RSM) and artificial neural net-
works (ANNs).

It is found that the values of R2 of the ANN models are
larger than those of the RSM models, which proves the ro-
bustness and the reliability of the ANN method.

To illustrate the comparison between RSM and ANN
models, the experimental and the predicted values of surface
roughness and tangential force are drawn in Figs. 20 and 21,
respectively. It is well observed that the predicted values of the
ANN models are more close to the experimental values than
those of the RSM models.

3.6 3D surface topography

Analysis of the 3D shows that the increase of f causes
an increase in the surface roughness (Fig. 22). Indeed,
it can be shown that the higher is the value of f, the
higher is the distance between the peaks and the val-
leys. This can be explained by the fact that the gen-
erated surface comprises helicoid furrows resulting
from the tool shape and the form of tool part

movements. Obviously, the cut grooves in the hard-
ened material are deeper and broader as f is higher,
implying to cut at the lower values of f for surface
finishing [27].

4 Optimization of responses using desirability
function approach

The objective of multiresponse optimization is to determine
the conditions on the independent variables that lead to opti-
mal or nearly optimal values of the response variables.
Desirability appears to have been first proposed as a criterion
for response optimization by Harrington et al. [28] and popu-
larized by Derringer and Suich [29].

Desirable ranges between 0 and 1 and desirability of 0, that
is to say an elementary desirability taking the value zero, rep-
resent an unacceptable configuration for the selected response,
while a desirability taking the value 1 represents the case ideal.
The simultaneous objective function is a geometric mean of
all transformed responses:

D ¼ d1 � d2 � :::� dnð Þ1
.

n ¼ ∏
n

i¼1
di

 !1
n

ð14Þ

F xð Þ ¼ −D ð15Þ

where di is the desirability defined for the ith targeted output
and wi is the weighting of di and n is the number of responses
in the measure. For simultaneous optimization, each response
must have a low value and a high value assigned to each goal.

Fig. 19 Comparison between
experimental and predicted values
for Fz

Table 10 Correlation
coefficients for RSM and
ANN

Correlation coefficients R2

RSM ANN

Ra (μm) 96.59 99.19

Fz (N) 98.15 99.48
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In the case of searching for a maximum, the desirability is
rewritten as follows:

di ¼ 0 ifresponse < lowvalue
0≤di≤1asresponsevariesfromlowtohigh
di ¼ 1 ifresponse > highvalue

8<
: ð16Þ

In the case of searching for a minimum, the desirability can
be defined by the following equations:

di ¼ 1 if response < low value
1≤di≤0asresponsevariesfromlowtohigh
di ¼ 0 if response > high value

8<
: ð17Þ

Here, three optimization approaches are considered.
They are called the “quality optimization” and “produc-
tivity optimization,” and the last one is the combination
between the two predicted optimizations. The first
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consists to find the minimum of the surface roughness
(Ra). In the second, we seek the maximum of MRR.
The last is to get the minimum of surface roughness
as well as cutting force and cutting power and the max-
imum of the MRR at the same time. The factor ranges
defined for each optimization are summarized in
Table 11.

In the case of the third optimization, an interesting
advantage consists to have a high productivity and a
good surface quality at the same time, and this is what

it is aimed in the industry. The contour graph is present-
ed in the Fig. 23; it presents the optimal values of Vc, f,
and ap whether that plot shows the increase after the
number of revolutions and feed spindle in increasing
the opportunity value of MRR and Ra.

Figure 24 and Table 12 show the results for the three
optimization approaches. The values of the optimal cut-
ting parameters for the combined optimization are as
follows: Vc = 628 m/min, f = 0.097 mm/rev, and
ap = 1.80 mm. The optimized surface roughness and
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Fig. 22 3D topography for surface roughness Ra

Table 11 Goals and factor ranges for optimization of quality, productivity, and combined

Constraints

Name Goal Lower limit Upper limit Lower weight Upper weight Importance

Quality Productivity Combined

Vc (m/min) In range 314 628 1 1 3 3 3

f (mm/rev) In range 0.08 0.24 1 1 3 3 3

ap (mm) In range 1 3 1 1 3 3 3

Ra (μm) Minimize 0.47 3.14 1 1 5 None 5

Fz (N) Minimize 10.99 66.6 1 1 None None 1

Pc (W) Minimize 115.03 496.96 1 1 None None 1

MRR (cm3/min) Maximize 25.12 452.16 1 1 None 5 5
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Fig. 24 Ramp function graph for cutting force components and Ra, Fz, Pc, and MRR combined optimization
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the material removal rate are as follows (Ra = 0.731 μm
and MRR = 107.394 cm3/min).

5 Conclusion

This study focuses on the modeling and determination of the
optimum cutting conditions leading to minimum of surface
roughness, cutting force, cutting power, and maximum of pro-
ductivity. The case of the turning of the POM C was studied.
Based on the results discussed previously, the following con-
clusions could be drawn:

1. The results of the ANOVA analysis for Ra proved that
the f is the most important factor affecting Ra followed
by ap and Vc. Their contributions are 66.41, 19.70, and
5.28%, respectively.

2. Tangential cutting force (Fz) was highly affected by the
ap and f, and their contributions are 45.41 and 31.09%,
respectively. For the cutting power, the three classical
input cutting parameters were found significant on Pc.
Nevertheless, ap is the most significant factor with
47.81% of contribution, followed by f and Vc. Their
contributions are of 30.50 and 12.63%, respectively.

3. The material removal rate (MRR) was found affected by
ap and fwith same contributions of 37%, followed byVc
with contribution of 16.55%. The parameter process in-
teraction contributions were significant.

4. The ANOVA results were confirmed by the Pareto chart
and the 3D response surface.

5. The correlation coefficients of the predictive models of
Ra, Fz, Pc, and MRR were found to be about 96. 59,
98.15, 98.15, and 99.53%, respectively. Therefore, the
developed models are reliable and they represent an im-
portant industrial interest, since they help to make pre-
dictions within the range of the actual experimentation.

6. The results of the confirmation tests show that the devel-
oped models are effectively able to predict output re-
sponses, with a percentage error value less than 4.41%.

7. The values of R2 of the ANN models are larger than
those of the RSM models, which proves the robustness
and the reliability of the ANN method.

8. The optimal cutting parameters, leading to minimal sur-
face roughness in case of finish turning, are as follows:
Vc = 628 m/min, f = 0.08 mm/rev, and ap = 1 mm.

9. In case of maximizing the material removal rate, i.e.,
maximizing the productivity, which is recommended in
roughing machining, efficient cutting parameters are
Vc = 628 m/min, f = 0.08 mm/rev, and ap = 3 mm.

10. For the combined optimization carried out to compro-
mise simultaneously between the quality and the produc-
tivity, optimal conditions are Vc = 628 m/min,
f = 0.097 mm/rev, and ap = 1.80 mm.

11. The 3D topographic map of the machined surface is an
important investigation tool. It allows the visualization
and the confirmation of the feed rate effect on surface
roughness.

ANN, artificial neural network; ANOM, analysis of means;
ANOVA, analysis of variance; ap, depth of cut (mm); cont %,
contribution ratio (%); DF, desirability function; DoF, degrees
of freedom; f, feed rate (mm/rev); Fa, axial force (N); Fz,
tangential force (N); Fr, radial force (N); Fv, tangential force
(N); IHSA, improved harmony search algorithm; MRR, ma-
terial removal rate (cm3/min); Pc, power (W); r, insert nose
radius (mm); R2, determination coefficient; Ra, arithmetic
mean roughness (μm); RSM, response surface methodology;
SS, sequential sum of squares; SC, sum of squares; Vc, cutting
speed (m/min)
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