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Abstract Self-excited anomalous vibrations called chatter
affected milling operations since the beginning of the indus-
trial era. Chatter is responsible for bad surface quality of
the machined part and it may severely damage machin-
ing system elements. Although the significant advances
of recent years, state of the art dynamic models are not
yet able to completely explain chatter onset even when
some conventional cutting tools are applied for conven-
tional milling operations. In this work, a more general model
of regenerative chatter is presented. The model takes into
account some additional degrees of freedom and cutting
forces which are neglected in the classical approach. By so
doing, a more accurate representation of milling dynamics
is obtained, especially when considering large diameter cut-
ters. An improved mathematical formulation of regenerative
cutting forces is provided with respect to a very recent pub-
lication where the new model has been first outlined. This
approach allows −45 % of computation time. Moreover,
here a new, independent, and stronger experimental valida-
tion is provided, where the new model successfully predicts
an increase of about +(50 ÷ 100) % of the stability bound-
aries with respect to the classical prediction, thus showing
the potential breakthrough of the new approach.
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1 Introduction

Self-excited chatter vibrations in machining were already
recognized by F.W. Taylor at the beginning of the nineteenth
century as one of “most obscure and delicate of all problems
facing the machinist.”

Chatter is caused by complicated physical mechanisms
and it is responsible for an unacceptable surface quality
and poor dimensional accuracy of the machined parts [1,
2]. Besides, it may accelerate tool wear rate, it may trig-
ger a sudden tool breakage or damage other machine tool
components. For these reasons, chatter occurrence must be
avoided.

In the last 60 years, several strategies have been devel-
oped for solving this awkward problem: passive approaches
[3–5], semi-active strategies [6–8], active techniques [9,
10], hybrid strategies based on chatter onset detection
and cutting parameters regulation (http://www.okuma.com/
machining-navi) [11], and predictive strategies based on
a preventive evaluation of process stability for an optimal
selection of adequate cutting parameters [12–14].

The effectiveness of these techniques relies on the theo-
retical understanding and accurate modeling of the physical
phenomena implying chatter vibrations. Chatter mecha-
nisms are usually classified as primary or secondary.

In the low spindle speed range, chatter onset is mostly
influenced by the so called primary chatter mechanisms [21,
22], such as process damping [16, 17], chaotic dynamics of
the cutting process [18, 19], effective stress distribution on
the normal rake face [1], thermoplastic behavior of the chip
material [20], and others.

Especially in the medium-high spindle speed regime,
secondary chatter is dominant, which is caused by the regen-
erative effect. The regenerative effect is the influence of
the undulation left on the workpiece by the previous tooth
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passage on the actual uncut chip thickness acting on the
tooth passing through the same angular position [1, 2, 15].

According to all current models, the instantaneous chip
thickness evaluation on a given cutting tooth is performed
by only considering tool tip transversal vibrations in the
working plane orthogonal to spindle axis.

One very recent exception is the work of Kilic et al. [34]
presenting a generalized model for cutting mechanics and
dynamics which theoretically includes all possible transla-
tional and rotational degrees of freedom (six in total) for
accurately modeling regenerative chip thickness in generic
conditions. However, the consequence of this idea in con-
ventional face milling with large diameter cutters was not
investigated.

In addition, only the transverse forces are taken into
account for modeling tooling system deflection, while the
momenta associated to the axial forces are always neglected.

Considering only transverse vibrations and transverse
forces is a reasonable approximation when considering slen-
der tooling systems with a small cutter diameter D in
comparison to the total tool overhang L.

Nevertheless, when considering tooling systems with a
relatively large D/L ratio, this simplification may be too
rough and it may cause great inaccuracies when computing
the stability boundaries by means of predictive algorithms.

In a very recent work [24], an innovative model of milling
dynamics was proposed for overcoming the limits of the
classical approach by taking into account additional degrees
of freedom for a better description of tooling system bend-
ing as well as the bending momenta deriving from axial
forces.

In [24], the model was successfully validated by perform-
ing several experimental tests on a face milling cutter with
D = 80 mm, total overhang L = 300, Zt = 4 teeth, and
working cutting edge angle χ1 = 90◦. Process stability was
evaluated with different nose radii (rε = 0.4 mm and rε = 2
mm). When adopting the larger nose radius, a significant
shift of the stability borders of about+25%was experimen-
tally observed and correctly predicted by the new approach.
Further details can be found in [24].

Thus, the proposed model significantly improved the
accuracy of the predicted stability borders when consider-
ing tools with a relatively large D/L ratio and with curved
or inclined cutting edges (average local χ < 90◦).

In this work, a new mathematical formulation of the
model introduced in [24] will be provided, which will
almost halve the computation time. Specifically, an integral
formulation of the regenerative cutting force coefficients
will be presented together with analytical direct formulas
for standard cutting inserts defined by the nominal working
cutting edge angle χ1 and by the nose radius rε. In addition,
a new, independent, and stronger experimental validation of
the new model will be presented in this work.

First of all, a review on regenerative chatter modeling in
milling will be outlined. Subsequently, the extended model
of milling dynamics proposed in [24] will be recalled. After-
wards, a novel, improved mathematical formulation describ-
ing cutter-workpiece dynamic interaction will be presented.
The criteria for stability evaluation will be synthetically
described. Eventually, another impressive experimental val-
idation of the new model will be discussed in the last
sections.

2 State of the art approaches for modeling
and simulation of regenerative chatter in milling

The global transfer function of the machining system is
mainly dependent on the most flexible element of the kine-
matic chain, which is typically the tooling system [25].
However, when milling turbine blades or other thin parts,
workpiece dynamics have to be taken into account, as
proved in [26, 27].

The most simple dynamic milling model is based on a
single oscillating direction described by a single harmonic
oscillator [28, 29]. Nevertheless, the validity of this model
is limited to very few industrial cases. A typical milling pro-
cess is at least bidimensional, having at least one harmonic
oscillator for each direction, as was shown in the pioneering
work of Altintas and Budak [23] and in many other research
works [12, 30].

However, in many practical cases, several harmonic
oscillators are necessary for each direction, in order to
model machining system dynamics with sufficient accuracy
[14, 16, 31–33].

Cutting forces tend to amplify regenerative vibrations,
thus a correct modeling of cutting forces is crucial. In par-
ticular, cutting force variations due to regenerative pertur-
bations have to be accurately described. Several approaches
have been proposed in literature in the last decades, see
for instance [34]. In this work, a compact Shearing &
Ploughing linear model based on some basic oblique cutting
hypotheses will be adopted [34–37].

Process kinematics have a great impact on milling
dynamics. For instance, the stability borders are influenced
by milling configuration (up or down milling [29]), by the
radial immersion between tool and workpiece aL/D [30]
and by other kinematic parameters.

Last but not least, the regenerative effect is influenced by
the geometrical details of the cutter, as illustrated in [32, 38–
40], which affect the dynamic interaction between tool and
workpiece.

According to the classical approach, regenerative chat-
ter does only depend on the transverse vibrations and forces
between tool and workpiece in the working plane orthogo-
nal to spindle axis. This assumption is valid for the slender
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tooling systems with a small D/L ratio extensively studied
in literature [12, 30, 38, 40].

As outlined in the introduction, the widespread approach
of considering only transverse vibrations and forces was
recently overcome by Kilic et al. [34], who pointed out
the necessity of taking into account all possible degrees
of freedom which may influence the local, instantaneous
chip thickness. The authors successfully explored this illu-
minating idea in some conventional and less conventional
machining operations. Nevertheless, the consequence of
their generalized approach in conventional face milling
with large diameter cutters was neither investigated, nor
implemented or validated.

Inspired by this idea, the model presented of [24] was
then conceived and validated, including additional degrees
of freedom for a realistic chip thickness evaluation and
bending momenta due to axial forces.

Eventually, it is worth recalling that the theoretical sta-
bility boundaries are obtained by performing the stability
analysis on the global dynamic milling model including the
regenerative effect. Stability analysis can be carried out by
performing time domain simulations or other linear numer-
ical methods. Time domain simulations are more realistic
since they can model non-linear phenomena such as the
loss of contact between tooth and workpiece, the multiple
regenerative effect, the nonlinear cutting force trend ver-
sus uncut chip thickness [41, 42]. Nevertheless, they are
very time consuming and thus they are not adequate for

most industrial applications. Accordingly, the most common
approach is to perform a linear analysis of stability by means
of efficient DDE-based techniques [8], as done in this work.

3 New model of milling dynamics

In this section, a new dynamic milling model will be
introduced.

Classically

[
ux

uy

]
=

[
WuxFx WuxFy

WuyFx WuyFy

] [
Fx

Fy

]

≈
[

WuxFx 0
0 WuyFy

] [
Fx

Fy

]
(1)

Let us consider a generic spindle-toolholder-cutter sys-
tem for milling operations, as illustrated in Fig. 1. Due to
mechanical vibrations, the cutter tip barycentre translates in
the working XY plane perpendicular to spindle axis, but at
the same time cutter body may also rotate in the Cartesian
planes XZ and YZ. These rotations are usually neglected
in the technical literature; on the contrary, this research
work will prove their fundamental role for milling dynamics
modeling and chatter forecast, especially when considering
large diameter cutters. The system is considered rigid in the
axial and torsional directions. For the sake of simplicity, the
workpiece is also considered to be rigid.

Fig. 1 Reference scheme for
relative tool-workpiece
vibrations



2518 Int J Adv Manuf Technol (2017) 89:2515–2534

In the Fourier domain, the following dynamic relation
can be obtained
⎡
⎢⎢⎣

ux

ϑy

uy

ϑx

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

WuxFx WuxMy WuxFy WuxMx

WϑyFx WϑyMy WϑyFy WϑyMx

WuyFx WuyMy WuyFy WuyMx

WϑxFx WϑxMy WϑxFy WϑxMx

⎤
⎥⎥⎦
⎡
⎢⎢⎣

Fx

My

Fy

Mx

⎤
⎥⎥⎦
(2)

where all the quantities are functions of the imaginary axis
jω. The bending moments Mx and My will arise from the
axial forces acting on cutter teeth, which may be significant
when nose radius rε is high or when the working angle χ is
relatively small, as will be described in the next sections.

Each transfer function can be expressed as a sum of
harmonic oscillators, i.e.,

W (jω) =
M∑

k=1

Gk(
jω / ωn,k

)2 + 2ξk

(
jω / ωn,k

) + 1
(3)

where Gk is the zero frequency gain or static compli-
ance, ωn,k is the natural pulsation, and ξk is the damping
coefficient of the kth mode of vibration. In general, the
modal parameters may change from one transfer function to
the other. However, some assumptions will be adopted for
model optimization, as will be explained in the following.

3.1 Basic reference model based on Euler-Bernoulli
beam element

Let us consider a finite element beam with circular cross
section based on Euler-Bernoulli model, in cantilever con-
figuration, whose length L and external diameter d corre-
spond to the total tooling system overhang (from spindle
nose to cutter tip) and average diameter, as illustrated in
Fig. 2. Let E be the Young modulus and J be the moment
of inertia given by

J = πd4

64
(4)

Let u and ϑ be the radial displacement and rotation of
beam free tip, where the radial force F and the moment M

can be applied. From the Euler-Bernoulli theory, one can
easily derive the following static compliance relations{

u = L3

3EJ
F + L2

2EJ
M = HuF F + HuMM

ϑ = L2

2EJ
F + L

EJ
M = HϑF F + HϑMM

(5)

It is worth noting that all static compliance can be
expressed as proportional to the displacement-force flexibil-
ity, as follows⎧⎨
⎩

HuM = νHuF

HϑF = νHuF

HϑM = μHuF

(6)

where

ν = 3

2L
; μ = 3

L2
(7)

If we consider the dynamic Euler-Bernoulli beam ele-
ment including inertial and damping matrixes, we will
finally obtain the dynamic version of Eq. 5. Specifically, one
obtains{

u (jω) = WuF (jω) F (jω) + WuM (jω) M (jω)

ϑ (jω) = WϑF (jω) F (jω) + WϑM (jω)M (jω)
(8)

It can be easily shown that each transfer function of
this model encloses two resonances. Since the first, low-
frequency resonance is dominant in our case, it will be
sufficient to focus on that in order to get a realistic repre-
sentation of system dynamics. Under this assumption, the
following simplification can be carried out⎧⎨
⎩

WuM (jω) ≈ νWuF (jω)

WϑF (jω) ≈ νWuF (jω)

WϑM (jω) ≈ μWuF (jω)

(9)

In other words, the dynamic transfer functions are
approximately proportional to the displacement-force trans-
fer function, by means of the same constants.

In most cases, the effect of M on ϑ through WϑM is
negligible, since μ or M are small. As a consequence, the
following important relation holds

ϑ (jω) ≈ νu (jω) (10)

Another important topic is the determination of the radial
displacement ur as well as the axial displacement ua of
the cutter tooth located at D/2 from tooling system axis.
According to signs conventions adopted in Fig. 2, they are
given by{

ur (jω) = u (jω)

ua (jω) = −D
2 ϑ (jω)

(11)

Moreover, let us suppose that the equivalent nodal forces
depend on the radial Fr and axial Fa forces shown in Fig. 2,
which are applied at D/2 from beam axis. Thus,{

F (jω) = Fr (jω)

M (jω) = −D
2 Fa (jω)

(12)

where it should be recalled that in general D �= d, since D

is the external cutter diameter while d is the tooling system
average diameter.

Therefore, after some algebraic manipulations, one may
obtain{

ur (jω) ≈ WuF (jω) [Fr (jω) − ηFa (jω)]
ua (jω) ≈ WuF (jω) [−ηFr (jω) + λFa (jω)]

(13)

where

η = 3

4

D

L
, λ = 3

4

(
D

L

)2

(14)
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Fig. 2 a Example of a typical
tooling system. b Basic model
based on a single
Euler-Bernoulli beam

a) b)

are aspect ratio factors which will be very important in the
following. If we assume a realistic aspect ratio of about

D

L
≈ 1

3
⇒ η ≈ 25 %, λ ≈ 8 % (15)

Under this hypothesis, the influence of the axial force on
the transverse displacement cannot be ignored. Specifically,
it tends to reduce the destabilizing effect of the radial
force. Thus, the axial force may play a fundamental role
for increasing cutting process stability. This is an empirical
fact which is relatively known among technicians working
in the shop-floor. Nevertheless, this fact has not been ade-
quately explained and demonstrated in literature until the
very recent work of Totis et al. [24].

Under the above hypothesis, it should also be noticed
that the size of the axial displacement cannot be neglected
in comparison with the radial displacement. Eventually, the
effect of axial force on axial displacement is practically
negligible since λ is small (see Eq. 14).

3.2 Tooling system dynamics during rotation

Let us now model the effective dynamics of the cutter dur-
ing rotation. According to the classical approach, only the
transverse vibrations ux and uy of cutter barycentre are nec-
essary to model cutting process dynamics. The new model
extends this approach to the 3D case, where also the axial
vibrations uz,j of each tooth may influence the onset of
chatter phenomena. The proposed model reduces to the
conventional one when the D/L ratio is small, as in the
case of slender endmills for finishing applications. Never-
theless, when using large diameter cutters, such as those

adopted for roughing applications, the uz,j vibrations will
become significant, thus affecting the evolution of vibra-
tional phenomena, as it will be proved in the last sections.

{
ux,j (jω)=HuxFx (jω) Fx (jω) − HuxMy (jω) My (jω)

uy,j (jω)=HuyFy (jω) Fy (jω) + HuyMx (jω) Mx (jω)

(16)

where the displacement-moment transfer functions are
assumed proportional to the direct transfer functions HuxFx

and HuyFy , respectively, as follows{
HuxMy (jω) ≈ νyHuxFx (jω)

HuyMx (jω) ≈ νxHuyFy (jω)
(17)

In accordance with the Euler-Bernoulli toy model of pre-
vious subsection (10), the cutter body small rotations ϑx and
ϑy in the ZY and ZX cartesian planes are assumed propor-
tional to the transverse vibrations ux and uy—by means of
the same proportionality constants νy and νx—as follows
{

ϑy (jω) ≈ −νyux (jω)

ϑx (jω) ≈ νxuy (jω)
(18)

where

νy
∼= νx

∼= 3

2L
(19)

Finally, the axial vibrations of the j th tooth can be computed
in the time domain using the following relation

uz,j (t) = R cos
(
ϕj (t)

)
ϑx (t) − R sin

(
ϕj (t)

)
ϑy (t) (20)

where ϕj is the feed motion angle of the j th tooth and
R is the local radius where the considered cutting edge
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point is located. For face milling cutters with cemented car-
bide inserts, this radius is approximately constant along the
whole cutting edge, and it isR ∼= D

2 , whereD is the external
cutter diameter.

4 Cutting force model

Cutting forces depend on several factors, such as workpiece
material, cutting parameters, cutter geometry, and milling
process geometry. Let us consider a milling operation per-
formed with a constant pitch milling cutter with Zt cutting
inserts or flutes, nominal working cutting edge angle χ1,
nose radius rε, and axial rake angle γa .

Let us further assume that the variation of the angular
localization of a given cutting edge due to axial rake is
negligible, which is true if

apγa � πD (21)

in the case of inserted cutters for face milling.
Let us suppose constant speed machining conditions, i.e.,

no modulation of spindle speed is applied.

Under these assumptions, the local cutting edge geome-
try cannot be considered constant along the engaged cutting
edge.

Let us now model the cutting forces acting on the
infinitesimal cutting edge length dl at point P on the j th
flute at a given time instant t .

For this purpose, let us firstly introduce the angular spin-
dle speed Ω expressed in rad/s. Under constant spindle
speed conditions,

Ω = 2πn

60
= 2π

T
(22)

n being the (constant) spindle speed expressed in rpm and T

the (constant) spindle revolution period. Let us introduce the
time delay between subsequent teeth τ . Under the hypothe-
sis of constant speed machining and an equally spaced teeth
cutter, the time delay τ is given by

τ = T

Zt

= 60

nZt

(23)

where Zt is the teeth number.
Let us consider a generic cutting edge point P on tooth j ,

as shown in Fig. 3. In cylindrical coordinates P is univocally

Fig. 3 Local reference frames
for cutter geometry
characterization and cutting
force modeling
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determined by its height zP along tool axis, its local radius
R (zP ) and its local feed motion angle

ϕj (t, zP ) ≈ ϕj (t, z = 0) = ϕj (t) ∀z (24)

where the dependence of the feed motion angle on the z

coordinate can be suppressed thank to assumption (21).
Under the hypothesis of equally spaced teeth, we have

ϕj (t) = ϕ1 (t) − (j − 1) Δϕz, j = 1, 2, . . . , Zt (25)

where Δϕz is the angular pitch (angular delay) between
subsequent teeth, which is given by

Δϕz = 2π

Zt

(26)

In order to identity the angular position of the cutter, it is
possible to consider the feed motion angle of the first flute
tip as main reference, which will be simply denoted by ϕ in
the following, i.e.,

ϕ (t) = ϕ1 (t) (27)

The engagement of each tooth part in the workpiece will
be described through the window function gj , as follows

gj (t) = g
(
ϕj (t)

) =
{
1 ifϕin < ϕj < ϕout

0 elsewhere
(28)

being ϕin and ϕout the entrance and exit angles, respectively,
recalling that ϕj ∈ [0, 2π ].

Let us further define{
sj = sin

(
ϕj (t)

)
cj = cos

(
ϕj (t)

) (29)

Let us now consider the working plane πf passing
through P , which is perpendicular to tool axis and parallel
to the stationary plane OXY . This plane does also contain
the direction of the local cutting speed vc. It is possible to
define a local reference frame cra, where the unit vector c is
parallel to the tangential cutting speed vc, r is the radial unit
vector, and a is the axial unit vector parallel to tool axis.

Under generic conditions, the cutting edge may be
inclined. Its orientation is univocally determined by the
local working cutting edge angle χ and by the local axial
rake angle γa (also called helix angle and sometimes
denoted by λ or ι).

The rotation of the reference system cra of an angle
equal to χ around the c direction yields a new radial unit
vector r ′. After another rotation of the new reference frame
of an angle equal to γa around r ′, the final c′r ′a′ reference
frame is obtained, which will be important for the oblique
cutting force model described in the following.

It is worth noting that the local cutting edge angle may in
general vary along the cutting edge – even for face shoulder

cutters with nominal cutting edge angle χ = 90◦ – because
of the nose radius rε. In this work, this case is deeply inves-
tigated. Besides, the axial rake angle γa may in general vary
along the cutting edge.

Under an infinitesimal variation dz along the j th flute,
the true cutting edge length is given by

dl = dz

sinχ cos γa

(30)

Another important quantity is the projection of dl on the ra

plane, that is

db = dl cos γa = dz

sinχ
(31)

For the sake of cutting force modeling, it is better to take b

as the main curvilinear abscissa, i.e.,

z → b (z) (32)

Accordingly, let us consider an infinitesimal (projected)
cutting edge length db located at b, where the instantaneous
chip thickness is

hj = hj (t, b) (33)

while the infinitesimal chip cross-section area is given by

dAj (b) = hj (t, b) db (34)

As stated above, in general

χ = χ (b) and γa = γa (b) (35)

However, the b dependence as well as the time dependence
of other variables may be omitted in the following, in order
to simplify notation.

A linear cutting force model is adopted, which is inspired
by some modern Shearing & Ploughing cutting force mod-
els which are also based on oblique cutting principles [34–
37]. Infinitesimal cutting forces acting on the cutting edge
part db are mainly due to effect of chip pressure on rake face
(shearing terms) and the effect of dynamic Coulomb fric-
tion between the main clearance and the machined surface
(ploughing terms). Specifically, the chip pressure on rake
face causes:

– a force approximately perpendicular to rake face (i.e.,
parallel to the c′ direction), represented by kcsdAj ;

– a force approximately parallel to rake face, i.e., per-
pendicular to the cutting edge along the r ′ direction,
represented by knsdAj .

At the same time, the dynamic Coulomb friction between
the main clearance and the machined surface causes the
following ploughing terms:
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– a force perpendicular to clearance, i.e., practically par-
allel to the r ′ direction, which is represented by knpdb

term;
– a force parallel to the relative motion direction rep-

resented by c or vc, which is given by kcpdb. As a
consequence, this force has a non-zero projection on
both c′ and a′ directions.

Accordingly, the infinitesimal forces acting on db in the
c′r ′a′ reference system are
⎧⎨
⎩

dFc′,j ∼= kcsdAj + kcp cos γadb

dFr ′,j ∼= knsdAj + knpdb

dFa′,j ∼= kcp sin γadb

(36)

The above physical considerations based on this simple
Coulomb friction model suggest the following prediction

kns

kcs

≈ kcp

knp

≈ 0.1 ÷ 1 (37)

which was experimentally confirmed by the S&P coeffi-
cients estimated in technical literature [14, 51], which are
approximately within the following ranges

kcs = (0.8 ± 0.2) ks; kns = (0.45 ± 0.3) kcs;
knp = (0.05 ± 0.04) kcs; kcp = (0.6 ± 0.35) knp

(38)

where ks is the cutting pressure Fc/A; ks , kcs, and kns are
expressed in (N/mm2), while kcp and knp are expressed in
(N/mm).

It has to be noticed that the dynamic ploughing terms
responsible for process damping [16, 37] were not con-
sidered here, since process damping was neglected in this
treatment. However, process damping terms can be easily
included in future extensions of this model.

After reference system rotation of γa around r ′ and of
χ around c direction, the force components in the cra

reference system are obtained, as follows

{
dFc,j

∼= kcsdAj cos γa + kcpdb
dFr,j

∼= knsdAj sinχ + knpdb sinχ + kcsdAj sin γa cosχ
dFa,j

∼= knsdAj cosχ + knpdb cosχ − kcsdAj sin γa sinχ

(39)

It is worth noting that the proposed model incorpo-
rates oblique cutting conditions which may occur when the
axial rake γa �= 0. In these circumstances, the new term
kcsdAj sin γa arises, which may affect the total cutting force
components.
⎧⎪⎪⎨
⎪⎪⎩

Fc,j = ∫ B(ap)
0 dFc,j (b)

Fr,j = ∫ B(ap)
0 dFr,j (b)

Fa,j = ∫ B(ap)
0 dFa,j (b)

(40)

After integration along each cutting edge and addition of all
the contributions from each tooth, the resultant cutting force
components and momenta are eventually obtained⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx,0 =
Zt∑

j=1

[−Fc,j cj − Fr,j sj
]

My,0 =
Zt∑

j=1
−Fa,jRsj

Fy,0 =
Zt∑

j=1

[
Fc,j sj − Fr,j cj

]

Mx,0 =
Zt∑

j=1
Fa,jRcj

(41)

These coefficients constitute the vector of nominal cutting
forces F0, which is a 4×1 τ or T -periodic vector depending
only on the nominal chip thickness.

5 Breakthrough model of cutter-workpiece
dynamic interaction

Tool tip vibrations perturb the instantaneous local chip
thickness as follows

hj (t, b) = hj0 (t, b)︸ ︷︷ ︸
nominal,τ−periodic

+ hjδ (t, b)︸ ︷︷ ︸
regenerative
perturbation

(42)

where the instantaneous nominal chip thickness hj0 is given
by

hj0 (t, b) ∼= gj (t, b) fzsj (t) sinχ (b) (43)

being fz the feed per tooth.
The regenerative perturbation is classically given by

hjδ (t, b) = [ur (t) − ur (t − τ)] sinχ (b) (44)

where ur is the transverse vibration projected in the radial
direction of the j th tooth.

Nevertheless, when axial vibrations cannot be neglected,
new terms arise in the regenerative chip thickness formula,
i.e.

hjδ (t, b) = [ur (t) − ur (t − τ)] sinχ (b) +
− [ua (t) − ua (t − τ)] cosχ (b) (45)

as illustrated in Fig. 4.
In short, this new theoretical result explains the influence

of axial vibrations on regenerative chip thickness and thus
on process stability.

In the current case, by accepting the coupling between
radial and axial vibrations expressed by Eqs. 10 and 11, we
finally get

hjδ (t, b) = [sinχ (b) − cosχ (b)R (b) ν]

× [ur (t) − ur (t − τ)] (46)
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Fig. 4 Schematic representation of regenerative chip thickness behavior on inclined cutting edges, showing the dependence on both radial and
axial vibrations

where R (b) is the local radius at the considered abscissa b.
By comparing the new term with the classical term, it

yields

new term

classical term
= cosχRν

sinχ
= cotgχ

3D

4L
(47)

For example, in the experimental case study presented in
this work—which may represent a typical industrial case—
we have

D

L
≈ 1

4
, χ ≈ 40◦ ⇒ new term

classical term
≈ 22 % (48)

which is a significative variation with respect to the classical
result.

Regenerative cutting forces will depend on the chip
thickness perturbations with respect to the the “static,” peri-
odic chip thickness hj0. Specifically, cutting forces can be
linearized as follows

dFw,j (t, b) = dFw,j

(
hj0 (t, b)

)
+∂dFw,j

∂hj

(
hj0 (t, b)

)
hjδ (t, b) (49)

= dFw,j0 (t, b) + dFw,jδ (t, b) w = c, r, a

where w is a generic subscript, the first term is due to the
nominal chip thickness, while the force perturbation derives
from the regenerative effect.

Accordingly, the following relations are obtained⎧⎨
⎩

dFc,jδ = kcshjδ cos γadb

dFr,jδ = knshjδ sinχdb + kcshjδ sin γa cosχdb

dFa,jδ = knshjδ cosχdb − kcshjδ sin γa sinχdb

(50)

Let us now integrate the differential contributions along
the cutting edge, by focusing on inserted cutters where it
is reasonable to assume that a given cutting edge is well
located at ϕj , and under the assumption that the axial rake
is almost constant along the cutting edge. Then⎧⎪⎪⎨
⎪⎪⎩

Fc,jδ

(
ap

) = ∫ B(ap)
0 dFc,jδ

Fr,jδ

(
ap

) = ∫ B(ap)
0 dFr,jδ

Fa,jδ

(
ap

) = ∫ B(ap)
0 dFa,jδ

(51)

which can be expressed as⎧⎨
⎩

Fc,jδ

(
ap

) = kc

(
ap

)
[ur (t) − ur (t − τ)]

Fr,jδ

(
ap

) = kr

(
ap

)
[ur (t) − ur (t − τ)]

Fa,jδ

(
ap

) = ka

(
ap

)
[ur (t) − ur (t − τ)]

(52)
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where

kc

(
ap

) =
∫ B(ap)

0
kcs cos γa (sinχ − Rν cosχ) db (53)

kr

(
ap

) =
∫ B(ap)

0

[
kns

(
sin2 χ − Rν sinχ cosχ

)

+ kcs sin γa

(
sinχ cosχ − Rν cos2 χ

)]
db (54)

ka

(
ap

) =
∫ B(ap)

0

[
kns

(
sinχ cosχ − Rν cos2 χ

)
+

−kcs sin γa

(
sin2 χ − Rν sinχ cosχ

)]
db (55)

Let us now recall that we are focusing on face milling
cutters with mechanically clamped cutting inserts, with nose
radius rε and nominal working cutting edge angle χ1. More-
oever, axial rake angle is assumed approximately constant
along the cutting edge γa(b1) ≈ γ̄a .

Along the nose radius the local working cutting edge
varies according to the relation

χ
(
z = ap

) = acos

(
rε − ap

rε

)
(56)

The endpoint of nose radius—where the straight part of
the cutting edge begins, which is oriented according to the
nominal working cutting edge angle χ1—is located at

apχ1 = rε (1 − cosχ1) (57)

In order to analytically determine the regenerative cut-
ting force coefficients of Eqs. 53, 54, and 55, the following
integrals are performed, yielding

Isχ = ∫ B(ap)
0 sinχ db

=
⎧⎨
⎩
(− cosχap + 1

)
rε if ap < apχ1(− cosχap + 1

)
rε + (

ap − apχ1
)

if ap ≥ apχ1

(58)

Icχ = ∫ B(ap)
0 cosχ db

=

⎧⎪⎨
⎪⎩
sinχaprε if ap < apχ1

sinχ1rε + cosχ1

(
ap−apχ1
sinχ1

)
if ap ≥ apχ1

(59)

Iscχ = ∫ B(ap)
0 sinχ cosχ db

=
⎧⎨
⎩

1
2 sin

2 χaprε if ap < apχ1
1
2 sin

2 χ1rε + cosχ1
(
ap − apχ1

)
if ap ≥ apχ1

(60)

Is2χ = ∫ B(ap)
0 sin2 χ db

=
⎧⎨
⎩

1
2χaprε − 1

4 sin
(
2χap

)
rε if ap < apχ1

1
2χ1rε − 1

4 sin (2χ1) rε+
+ sinχ1

(
ap − apχ1

)
if ap ≥ apχ1

(61)

Ic2χ = ∫ B(ap)
0 cos2 χdb

=

⎧⎪⎨
⎪⎩

1
2χaprε + 1

4 sin
(
2χap

)
rε if ap < apχ1

1
2χaprε + 1

4 sin
(
2χap

)
rε+

+ cos2 χ1

(
ap−apχ1
sinχ1

)
if ap ≥ apχ1

(62)

Then
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

kc

(
ap

) = kcs cos γ̄a

(
Isχ − IcχνR

)
kr

(
ap

) = kns

(
Is2χ − IscχνR

)+
+kcs sin γ̄a

(
Iscχ − Ic2χνR

)
ka

(
ap

) = kns

(
Iscχ − Ic2χνR

)+
−kcs sin γ̄a

(
Is2χ − IscχνR

)
(63)

By recalling that

[ur (t) − ur (t − τ)] = [ux (t) − ux (t − τ)] sj
+ [

uy (t) − uy (t − τ)
]
cj (64)

one may obtain the regenerative force contributions of the
j th tooth in the cra frame

Fc,jδ = gj sj kc [ux (t) − ux (t − τ)]

+gj cj kc

[
uy (t) − uy (t − τ)

]
= F ′

c,jux [ux (t) − ux (t − τ)]

+F ′
c,juy

[
uy (t) − uy (t − τ)

]
(65)

and identical relations can be written for Fr,jδ and Fa,jδ , by
simply substituting kc with kr or ka .

By projecting such terms along the OXYZ stationary
reference frame and by summing up the contributions from
all the teeth, one obtains the effective regenerative vector
Fδ , i.e.,

Fδ (t) = F′
1 (t) (u (t) − u (t − τ)) (66)

where

Fδ (t) =

⎡
⎢⎢⎣

Fx,δ (t)

My,δ (t)

Fy,δ (t)

Mx,δ (t)

⎤
⎥⎥⎦ , u (t) =

[
ux (t)

uy (t)

]
(67)

F′
1 (t) =

⎡
⎢⎢⎢⎣

F ′
x,jux F ′

x,juy

M ′
y,jux M ′

y,juy

F ′
y,jux F ′

y,juy

M ′
x,jux M ′

x,juy

⎤
⎥⎥⎥⎦ (68)
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whose time-varying coefficients are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F ′
x,jux =

Zt∑
j=1

(
−F ′

c,juxcj − F ′
r,juxsj

)

F ′
x,juy =

Zt∑
j=1

(
−F ′

c,juycj − F ′
r,juysj

)

M ′
y,jux =

Zt∑
j=1

−F ′
a,juxRsj

M ′
y,juy =

Zt∑
j=1

−F ′
a,juyRsj

F ′
y,jux =

Zt∑
j=1

(
F ′

c,juxsj − F ′
r,juxcj

)

F ′
y,juy =

Zt∑
j=1

(
F ′

c,juysj − F ′
r,juycj

)

M ′
x,jux =

Zt∑
j=1

F ′
a,juxRcj

M ′
x,juy =

Zt∑
j=1

F ′
a,juyRcj

(69)

It should be noticed that the matrix F′
1 is τ or T -periodic,

depending on whether teeth radial run-out is negligible or
not, respectively.

The total force acting on cutter is eventually obtained
by summing the static force expressed by Eq. 41 with the
regenerative term (67), i.e.,

F (t) = F0 (t) + Fδ (t) (70)

Let us consider a state space form (in the time domain)
equivalent to Eq. 2, i.e.,
{

dq
dt

(t) = AWq (t) + BWF (t)

u (t) = CWq (t)
(71)

where q is the state vector (with d state variables), AW, BW,
CW are the state space matrices representing a time realiza-
tion of the transfer function W (jω), F is the input (force)
4× 1 vector, and u is the output (displacement) 2× 1 vector
of the tool tip at time t. Time realization is chosen such that
tool tip vibrations along X and Y directions can be directly
derived from the first two state space variables, that is
{

ux = q1
uy = q2

(72)

This is achieved when the output matrix of the adopted time
realization is

CW =
[
1 0 0 · · · 0
0 1 0 · · · 0

]
(73)

This choice is particularly important in order to allow
monodromy matrix size reduction before eigenvalues
computation.

Then the system (71) can be rewritten in the final form

{
dq
dt

= A (t) q (t) + B (t)q (t − τ) + B0 (t)

u (t) = Cq (t)
(74)

where A(t) and B(t) are T or τ -periodic d ×d matrices and
B0 is a T or τ -periodic d×1 column vector. Under the above
assumptions, such matrices and vectors are piecewise C1.

This is a system of linear, periodic delay differential
equations which can be efficiently solved by the Chebyshev
collocation method, as described in the next section.

The total vibration q(t) is generally interpreted as
the sum of “static” forced vibrations due to B0(t) and
“dynamic” regenerative vibrations arising from the differ-
ence (q (t) − q (t − τ)).

Under the hypothesis of constant speed machining, these
terms can be studied separately by applying the superposi-
tion principle. Since the forced term is always stable, the
whole stability will depend on the regenerative term, which
is only influenced by A(t) and B(t). Accordingly, the sta-
bility analysis will be performed on system (74) depurated
from the B0(t) input [8].

6 Stability analysis

For a given combination of spindle speed and depth of cut,
system stability was assessed by considering the general
stability criteria of delay differential equations theory [43].

Basically, the discretization method adopted for stabil-
ity evaluation approximates the infinite-dimensional mon-
odromy operator Ug representing the delay differential
equations system (74) (depurated from the periodic forced
excitation B0(t)) with a finite-dimensional transition matrix
Ûg . The stability of the system depends on the largest matrix
eigenvalue, according to the following stability criterion

max
{
|λi | : λi ∈ σ

(
Ûg

)} ∼= ρ < 1 (75)

where ρ is the spectral radius of the original monodromy
operator and λi are the eigenvalues of Ûg .

The monodromy matrix Ûg is obtained from a discretiza-
tion algorithm based on the Chebyshev collocation method
[43–45].

The monodromy matrix size (number of columns =
number of rows) is

D
(
Ûg

)
= 2K (N + 1) + d − 2 (76)

where d is the dimension of the state space vector q (t), K
is the number of subintervals composing the fundamental
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interval [0, τ ] where the matrixes A(t) and B(t) are of class
C1, andN+1 is the number of Chebyshev collocation points
for each subinterval [8]. When the number of collocation
points becomes sufficiently high, the spectral radius esti-
mate converges to the theoretical value, as shown in [8].
The algorithm was developed in the MathWorks MATLAB
environment, and it was adapted and improved from the
ddec MATLAB suite which was originally available on-line
at (http://www.cs.uaf.edu/). Further technical details can be
found in the above references.

7 Experimental validation

Experimental validation of the new dynamic milling model
consisted of three different phases, which will be illustrated
in the following sections:

1. identification of machining system dynamics through
impact testing;

2. estimation of cutting force coefficients by performing
dedicated cutting test;

3. determination of experimental stability lobes by per-
forming chatter tests and comparison with model
predictions.

All the experimental tests were carried out at the Labo-
ratory for Advanced Mechatronics—LAMA FVG—located
in Udine, Italy, by using a three-axes CNC milling machine
Haas VF2-TR. The machine is equipped with a vertical
spindle unit with nominal power Pel = 22 kW and maximum
achievable spindle speed n = 15,000 rpm.

Several sensors were installed into the machine tool
for modal analysis, cutting force measurement and chatter
detection, as will be described in the following sections.

All sensor signals were sampled at 20 kHz by a National
Instruments Data Acquisition device (cDAQ-9178 with
NI9215 modules) and stored on a PC for further analy-
sis, which was carried out in the MathWorks MATLAB
environment.

Cutting tests were performed with a modular tooling sys-
tem composed of a spindle adapter (Sandvik Coromant C5-
390.140-40 030), a tool extender module (Sandvik Coro-
mant C5-391.01-50 100A), cutter adapter (C5-391.05C-22
025M) and a milling cutter (R300-050Q22-08H) with nom-
inal diameter D = 50 mm. The cutter had eight equally
spaced teeth (Zt = 8) consisting of round inserts (Sandvik
Coromant R300-0828E-PM1030) with rε = 4 mm and axial
rake angle γ̄a ≈ 10◦. In these conditions, the total tool over-
hang, from cutter tip to the spindle nose was about L = 215
mm. All the cutting tests were carried out with this tooling
system setup.

In all cases, the workpiece material was Ck45 carbon
steel, with about 198HB.

8 Identification of machining system dynamics

In the first phase, modal analysis was carried out on the
tooling system described in the previous subsection, by
means of pulse testing technique [46]. The machine dynam-
ics were excited by means of a instrumented hammer and
the vibrations were measured through accelerometers and
non-contact inductive displacement sensors.

Specifically, an eddy current sensor (Micro-Epsilon type
ES1 with sensitivity ≈ 10mV/μm) together with a triaxial
piezoelectric accelerometer Kistler 8763B100AB (sensitiv-
ity ≈ 50mV/g) were applied for measuring cutter vibrations
along all directions XYZ.

Impulsive forces were applied by means of an instru-
mented impact hammer type Dytran 5800B4 (sensitivity
2.41 mV/N), both in the radial and axial directions, as
shown in Fig. 5a, b. By so doing, it was possible to apply
both forces (Fx, Fy) and momenta (Mx, My) to the cutter,
in order to completely identify tooling system dynamics.
Radial vibrations were measured for estimating the transver-
sal displacements ux and uy .

Similarly, axial vibrations of cutter peripheryweremeasured
for estimating the rotational degrees of freedom ϑx and ϑy ,
as can be observed in Fig. 5b, c. Pulse tests were repeated by
changing sensors’ locations, in order to get reliable estimates
of tooling system static compliance along all directions.

Some tests were repeated after a 90◦ rotation of the whole
tooling system (tool and spindle shaft) in order to assess the
symmetry of the main spindle system.

The results are summarized in Fig. 6. It was observed
that all transfer functions are independent frommain spindle
orientation, with good approximation.

The dynamic compliance measured at tool tip cannot be
adequately represented by a single harmonic oscillator for
each transversal direction, because the relatively stiff tool-
ing system is dynamically coupled to spindle and machine
dynamics as studied in [47] and [48].

Therefore, direct transfer functions WuxFx and WuyFy

are characterized by several mechanical resonances, which
were determined by applying a novel identification tech-
nique inspired by Wavelets theory, which is illustrated in
[49]. The final modal parameters are listed in Table 1.

As evidenced in Fig. 6, there is a good correla-
tion between experimental measurements and interpolating
mathematical models. However, the most interesting result
of this phase are the “secondary” transfer functions WuM ,
WϑF, and WϑM which relate the general degrees of free-
dom of the cutter tip to the general input forces acting on
it, as outlined in Sections 3.1 and 3.2. In the medium fre-
quency range where the dominant resonances are located,
the measured transfer functions are almost proportional to
the corresponding direct transfer functions, as predicted by
Eqs. 17, 18, and 19.

http://www.cs.uaf.edu/
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a) b) c)

Fig. 5 Experimental modal analysis on the considered tooling system.
a Example of experimental setup for estimating WuxFx and WϑyFx by
applying impulsive forces along the radial X direction. b Here, WuxMy

is measured by applying axial forces. c Experimental setup for mea-
suring WuyFy , WϑxFy , WuyMx by applying radial and axial forces in
the YZ plane

This correspondence is satisfactory along the X direc-
tion, though there are little systematic errors between model
and measurements. The correlation between model and
measurements is less accurate but still sufficient along the
Y direction, also because it was difficult to excite regular

tooling system vibrations by applying a pure axial force
(whence the low signal to noise ratio affecting WuyMx).

Model inaccuracies affecting secondary transfer func-
tions can be explained by recalling that the spindle nose was
considered as a perfectly rigid constraint by the simplified

Fig. 6 Empirical transfer function estimates and comparison with the proposed model
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Table 1 Estimated modal parameters of the tooling system under
examination

Dir. Mode 1 2 3 4 5

Gk (μm/N) 0.020 0.076 0.035 0.054 0.060

X fk (Hz) 151.3 376.8 476.9 496.5 2000

ξk [ ] 0.0208 0.0426 0.0822 0.0173 1

Gk (μm/N) 0.0155 0.0051 0.0882 0.0676 0.0161

Y fk (Hz) 69.4 177.9 370.4 428.7 466

ξk [ ] 0.1794 0.0961 0.0970 0.0420 0.0136

reference model based on Euler-Bernoulli beam theory.
The proposed model does not take into account machine
tool structure and spindle dynamics, as well as the effec-
tive dynamic coupling between tooling system and spindle,
which was rather strong in this case study.

Eventually, WϑxMx and WϑyMy were disturbed by a bad
signal-to-noise ratio since they were very small, as expected.
For this reason, they were not even shown in Fig. 6.

However, the proposed model is capable to provide a sim-
ple and compact representation of tooling system dynamics
which could be sufficient for chatter prediction purposes, as
will be shown in the last section.

9 Cutting force model identification

In order to identify and validate the adopted cutting force
model, specific cutting tests were carried out on a Ck45 car-
bon steel workpiece by using the tooling system described
in Section 7. A sample workpiece was clamped on a special
plate dynamometer—see Fig. 7—which was designed and
validated by the author in a previous research work [52]. By
using this device, instantaneous and average cutting forces
were measured with great accuracy. However, for the sake
of simplicity, only average cutting forces were considered
for cutting force model coefficients identification.

Different cutting conditions were measured, according
to the design of experiments described in Table 2. Milling
operations were performed by assuming a width of cut aL =
19.6 mm and lateral position aL1 = 9.8 mm, i.e., cutter
barycentre was aligned with workpiece axis of symmetry.

Two complete factorial designs of experiments were
executed.

The first was performed for evaluating the effect of cut-
ting speed on average cutting forces. It consisted in the
following factor levels’ combinations: 3ap × 1fz × 2vc. In
accordance with well-known classical results [53], experi-
mental tests confirmed that cutting speed can be neglected
when trying to explain the variability of average cutting
forces, at least when machining simple carbon steels in a
reasonable range of cutting speeds.

Fig. 7 Experimental setup for cutting force measurement by using
special dynamometer designed and validated in [52]

The second design of experiments was eventually exe-
cuted to estimate cutting force model coefficients. It con-
sisted in the following factor levels’ combinations: 3ap ×
3fz × 1vc.

Average cutting forces are visible in the scatter diagram
of Fig. 8.

The final regression was accomplished by considering
the algebraic system

F̄exp = Xk + ε (77)

where the known term was composed by 3N rows

F̄exp = [
F̄x1 · · · F̄xN F̄y1 · · · F̄yN F̄z1 · · · F̄zN

]T
exp

(78)

while the vector of unknown S&P coefficients was

k = [
kcs kcp kns knp

]T
(79)

Table 2 Design of experiments for estimation of cutting force model

Factor Levels Values

Depth of cut ap (mm) 3 0.2, 0.4, 0.6

Feed per tooth fz (mm) 1 ÷ 3 0.12, 0.18, 0.24

Spindle speed n (rpm) 1 ÷ 2 1600, 2400

(Cutting speed vc (m/min) (230, 350)
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Fig. 8 Average experimental forces along the X, Y, and Z directions
of the stationary reference frame

Matrix X is obtained by integrating Eq. 41 with respect
to time (or equivalently, with respect to the reference feed
motion angle ϕ for all experimental conditions, by taking
into account tool geometry and the effective tool-workpiece
engagement, see [24] for further details.

Optimal values of S&P coefficients enclosed into the
vector kopt were determined by the classical pseudo-inverse
formula and are listed in Table 3. Accordingly, the average
cutting forces estimated by the model were determined as
usual

F̄mod = Xkopt (80)

Eventually, the relative residues between model estimates
and effective experimental values were computed (Fig. 9),
i.e.,

Ew,R = F̄wi,mod − F̄wi,exp

Ri,exp

[ %] w = x, y, z (81)

where the normalization was carried out by using the mod-
ulus of the resultant average force, that is

Ri,exp =
√

F̄ 2
xi,exp + F̄ 2

yi,exp + F̄ 2
zi,exp (82)

Table 3 Estimated cutting force coefficients

kcs kcp kns knp

(N/mm2) (N/mm) (N/mm2) (N/mm)

1909 33 1020 48

Fig. 9 Relative errors between average forces estimated by the
adopted model and the effective experimental values, along the X, Y,

and Z directions of the stationary reference frame

Some indexes for evaluating cutting force model ade-
quacy are listed in Table 4. In conclusion, the obtained
model is able to explain most of the variability of the
observed cutting force trends by using only four coeffi-
cients, confirming the effectiveness of modern S&P mod-
els inspired by oblique cutting theory, in comparison to
other pure mechanistic/mathematical approaches based on a
greater number of coefficients [25, 50].

Eventually, the regenerative cutting force coefficients
kc, kr, and ka could be calculated by applying Eq. 63, as
illustrated in Fig. 10 for the case study examined in this
work. The new coefficients can be compared to the classical
model, which is simply

⎧⎨
⎩

kc,classic

(
ap

) = kcsap

kr,classic

(
ap

) = knsap

ka,classic

(
ap

) = 0
(83)

Table 4 Cutting force model adequacy

Index X Y Z

Squared linear corr. coeff. R2 [ ] 0.994 0.999 0.988

Standard dev. of rel. error σ (%) 0.8 1.3 2.7

Systematic relative error μ (%) 1.5 −0.2 −0.0
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Fig. 10 Behavior of regenerative cutting force coefficients kc, kr, and
ka and comparison with classical model (kcs = 1909 MPa, kns = 1020
Mpa, ap < rε = 4 mm, as in the real case study discussed in the
following sections)

Of course, the new model of regenerative cutting force
coefficients reduces to the classical relations (83) when
considering straight cutting edges with χ ≡ 90◦ and γa

≡ 0◦.
Nevertheless, for generic cutting edge geometries, the

difference between the new and the classical model can
be very large, thus having a great impact on chatter onset
prediction.

10 Final validation by means of chatter tests

In order to validate the new model and to show its pre-
dictive capabilities, a specific experimental campaign was
conceived and carried out.

Table 5 Design of experiments for chatter tests

Factor Lev. Values

Depth of cut ap (mm) 7 0.4, 0.6, 0.7,

0.75, 0.8, 0.85, 0.9

Spindle speed n (rpm) 16 increments of 80

from 1000 to 2200

(Cutting speed vc (m/min) (increments of 12

from 150 to 330)

Centered milling operations with aL = 34 mm, aL/D ≈
75 %, and aL1 = 17 mm were executed in order to
allow stability borders identification in a reasonable range
of depths of cut, in the perspective of avoiding any damage
to the machine tool. Feed per tooth was set to 0.18 mm for
all the cutting tests. Experimental setup during chatter tests
is illustrated in Fig. 11.

A grid of cutting parameter combinations was tested, as
summarized in Table 5.

The depth of cut was increased by discrete increments of
0.2 ÷ 0.05 mm until severe chatter occurred. The test was
stopped at a maximum depth of cut of 0.9 mm if no chatter
was observed.

The stability of the system was assessed both from visual
inspection and by calculating quantitative chatter indicators
[54] obtained from the accelerometers installed on spindle
housing, as illustrated by the examples reported in Figs. 11
and in 12.

It is worth noting that chatter vibrations arising in the
considered case study were particularly explosive and vio-
lent, and they tended to propagate to the machine tool
structure instead of being merely restricted to the tooling
system. This behavior can be explained by

– the strong dynamic coupling between tooling system
and spindle dynamics, resulting in the mechanical reso-
nance at about 300 Hz;

Fig. 11 Experimental setup for chatter tests and examples of machined surfaces under different cutting parameters combinations
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a) b)

c) d)

e) f)

Fig. 12 Example of signal characteristics in time and frequency domains when considering cutting tests performed at n = 1320 rpm

– the high inertial forces exchanged between tooling sys-
tem and spindle, due to the large tooling system mass,
which was significantly greater in comparison with
the slender tooling systems with small cutter diameter
which are typically investigated in literature.

Moreover, chatter phenomena were somehow amplified
by the strong axial vibrations of each cutting tooth—
coupled to the large transverse vibrations of cutter barycen-
tre, as explained in Section 3—which may have dramati-
cally altered the tooth-workpiece engagement conditions, as
evidenced by the impressive chatter marks visible in Fig. 11.

For all these reasons, the relatively small threshold of
ap ≤ 0.9 mm was adopted in order to avoid damaging the
machine tool elements, such as the spindle bearings.

I would like to warn other researchers who want to con-
tinue the research in this field to be particularly careful when
performing chatter tests in similar conditions.

The stability analysis was carried out by the Chebyshev
Collocation Method recalled in Section 6.

In the considered case study, there are five harmonic
oscillators along the X direction and five harmonic oscil-
lators along the Y direction, for a total of ten independent
harmonic oscillators included in the tooling system transfer
functions, Table 1. Thus, the size of the square matrix A is
d = 10 · 2 = 20.

Apparently, the new approach seems to require a greater
matrix size d since it introduces new degrees of freedom (ϑx

and ϑy) in addition to the classical displacements ux and
uy . Nevertheless, it is important to recall that rotational and

translational degrees of freedom are different viewpoints of
the same eigenmodes. In the current case, they are even
assumed proportional to each other thanks to the reasonable
assumption (10). Accordingly, the classical model and the
new model are based on the same number of independent
harmonic oscillators and hence on the same matrix size d.
Therefore, the newmodel significantly improves and refines
the classical model by keeping the same computational
complexity.

In the case study under interest, there is at least one
kink within the fundamental time interval of length τ , pro-
vided that the entrance is taken as starting point (ϕ = ϕin).
Thus, K = 2 in Eq. 76. Some preliminary numerical
investigations were performed in order to determine an ade-

quate matrix size D
(
Ûg

)
for assuring a good accuracy of

the estimated spectral radius. It was assessed that a good
accuracy∣∣∣∣ ρ̂ − ρth

ρth

∣∣∣∣ < 0.001 % (84)

could be achieved in this case by adopting D
(
Ûg

)
= 162,

which corresponded to a number of Chebyshev collocation
points equal to N + 1 = 36. The predicted stability lobes
were determined by calculating a grid of about 80 spindle
speed levels × 40 depth of cut levels.

The obtained results (Fig. 13) evidenced that the classical
model does significantly underestimate the effective stabil-
ity boundaries (more than 50 % of estimate error). On the
contrary, the new approach is much closer to the observed
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Fig. 13 Comparison between
experimental and predicted
stability lobes

stability lobes, although a slight overestimation likely due to
the uncertainties affecting the identified model coefficients
and to other reasonable error sources [14].

The increase of the stability boundaries predicted by the
new model can now be physically interpreted through the
reduction of the regenerative chip thickness (50) and the
stabilizing effect of the axial forces (13).

Moreover, the innovation provided by the new analyti-
cal formulation of regenerative cutting force coefficients (52
and 63) has managed to significantly reduce the computa-
tion time associated to spectral radius estimate.

The computation is performed in two phases. In the first
phase, all the information regarding the cutting process for
a given combination of cutting parameters is assigned to
a Matlab object, which is a structure including the state
space matrixes A and B, the considered cutting parameters,
et cetera. Afterwards, the monodromy matrix is derived and
spectral radius estimate is calculated.

Let us now focus on this latter phase, whose computa-
tion time was deeply discussed in [8]. In accordance to that
work, the computation time had to be about 0.045 s when
monodromy matrix was 162×162, as in the current case (of
course, when using a similar PC).

When performing this calculation according to the incre-
mental/differential approach proposed in [24] for regenera-
tive cutting force coefficient determination, a much longer
computation time of about 0.63 s was observed, which was
also due to the larger state space matrix size (d = 20 instead
of d = 4 as in [8]).

However, when exploiting the new integral formulation
based on the direct analytical expressions (63), the compu-
tation time drops to about 0.33 s, with a relative reduction
of about −47 %.

Thus, a significant gain of computational speed was
achieved thorough the proposed improvements.

11 Conclusions

According to the considerations and results presented in this
work, we may draw the following conclusions.

In a very recent work [24], a new model of milling
dynamics including the effect of additional rotational
degrees of freedom and bending momenta associated to
axial forces was introduced and validated on a case study
where such effects were significant but still moderate.

However, one key result of that work was a new for-
mula for regenerative chip thickness estimation which
incorporated the effect of cutting edge curvature (local
χ ) and the coupling between the axial and radial vibra-
tions of each tooth (depending on the aspect ratio D/L).
Moreover, regenerative forces were correctly oriented in
three-dimensional space, again by considering the local
curvature of the cutting edge. By summing up all the con-
tributions, the final regenerative force coefficients in the
tangential (kc), radial (kr ), and axial (ka) directions could
be determined, according to an iterated incremental proce-
dure which should be repeated for every cutting parameters
combination (n, ap).

Here a new mathematical formulation was proposed—
which is mainly valid for inserted cutters—based on the
analytical solution of the integrals defining the regenerative
cutting force coefficients, which can be preliminarily deter-
mined before launching the calculation of the stability lobe
diagrams. For standard cutting inserts, these formulas are
basic functions of cutting edge geometry (χ1 and rε) and of
the shearing force coefficients kcs and kns .

In addition, a new impressive experimental validation of
the new model of milling dynamics was presented in this
work, by using a face milling cutter with round inserts (D =
50 mm, Zt = 8 teeth, rε = 4 mm) tested on carbon steel in
centered milling configuration, with aL/D ≈ 75 %.
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The following conclusions were obtained from the new
experimental benchmark:

– Secondary transfer functions WϑF and WuM are almost
proportional to the corresponding direct transfer func-
tions WuF by means of the proportionality constants
proposed in section 3; however, some discrepancies
were observed, which were likely due to the unmod-
elled dynamic coupling between tooling system and
spindle; nevertheless, even in this case the new model
is capable of providing a better but still simple and
compact representation of tooling system dynamics.

– For generic cutting edge geometries, the differences
between the new and the classical expressions of the
regenerative cutting force coefficients may be very
large; therefore, the impact of new formulation on the
accuracy of the predicted stability borders may be great
in many practical circumstances.

– Chatter vibrations observed in these conditions may be
really violent and detrimental for the whole machine
tool, thus remarking the importance of absolutely avoid-
ing the onset of regenerative chatter in other similar
applications.

– The classical model does significantly underestimate
the effective stability boundaries (more than 50 % of
estimate error). On the contrary, the new approach is
much closer to the observed stability lobes.

– The increase of the stability boundaries predicted by the
new model can now be physically interpreted through
the reduction of the regenerative chip thickness (Eq. 46)
and the stabilizing effect of the axial forces (Eq. 13).

– A significant reduction of about −45 % of computa-
tion time was observed when performing the stability
analysis, thus demonstrating the gain in computational
speed achieved through the algorithmic improvements
implemented here.

In the future, it will be of strong interest to exploit
the predictive power of the new model for optimizing real
industrial applications.
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