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Abstract Grinding vibrations caused by regenerative cut-
ting force and workpiece imbalance are discussed in this
study. To regenerate workpiece surface, a grinding wheel
is rotated, and pushed towards a rotating workpiece, rub-
bing and cutting its surface, with regenerative and frictional
interactive forces generated. Besides, any mass imbalances
of the rotating workpiece or the wheel is another source
of vibration. To investigate both effects of the regeneration
and the mass eccentricity on the grinding dynamics, a math-
ematical model with time delays and sinusoid excitation
has been developed and analysed. By calculating eigenval-
ues with continuation scheme, linearly grinding stability is
obtained and presented in a lobes diagram, where chatter-
free and chatter regions are identified. For chatter without
workpiece imbalance, a classical periodic chatter induced
by the regenerative effect is found. With imbalance, forced
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periodic vibration, chatter quenching, quasi-periodic chatter
and periodic chatter are obtained in different regions.
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1 Introduction

In majority of machining operations the surface product
quality depends on grinding process which in turn relies on
process stability, since unstable grinding introduces vibra-
tion, which compromises geometrical accuracy and surface
finishing, and also reduces a tool life [1, 26]. Therefore,
it is crucial to understand the mechanisms of grinding
vibration in order to suppress them effectively [14]. In gen-
eral, grinding instability can be externally introduced or
self-induced. The sources of forced vibration include imbal-
ances of wheel, rotary dresser, spindle, motor and pulley
wheel [34]. On the other hand, the self-excited machin-
ing vibration can be classified as frictional, regenerative,
model-coupling and thermo-mechanical [43].

Among various self-excited grinding vibrations, the
regenerative chatter is the most dangerous and has attracted
more attention than any other types of chatter. In 1954, when
the regenerative theory for turning processes was developed
by Arnold, the regenerative stability of an internal-grinding
process with a wear-resistant wheel was first discussed by
Hahn using the Nyquist criteria [2, 10]. Then, a similar
analysis was performed by Snoeys and Brown to investi-
gate stability of a cylindrical grinding process with a wheel
wear [35]. Later on, an alternative approach for the anal-
ysis of the grinding stability was proposed by Thompson
[39, 40]. Using his kinematic model, the Laplace transform
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as well as the exponential growth index, Thompson succes-
sively studied various effects on grinding stability including
contact stiffness and wave filtering [37, 38, 41]. There-
after, Yuan et al. [48] proposed a nonlinear kinetic model
to describe the double regenerative grinding. This model
was then linearised by Liu and Payre [24], who proposed a
novel numerical algorithm to study grinding stability. Then,
nonlinearity in the grinding force was considered by Chung
and Liu [5], who used a perturbation scheme to study the
grinding chatter induced by supercritical Hopf bifurcation.
Thereafter, the Bautin bifurcation induced chatter in both
plunge and traverse grinding processes was investigated by
Yan et al. and Kim et al., respectively [19, 20, 45].

Besides the self-excited regenerative vibration, another
major source of instability is rotating spindle imbalance, i.e.
a workpiece imbalance in grinding. This is due to a mis-
match between the axis of the moment of inertia of the
spindle and its axis of rotation [31], and its correspond-
ing vibration is associated with so-called rotor dynamics.
For a rotating spindle, this vibration can be attributed an
imbalance caused by many effects including accumulation
of dirt, corrosion, erosion and rotor-bearing interaction and
others [33, 49]. The dynamics of rotary shafts was first mod-
elled and systematically studied by Jeffcott, and thus such a
model is coined as “Jeffcott rotor” [16]. Thereafter, a numer-
ous studies have been performed to analyses this model. For
example, Diken [8] investigated sub-harmonic whirling in a
slender Jeffcott rotor. Various dynamical motions of a Jef-
fcott rotor with snubber ring were analysed by Karpenko
et al. [17, 18] and Páez Chávez and Wiercigroch [30]. Tor-
sional vibration of a Jeffcott rotor was studied by Vlajic et
al. [42]. Bifurcation analyses of a nonlinear buckled Jeff-
cott rotor system were carried out by Huang et al. [11, 12].
Effects of a water-film whirl and whip on the rotor dynam-
ics were discussed by Zhai et al. [49]. Simply put, the rotor
dynamics has received a significant attention investigation
since it is very crucial for rotating spindles.

In machining processes, rotating components are com-
prehensively used, and thus rotor dynamics of a spindle with
eccentricity should be considered. To illustrate this point,
in the analysis of turning dynamics, vibration with a work-
piece imbalance were studied by Dassanayake et al. [6, 7],
who numerically modelled whirling vibration of the spindle
with three discs. Huang et al. [13] investigated the turning
dynamics influenced by an imbalance of aerostatic bearing
spindle, and they observed significant changes of vibra-
tion amplitude for different spindle speeds. Tauhiduzzaman
et al. [36] regarded the rotor vibration due to a spindle
imbalance as the major cause of machining error in a dia-
mond turning process. Inazaki and Yonetsu theoretically and
experimentally investigated the effects of wheel imbalance
and eccentricity on the amplitude of workpiece waves in a
surface grinding process [15]. Given both forced vibration

and self-excited regenerative chatter, the mass eccentricity
of the grinding wheel and its effect on grinding force and
workpiece waviness were first investigated by Badger et al.
[3]. The dynamics of a robotic grinding process with mass
eccentricity was experimentally analysed by Rafieian et al.
[32], and a cyclic-impact grinding vibration was observed.
Up to now, however, there has been no research on the
regenerative grinding chatter combined with the effect of the
rotor dynamics.

For the analysis of the grinding chatter with a mass
imbalance in the workpiece, the rest of this paper is orga-
nized as follows. A dynamic model of the plunge grinding
process is proposed in Section 2, where the vertical and hor-
izontal workpiece movements, and horizontal wheel motion
are all considered. The regenerative and frictional effects
between the wheel and the workpiece are modelled. Also,
the workpiece mass eccentricity is included resulting in
an additional harmonic excitation. Then, this model is lin-
earised in Section 3 to calculate eigenvalues for the stability
analysis. In Section 4, numerical simulation and bifurcation
analysis are used to investigate stability and various grind-
ing vibrations. Lastly, some relevant conclusions are drawn
in Section 5.

2 Description of the plunge grinding

In a cylindrical grinding process, a rotary wheel is plunged
into a workpiece in its radial direction, cutting and regen-
erating its surface with grits. Meanwhile, the workpiece is
rotated by a chuck, feeding the wheel in its circumferential
direction. As the workpiece is successively rubbed away by
the wheel, a grinding force between the wheel and the work-
piece is generated pushing each other away. According to
the regenerative chatter theory [2, 24], it is known that the
grinding force is proportional to the instantaneous grinding
depth [9]. Any fluctuation in the depth induces variation of
the force, and consequently the time-varying force excites
the wheel and the workpiece to vibrate. Then, the change
of wheel and workpiece displacements fluctuates the grind-
ing depth and the force. This self-excited vibration, which
is called regenerative chatter, is maintained as long as the
system damping is insufficient.

In addition, due to the rotation of the wheel and the work-
piece, any mass imbalance in the rotors can create another
instability source for the grinding [31]. For rotating machin-
ery, moreover, a mass imbalance can be the main cause
of the vibration. Correspondingly, the rotor undergoes an
externally forced periodic vibration.

Thus, to understand the grinding dynamics involving
both the regenerative effect and the workpiece imbalance,
a mathematical model based on the regenerative theory and
the rotor dynamics is to be proposed.
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2.1 Mathematical modelling of the grinding process

A schematic of the plunge grinding is depicted in Fig. 1,
where the workpiece at its left end (S = L) is simply-
supported by a tailstock and its right end (S = 0) is clamped
and rotated by a chuck. The workpiece is of length L [m],
radius Rw [m], Young’s modulus E [Mp] and mass density
ρ [kg m−3]. Its damping coefficient is denoted as cw [N s
m−1] and its rotation velocity as �w [rad s−1]. At S = P ,
a disc of the workpiece is cut which has width W [m] and
radius rp [m]. In addition, the mass distribution of the disc
is not uniform resulting in a mass eccentricity e [m]. Due to
the workpiece rotation, time evolution of the eccentricity is
given by e = (e sin(�wt), e cos(�wt))T. A grinding wheel
is mounted on a wheel holder, which moves along a slot
with feeding f [m] per workpiece revolution. The wheel is
of mass mg [kg] and radius Rg [m], stiffness kg [N m−1],
damping coefficient cg [N s m−1] and rotates with angular
velocity �w [rad s−1].

The workpiece shown in Fig. 1 can bend horizontally
(Xw(t, S) [m]) and vertically (Yw(t, S) [m]), while the
wheel moves only in the direction of Xg [m]. Due to the
vertical motion of the workpiece Yw(t, S), there is a contact
angle γ of the wheel-workpiece interaction. It is deducted
from Fig. 2 that

γ = tan−1
(a

b

)
= tan−1

(
Yw(t, P )

Rg + Rp − f − Xw(t, P ) + Xg(t)

)
. (1)

Fig. 1 Schematic of a plunge grinding process. A grinding wheel is
mounted on a wheel holder, rotated and plunged into a workpiece. The
workpiece is turned by a chuck, feeding the wheel to grind its disc
located at S = P , which has a mass eccentricity e

Fig. 2 Geometry of the wheel-workpiece interaction where the con-
tact angle depends on the relative wheel-workpiece movement

The workpiece can be modelled as a spatial-temporal
continuum beam with one end clamped and another simply-
supported. As derived in Appendix A, the governing equa-
tion of the grinding dynamics is discretized to be [23]

mg
d2Xg(t)

dt2
+ cg

dXg(t)

dt + kgXg(t) = Fx(t),

mw
d2Xp(t)

dt2
+ cw

dXp(t)

dt + kwXp(t) = 2emd�
2
w sin(�wt) − Fx(t),

mw
d2Yp(t)
dt2

+ cw
dYp(t)
dt + kwYp(t) = 2emd�

2
w cos(�wt) + Fy(t),

(2)

wheremw [kg] and kw [Nm−1] are the equivalent workpiece
mass and stiffness estimated in Appendix A. Moreover, it
should be noticed here that the terms, 2emd�

2
w sin(�wt) and

2emd�
2
w cos(�wt), stand for the effect of the mass imbal-

ance, which exert sinusoid excitation on the workpiece in
the directions of X and Y .

2.2 Grinding force

Besides the imbalance excitation, another instability source
for Eq. 2 lies in Fx(t) and Fy(t), the interaction grinding
forces [26]. As depicted in Fig. 3, Fx(t) and Fy(t) are X-
and Y -components of the grinding force:

Fx = Fn cos γ + Ft sin γ,

Fy = Fn sin γ − Ft cos γ,
(3)

where Fn [N] and Ft [N] represent normal and tangential
grinding forces, respectively.

As an abrasive cutting tool, the grinding wheel uses small
grinding particles to grind the workpiece, exerting inter-
active grinding force on the machining structure [26]. As
seen in Fig. 4, each grinding particle of the wheel cuts and
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Fig. 3 Wheel-workpiece interaction force diagram in the plane

rubs the workpiece surface, generating cutting and frictional
forces in the normal and tangential directions [9, 22]:

fct = ψfcn,

fft = μffn,
(4)

where fct [N] and fcn [N] are tangential and normal cutting
forces, and fft [N] and ffn [N] are tangential and normal
frictional forces, respectively. Here, ψ is a dimensionless
ratio depends on average tip angles of the grinding particles,
and μ is a frictional coefficient.

Considering all grinding particles engages in the pro-
cess, the total normal and tangential grinding forces can be
expressed as [9]

Fn = WKc
�w
�g

Dg(t) + WKf
�w
�g

Dg(t)
1
2 ,

Ft = ψWKc
�w
�g

Dg(t) + μWKf
�w
�g

Dg(t)
1
2 ,

(5)

where Kc [N m−2] and Kf [N m− 3
2 ] are the process coef-

ficients for the cutting and the friction, respectively. Here,

Dg(t) is instantaneous grinding depth depending on the feed
and the relative wheel-workpiece displacements.

The grinding depth Dg(t) can be formulated according
to the regenerative theory. The feed f makes a nomi-
nal depth Dn = f [m] when disregarding the relative
wheel-workpiece displacement. When this displacement is
included, the depth becomes

Dg = f cos(γ (t)) + (
Xp(t) cos(γ (t)) − Xg(t) cos(γ (t)) − Yp(t) sin(γ )

)
.

(6)

Moreover, as seen from Fig. 5, as workpiece material
is successively removed by the wheel, a new surface is
regenerated. As the result, any fluctuation of the relative
wheel-workpiece displacement in the previous workpiece
revolution (at time t − Tw) influences Dg(t) as well. Corre-
spondingly, Dg(t) can be re-written as

Dg = f cos(γ (t)) + (
Xp(t) cos(γ (t)) − Xg(t) cos(γ (t)) − Yp(t) sin(γ (t))

)

−(
Xp(t − Tw) cos(γ (t − Tw)) − Xg(t − Tw) cos(γ (t − Tw))

−Yp(t − Tw) sin(γ (t − Tw))
)
.

(7)

Furthermore, the wheel is wearing as it grinds the work-
piece, hence this double regenerative effect results the depth
to be

Dg = f cos(γ (t)) + (
Xp(t) cos(γ (t)) − Xg(t) cos(γ (t)) − Yp(t) sin(γ (t))

)

−(
Xp(t − Tw) cos(γ (t − Tw)) − Xg(t − Tw) cos(γ (t − Tw))

−Yp(t − Tw) sin(γ (t − Tw))
)

−g
(
Xp(t − Tg) cos(γ (t − Tg)) − Xg(t − Tg) cos(γ (t − Tg))

−Yp(t − Tg) sin(γ (t − Tg))
)
,

(8)

where g is a small dimensionless ratio, indicating that
the wearing speed of the wheel is much slower than the
regenerating speed of the workpiece [34].

Fig. 4 Cutting and frictional
forces generated by a single
grinding particle
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Fig. 5 A schematic of the
regenerative grinding depth
which depends on not only the
current (t) wheel-workpiece
displacement but also that in the
previous revolution (t − T )

In case of no vertical workpiece motion, the rotation peri-
ods in Eq. 8, Tw and Tg are constant [24, 45]. However, if
the contact angle γ is introduced by Yp(t), Tw and Tg, are
transformed into the following state-dependent equations

2π = −γ (t) + γ (t − Tw) + Tw�w,

2π = γ (t) − γ (t − Tg) + Tg�g.
(9)

Besides the regenerative effect, the friction is consid-
ered with a simple Coulomb model, where the frictional
coefficient μ in Eq. 5 is modelled as

μ = sign(Vf)μd. (10)

Fig. 6 Friction coefficient between the wheel and the workpiece as the
function of the relative velocity Vf represented by a simple Coulomb
model

It is shown in Fig. 6 that μ is a function of the tangential
relative wheel-workpiece velocity Vf. As seen in Fig. 7, Vf

depends on the wheel and workpiece rotations, as well as
their planar motions, which is

Vf = Vfg − Vfw, (11)

Fig. 7 Schematic showing tangential relative velocity between the
wheel and the workpiece
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Table 1 Parameter values
converted from ref. [21] Parameters Symbols Values

Workpiece mass [kg] mw 1.415

Workpiece damping [[N s m−1] cw 247.126

Workpiece stiffness [N m−1] kw 4.316 × 106

Workpiece radius [m] Rp 0.0381

Wheel radius [m] Rg 0.0889

Grinding width [m] W 0.0127

Dimensionless ratio [-] ψ 0.443

Frictional coefficient [-] μd 0.443

Wheel period [s] Tg 0.0177

where Vfg and Vfw are tangential velocities of the wheel and
the workpiece at the contact zone:

Vfg = �gRg − dXg(t)

dt sin(γ ),

Vfw = �wRp − dYp(t)
dt cos(γ ) − dXp(t)

dt sin(γ ).
(12)

2.3 Dimensionless mathematical model of the grinding
process with the workpiece imbalance

In order to undertake the stability analysis which results
are generic, Eq. 2 is nondimensionalized by introducing the
following dimensionless parameters:

ξg = cg
√

mw

mg
√

kw
, ξw = cw

√
mw

mw
√

kw
,

κc = Kcmw

kwmg
(Rg + Rp), κf = Kfmw

kwmg

√
Rg + Rp, κg = kgmw

kwmg
,

γw = mw

mg
, ν = f

Rp + Rg
, δ = 8eπ2md

mw(Rp + Rg)

rp = Rp

Rp + Rg
, rg = Rg

Rp + Rg
, p = P

L
,

ωw = �w

√
mw

kw
, ωg = �g

√
mw

kw
,

(13)

and variables:

τ = t

√
kw
mw

, τw = Tw

√
kw
mw

, τg = Tg

√
kw
mw

,

xg(τ ) = Xg(t)

Rg+Rp
, xw(τ ) = Xw(t)

Rg+Rp
, yw(τ ) = Yw(t)

Rg+Rp
,

γ = tan−1
(

yp(τ )

1−ν−xp(τ )+xg(τ )

)
,

dg =
(

ν + xp(τ ) − xg(τ )

)
cos(γ (τ )) − yp(t) sin(γ (t))

−(
xp(τ − τw) − xg(τ − τw)

)
cos(γ (τ − τw))

+yp(τ − τw) sin(γ (τ − τw))

−g
(
xp(τ − τg) − xg(τ − τg)

)
cos(γ (τ − τg))

+gyp(τ − τg) sin(γ (τ − τg))

vf = ωgrg − ωwrp + dyp(τ )

dτ cos(γ ) −
(
dxg(τ )

dτ − dxp(τ )

dτ

)
sin(γ ).

(14)

As a result, the mathematical model of this grinding process
expressed by Eq. 2 is transformed into

d2xg(τ )

dτ 2
+ ξg

dxg(τ )

dτ + κgxg(τ ) = wκf
τg
τw

√
dg (cos(γ ) + μ sin(γ ))

+wκc
τg
τw

dg (cos(γ ) + ψ sin(γ )) ,

d2xp(τ )

dτ 2
+ ξw

dxp(τ )

dτ + xp(τ ) = −wκf
γw

τg
τw

√
dg (cos(γ ) + μ sin(γ ))

−wκc
γw

τg
τw

dg (cos(γ ) + ψ sin(γ ))

+ δ

τ 2w0
sin

(
2π
τw0

τ
)

,

d2yp(τ )

dτ 2
+ ξw

dyp(τ )

dτ + yp(τ ) = wκf
γw

τg
τw

√
dg (sin(γ ) − μ cos(γ ))

+wκc
γw

τg
τw

dg (sin(γ ) − ψ cos(γ ))

+ δ

τ 2w0
cos

(
2π
τw0

τ
)

.

(15)

Fig. 8 Chatter boundaries obtained experimentally and theoretically,
where the solid and dashed lines represent the boundaries predicted in
ref. [21] and by the current model. Circles and crosses are marked for
stable and unstable grinding processes observed in experiments [21]
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2.4 Validation of the model

To validate the proposed model, a stability analysis is car-
ried out, with its results compared with the experimental
works performed by Li and Shin [21]. To this end, param-
eter values used in ref. [21] are converted for equivalent
parameters in the new model, which are listed in Table 1. In
addition, the coefficients for the regenerative and frictional
grinding forces are selected as Kc = 3.74 × 107 N m−2,

Kc = 7.99 × 105 N m− 3
2 and g = 0.1. Employing the pro-

posed model, ignoring the motion of the wheel and using
the given parameter values, grinding stability is studied with
eigenvalue analysis, yielding the stability boundary depicted
in Fig. 8. It is seen that our model has a good performance in
the prediction of the grinding stability, where the stable and
unstable cases are divided by the dashed line. More details
of the stability analysis with the new model are to be given
in the next section.

3 Grinding stability analysis without the
imbalance effect

We will gradually increase complexity when investigat-
ing the grinding stability of the considered model by first
assuming zero eccentricity (δ = 0), so that one can get some
insight into mechanisms governing the grinding stability
and the self-induced chatter.

3.1 Stable grinding

For the stability analysis, the state of steady grinding,
namely the equilibrium of Eq. 15, must be known first.
Hence, the constant displacements, xg(τ ) ≡ xg0, xp(τ ) ≡
xp0, and yp(τ ) ≡ yp0, and zero workpiece imbalance, δ = 0,
are substituted into Eq. 15, which leads to

κgxg0 = wκf
τg0
τw0

√
dg0 (cos(γ0) + μ sin(γ0))

+wκc
τg0
τw0

dg0 (cos(γ0) + ψ sin(γ0)) ,

xp0 = −wκf
γw

τg0
τw0

√
dg0 (cos(γ0) + μ sin(γ0))

−wκc
γw

τg0
τw0

dg0 (cos(γ0) + ψ sin(γ0)) ,

yp0 = wκf
γw

τg0
τw0

√
dg0 (sin(γ0) − μ cos(γ0))

+wκc
γw

τg0
τw0

dg0 (sin(γ0) − ψ cos(γ0)) ,

(16)

where

γ0 = tan−1
(

yp0
1−ν−xp0+xg0

)
,

dg0 = ν − g
(
xp0 − xg0

)
cos(γ0) + gyp0 sin(γ0),

vf0 = ωgrg − ωwrp,

τw0 = 2π
ωw

,

τg0 = 2π
ωg

.

(17)

3.2 Linear model

For the stable grinding process, (xg(τ ), xp(τ ), yp(τ )) should
be stabilized at (xg0, xp0, yp0). To discuss the stability of the
steady grinding, the system is linearised at (xg0, xp0, yp0) by
introducing

X(τ ) = ε

⎛
⎝

x1(τ )

x2(τ )

x3(τ )

⎞
⎠ =

⎛
⎝

xg(τ )

xp(τ )

yp(τ )

⎞
⎠ −

⎛
⎝

xg0
xp0
yp0

⎞
⎠ , (18)

where ε is a small dimensionless parameter, which means
that the fluctuations of X(τ ) are relatively small. Moreover,
from Eqs. 9 and 14, it is known that the contact angle γ ,
the grinding depth dg, and the delays τw and τg are nonlin-
ear functions of (x1(τ ), x2(τ ), x3(τ ))T, and they should be
linearised first.

To begin with, the contact angle γ is linearised by
substituting (18) into Eq. 14 yielding

γ = tan−1
(

yp0 + εx3(τ )

1 − ν − xp0 − εx2(τ ) + xg0 + εx1(τ )

)
.

(19)

Then, γ is expanded in a Taylor’s series as:

γ ≈ γ0 + εγ1, (20)

where

γ1 = yp0(x2(τ ) − x1(τ )) + (1 − ν + xg0 − xp0)x3(τ )

(1 − ν + xg0 − xp0)2 + y2
p0

(21)

is the linear part of γ .
Next, Eqs. 18 and 21 are substituted into Eq. 9 to linearise

the time delays, τw and τg, which yields

2π = −εγ1(τ ) + εγ1(τ − τw) + τwωw,

2π = εγ1(τ ) − εγ1(τ − τg) + τgωg.
(22)

Clearly, Eq. 22 is a transcendental equation with respect to
τw and τg. Thus, the perturbation method is used for the
linear approximation [28]. Expanding τw and τg into

τw = τw0 + ετw1 + o(ε),

τg = τg0 + ετg1 + o(ε),
(23)

substituting (23) into Eq. 22, expanding the equation in a
Taylor’s series, and collecting coefficients of ε0 and ε1 leads
to

2π = ωwτw0,

2π = ωgτg0,
(24)

and

0 = −γ1(τ ) + γ1(τ − τw0) + ωwτw1,

0 = γ1(τ ) − γ1(τ − τg0) + ωgτg1.
(25)
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Solving the above equations results in

τw0 = 2π
ωw

,

τg0 = 2π
ωg

,

τw1 = 1
ωw

(γ1(τ ) − γ1(τ − τw0)) ,

τg1 = 1
ωg

(−γ1(τ ) + γ1(τ − τg0)
)
.

(26)

Here, τw0 and τg0 are constant time delays with respect
to the grinding without considering the vertical workpiece
motion [19, 24, 46, 48].

To find the linear grinding depth, Eqs. 18, 21 and 26 are
substituted into Eq. 14, before the Taylor’s series expansion
is applied to obtain

dg ≈ dg0 + εdg1, (27)

where the linear part of the regenerative grinding depth is
given by

dg1 = (1−ν+xg0−xp0)
3+(xg0−xp0)y

2
p0

(
(1−ν+xg0−xp0)

2+y2p0

) 3
2

×
(
xp(τ ) − xp(τ − τw0) − xg(τ ) + xg(τ − τw0)

)

− (1−ν+xg0−xp0)(2−2ν+xg0−xp0)yp0+y3p0
(
(1−ν+xg0−xp0)

2+y2p0

) 3
2

×
(
yp(τ ) − yp(τ − τw0)

)

+ νy2p0
(
(1−ν+xg0−xp0)

2+y2p0

) 3
2

(
xg(τ ) − xp(τ )

)

− ν(1−ν+xg0+xp0)yp0
(
(1−ν+xg0−xp0)

2+y2p0

) 3
2
yp(τ ).

(28)

Finally, by substituting (20), (21), (23), (26), (27) and
(28), into Eq. 15, one obtains the linear model of the
grinding

M
d2X(τ )

dτ 2
+ C

dX(τ )

dτ
+ KX(τ ) = AV(τ ), (29)

where

V(τ ) =
⎛
⎜⎝

γ1

dg1
dγ1
dτ

⎞
⎟⎠ = DX(τ )+DwX(τ −τw0)+DgX(τ −τg0)+Dv

dX(τ )

dτ
.

(30)

The elements of the coefficient matrices, M, C, K, A, D,
Dw, Dg and Dv, are given in Appendix. B.

3.3 Stability boundaries

The linear stability of the grinding is determined by the
eigenvalues of Eq. 29 which can be obtained by solving the
following eigenvalue equation

∣∣∣λ2M + λ(C − ADv) + (K − AD) − ADwe
−λτw0 − ADge

−λτg0

∣∣∣ = 0,

(31)

where λ represents the eigenvalue and |•| the determinant
of the matrix •. If all the solutions of Eq. 31 have nega-
tive real parts, the grinding is stable. In case of any λ has a
positive real part, a chatter occurs. Thus, to locate the sta-
bility boundary and divide the chatter-free and the chatter
regions, λ = ±iω is substituted into Eq. 31 and its real and
imaginary parts are separated [47]:

� (∣∣−ω2M + iω(C − ADv) + (K − AD) − ADwe−iωτw0 − ADge−iωτg0
∣∣) = 0,

� (∣∣−ω2M + iω(C − ADv) + (K − AD) − ADwe−iωτw0 − ADge−iωτg0
∣∣) = 0,

(32)

where �(•) and �(•) indicate real and imaginary parts of
•, respectively. It is worth reiterating here that Eq. 32 is
transcendental and does not have readily available analyt-
ical solutions. Thus, a numerical continuation algorithm is
employed to determine the stability boundary [29]. Details
of the algorithm are presented in Appendix C.

As an example, parameter values used in the following
analyses are listed in Table 2.

By using the eigenvalue calculation and the continuation
algorithm, the stability lobes, i.e. the stability boundaries,
are obtained [1, 4, 24, 25]. As illustrated in Fig. 9, the
boundaries divide the τw0 − w plane into two parts. Specif-
ically, the up-left part is white, indicating the chatter region
for small τw0 and large w. By contrast, the grey region is
the bottom-right part, corresponding to chatter-free grinding
process with respect to large τw0 and small w.

4 Grinding stability analysis of the full model

When the workpiece mass is uniformly distributed and its
imbalance is ignorable (δ = 0), Eq. 15 is similar to the sys-
tem analysed in our previous work [46, 47]. In that case,
there is no forced vibration in the grinding process and only
the self-induced chatter can be found. If the imbalance is
involved (δ > 0), by contrast, the chatter is interrupted
and various grinding dynamics can occur. To illustrate this
point, the system parameters corresponding to arrows I, II,
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Table 2 Parameter values
selected for further linear and
nonlinear analyses

Parameters Symbols Values

Mass density [kg m−3] ρ 7850

Wheel mass [kg] mg 30

Young’s modulus [Pa] E 2.06 × 1011

Wheel stiffness [N m−1] kg 7 × 106

Workpiece length [m] L 1

Workpiece radius [m] Rw 0.01

Wheel radius [m] Rg 0.15

Disc radius [m] Rd 0.1

Wheel position [m] P 0.5

Workpiece damping [N s m−1] cw 1.2 × 103

Wheel damping [N s m−1] cg 1.0 × 104

Feed [m rev−1] f 0.001

Wheel period [s] Tg 0.027

Dimensionless ratio [-] ψ 1.786

Dimensionless ratio [-] g 0.02

Friction coefficient [-] μd 1

III and IV are selected (see Fig. 9), and their dynamics is
investigated next.

4.1 Forced vibration in the grinding

To begin with, an extensive numerical simulation of the
grinding process along arrow I is performed for the maxi-
mum grinding depth max(dg), see example result shown in
Fig. 10a. As arrow I is located in the chatter-free region,
there is no chatter vibration and max(dg) confirms the sta-
ble grinding. This is seen in Fig. 10b (τw0 = 10), where the
initial fluctuation of dg is quickly damped down.

No self-excited chatter is found on arrow I, since it is
located in the chatter-free region. Without other source of

Fig. 9 Stability boundaries for the grinding process without the work-
piece imbalance effect plotted in τw0−w plane. The boundaries divide
the region into white and grey regions, which correspond to the chat-
ter and chatter-free regions, respectively. The lines with double arrows
marked by I (w = 0.01, τw0 ∈ [5, 16]), II (w = 0.033, τw0 ∈ [5, 16]),
II (w = 0.048, τw0 ∈ [5, 16]) and IV (τw0 = 15, τw0 ∈ [0.04, 0.1])
will be used for further analysis presented in the next section

vibration, one can anticipate a stable grinding process. If the
mass eccentricity of the workpiece is involved, the forced
vibration would arise according to Eq. 15. To illustrate,
both small (δ = 0.1) and large (δ = 1.0) imbalances are
introduced, and corresponding results are plotted in Fig. 11.
As can be seen, a larger eccentricity (Fig. 11b) generally
yields a larger vibration amplitude (Fig. 11a). Moreover,
with respect to the increase of τw0, it shows a descent of the
vibration amplitude. This is attributed to the excitations in

Eq. 15, δ

τ 2w0
sin

(
2π
τw0

τ
)
and δ

τ 2w0
cos

(
2π
τw0

τ
)
, which are in an

inverse square relationship with τw0.

4.2 Grinding dynamics without imbalance

Next investigation of the grinding dynamics is along arrow
II region shown in Fig. 12. Unlike for the system parameters
corresponding to arrow I, it crosses the stability boundaries

Fig. 10 Dependence of the grinding depth on τw0. The system param-
eters correspond to arrow I marked in Fig. 9 (w = 0.1, τw0 ∈ [5, 16]).
b The stable grinding process for τw0 = 10 is displayed in an extra
window
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Fig. 11 Dependence of the
grinding depth on τw0 when the
workpiece imbalance is
considered. The system
parameters vary along arrow I
marked in Fig. 9
(w = 0.1, τw0 ∈ [5, 16]). Panels
(a) and (b) show the system
responses for small (δ = 0.1)
and large (δ = 1.0) workpiece
imbalances, respectively

for three times, and thus both the stable grinding and the
chatter are anticipated to be observed. More specifically,
arrow II region has its left end in the chatter region and
its right end in the chatter-free one. In addition, it crosses
another lobe near it left end (w = 0.033 and τw0 ∈
[6.4, 9.5]). A corresponding bifurcation diagram is depicted
in Fig. 12a, where blue dots indicate max(dg) obtained from
a brute force forward numerical simulation (τw0 increases
from 5 to 16), and red dots are from a backward simulation
(τw0 decreases from 16 to 5). Similarly to the investiga-
tions carried out in [46], we also observe a co-existence of

a stable grinding and a large-amplitude chatter. That is to
say, the chatter is induced by a sub-critical Hopf bifurcation
[45, 46]. More information of the co-existence are given in
Fig. 12b–f. Two chatter motions predicted for τw0 = 5.5 are
depicted in Fig. 12b, d, while the chatter and chatter-free
grinding cases predicted for τw0 = 10 are shown in Fig. 12c
and f.

In the bifurcation analysis, both forward and backward
simulations are employed to reveal the bi-stability in the
grinding process. As known, nonlinearity can introduce
coexisting dynamics, and long-term motion of a system

Fig. 12 Dependence of the
grinding depth on τw0. The
system parameters vary along
arrow II marked in Fig. 9
(w = 0.033, τw0 ∈ [5, 16]). Blue
and red dots indicate the results
from forward and backward
simulations, respectively
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Fig. 13 Dependence of the
grinding depth on τw0. The
system parameters vary along
arrow III marked in Fig. 9
(w = 0.048, τw0 ∈ [5, 16]). Blue
and red dots indicate the results
from forward and backward
simulations, respectively

is determined by its initial condition. In metal cutting
processes, the bi-stability exists extensively. For example,
Molnár et al. recently carried out an investigation of bi-
stability in a turning process, where all the bi-stable zones
for both stable and unstable processes were theoretically
predicted [27]. In our bifurcation analysis with numerical
simulations, the forward and backward simulations are tech-
niques to generate different initial conditions for different
attractors. To illustrate, Fig. 12b, d show two different chat-
ter motions for τw0 = 5.5. To obtain the two motions in the
simulation, the initial condition for Fig. 12b is from the red dot
on its right side (backward), while the motion in Fig. 12d is
started from the blue dot on its left side (forward).

For the bifurcation analysis along arrow III, the width
is increased from w = 0.033 to 0.048, and the bifurca-
tion diagram is depicted in Fig. 13a. Except the co-existence
of the stable and unstable grinding (see Fig. 13d, g com-
puted for τw0 = 15), we also observe the co-existence of
different grinding chatter vibrations, which are shown in
Fig. 13b, e computed for τw0 = 5.5, and Fig. 13c, f com-
puted for τw0 = 10.5. Moreover, another general trend shown
in Fig. 13 is a decrease of max(dg) with respect to τw0.
Following the forward simulation, the chatter amplitudes
in Fig. 13e, c d decreases with respect to the increase
of τw0.

The influence of the contact widthw on the grinding dynam-
ics is analysed by numerical simulations along arrow IV.
As can be seen in Fig. 14, a simple sub-critical Hopf bifur-
cation features here. The grinding process keeps its linear
stability for a small grinding width (w < 0.54), and a
large-amplitude chatter arises suddenly when w exceeds a
critical value. In the backward sweep (w decreases from 0.1
to 0.01), the grinding chatter in the chatter-free region is
observed as well, yielding a co-existence of the stable and
unstable grinding. This phenomenon is depicted in Fig. 14b
and c, corresponding to the chatter and chatter-free grinding,
respectively.

Fig. 14 Dependence of the grinding depth on w. The system parame-
ters vary along arrow IV marked in Fig. 9 (τw0 = 3, w ∈ [0.01, 0.1]).
Blue and red dots indicate the results from forward and backward
simulations, respectively
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Fig. 15 Dependence of the
grinding depth on τw0 when
small workpiece imbalance
(δ = 0.1) is considered. The
system parameters vary along
arrow II marked in Fig. 9
(w = 0.033, τw0 ∈ [5, 16]). Blue
and red dots indicate the results
from forward and backward
simulations, respectively

4.3 Grinding dynamics with workpiece imbalance

Here, both effects of the workpiece imbalance and the
regeneration are considered, so that the dynamic interac-
tions between the forced and the self-excited vibrations
can be investigated. Firstly, a small workpiece imbal-
ance (δ = 0.1) is introduced for the system parameters
along arrow II. The corresponding bifurcation diagram is
shown in Fig. 15, where the system response varies with

respect to τw0 as shown in Fig. 15a and it is very sim-
ilar to that in Fig. 12a with one difference as the peri-
odic chatter is transformed into quasi-periodic one and
the stable grinding becomes oscillatory. These phenomena
can be better understood by comparing Fig. 12b, f with
Fig. 15b, h. In addition, the amplitude decrease of the forced
vibration with respect to an increase of τw0, as depicted
in Fig. 15f, h, demonstrates the same trend as that in
Fig. 11.

Fig. 16 Dependence of the
grinding depth on τw0 when
large workpiece imbalance
(δ = 1.0) is considered. The
system parameters vary along
arrow II marked in Fig. 9
(w = 0.033, τw0 ∈ [5, 16]). Blue
and red dots indicate the results
from forward and backward
simulations, respectively
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Fig. 17 Time histories of the grinding chatter, which is quench by the
large workpiece imbalance for w = 0.033 and τw0 = 6. No imbalance
is considered before τ = 500, and δ = 1.0 is introduced thereafter

Next, a large workpiece imbalance (δ = 1.0) is consid-
ered and the corresponding bifurcation pattern is depicted
in Fig. 16. Here, one can see a shrink of the regions for the
co-existing attractors. More specifically, the co-existence
between the quasi-periodic chatter and the forced vibra-
tion is observed only for τw0 ∈ [9.8, 9.9]. Moreover, it is
seen that the large-amplitude chatter for τw0 ∈ [5.5, 6.4]
is quenched by the large workpiece imbalance. Comparing
Fig. 16c with Fig. 15c, one can deduct that the fluctuation
of the grinding depth dg is dramatically decreased, so that
no losing contact between the wheel and the workpiece is
seen (dg is positive). Meanwhile, the vibration amplitude of
the contact angle γ grows sharply. This transformation is

clearly displayed in Fig. 17, where there is no imbalance for
τ ∈ [0, 500] but δ = 1.0 for τ ∈ (500, 1000]. By reviewing
our previous works [44, 47], one can see that the grinding
chatter can be quenched by various harmonic perturbations
including spindle speed variation (SSV) and the workpiece
imbalance.

For the large imbalance unchanged at δ = 1.0, the
grinding dynamics along arrow III is discussed next. The
bifurcation diagram and its corresponding phase portraits
are plotted in Fig. 18. This bifurcation pattern can be
regarded as a perturbation of that depicted in Fig. 13. How-
ever, unlike the grinding chatter in Fig. 16, δ = 1.0 is not
large enough to quench the grinding chatter with a large con-
tact width (w = 0.048), so only quasi-periodic chatter and
a periodic forced vibration are seen.

Finally, we consider the grinding dynamics along arrow
IV. Unlike those along arrows I, II and III, arrow IV is for
a fixed value of τw0, so that the frequency of the excitations

due to the imbalance, δ

τ 2w0
sin

(
2π
τw0

τ
)
and δ

τ 2w0
cos

(
2π
τw0

τ
)
,

are constant. However, the variation of w results in change
of the chatter frequency. One may find a specific value of
w for a rational frequency ratio, and thus a periodic chat-
ter, instead of the quasi-periodic one, can be observed. And
a such response is shown Fig. 19, where the bifurcation
diagram of max(γ ) is added for a clearer illustration.
As seen in Fig. 19b, most cases of the grinding chatter
along arrow IV are quasi-periodic. On both sides of τw0 =
0.087, as shown in Fig. 19c, d, the quasi-periodic chatter is
obtained. However, as seen in Fig. 19b, a periodic window
shows up in the vicinity of τw0 = 0.087, and thus a periodic
phase portrait is observed in Fig. 19g.

Fig. 18 Dependence of the
grinding depth on τw0 when
large workpiece imbalance
(δ = 1.0) is considered. The
system parameters vary along
arrow III marked in Fig. 9
(w = 0.048, τw0 ∈ [5, 16]). Blue
and red dots indicate the results
from forward and backward
simulations, respectively
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Fig. 19 Dependence of the
grinding depth on w when large
workpiece imbalance (δ = 1.0)
is considered. The system
parameters vary along arrow IV
marked in Fig. 9
(τw0 = 3, w ∈ [0.01, 0.1]). Blue
and red dots indicate the results
from forward and backward
simulations, respectively

5 Conclusions

In this paper, we aimed to obtain a further insight into
the stability of the grinding dynamics, a model involving
the wheel-workpiece regeneration and the workpiece imbal-
ance was proposed. More specifically, time delays were
employed to represent the regenerative effect, and the rotor
dynamics of the workpiece imbalance was included as well.
Such a model involving the planar motion of the workpiece
and the horizontal wheel movement. The resulting normal
cutting and the tangential frictional forces were modelled,
and the state-dependent time delays were used to analyse
regenerative effect. Based on this model, the grinding sta-
bility for the cases with and without workpiece imbalance
were studied.

The stability was numerically evaluated by eigenvalue
and continuation calculations gradually increasing the com-
plexity of the model being analysed. Firstly, the external

exciting was neglected to undertake linear stability analysis
which proved stability boundaries in the form of stability
lobes dividing the parameter plane for chatter-free and chat-
ter regions. It was shown that the grinding stability can be
undermined by the increase of the grinding width W or the
rotary speed of the workpiece �w.

Next, the self-induced and the external-excited grinding
vibrations were investigated through a numerical simula-
tion. In case of a small grinding width (w = 0.01), we
have a chatter-free behaviour, which can be accredited to
the workpiece imbalance. For large grinding width, the
vibration is attributed to regenerative chatter. Moreover, it
was observed that the chatter strength is enhanced by the
increase of the grinding width or the workpiece speed.

Lastly, the combination of the regenerative grinding chat-
ter and the rotor dynamics was considered. With a small
imbalance, the bifurcation patterns of the chatter were
almost unchanged, but the original period chatter was
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transformed into quasi-periodic one, and the chatter-free
grinding becomes forced vibration with a small amplitude.
When the large imbalance (δ = 1.0) was involved, the
fluctuation amplitude of the contact angle was increased.
Specially, the large-amplitude chatter in the linearly chatter-
free region can be quenched by the rotor dynamics, leaving a
forced vibration with small amplitude in the grinding depth
but large amplitude in the contact angle. With a fixed τw0,
the frequency of the external exciting is constant, and in
this case, one can choose a a specific value of w to find
a periodic, instead of other quasi-periodic chatter with a
workpiece imbalance.
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Appendix A Coefficients of the discrete model

Considering bending motions of the workpiece, the wheel
and the disc, the kinetic energy can be described as

T = ∫ L

0
1
2ρπr2w

((
dXw(t,S)

dt

)2 +
(
dYw(t,S)

dt

)2)
dS

+ 1
2md

(
d(Xw(t,P )+e cos(�wt))

dt

)2

+ 1
2md

(
d(Yw(t,P )+e sin(�wt))

dt

)2 + 1
2mg

(
dXg(t)

dt

)2
.

(33)

Assuming the linear elasticity theory to describe the poten-
tial energy of the workpiece and the wheel holder, one can
obtain

V = 1
2

∫ L

0

(
EI

(
d2Xw(t,S)

dS2

)2 + EI
(
d2Yw(t,S)

dS2

)2 )
dS

+ 1
2kg

(
dXg(t)

dt

)2
,

(34)

where I = πr4w/4 is the area moment of inertia of cross-
section of the workpiece. In addition, inherent material
damping and inter-facial damping of the grinding are con-
sidered and represented by a equivalent dissipation function
described by [23]

D = 1
2

(
cw

(
dXp
dt

)2 + cw

(
dYp
dt

)2 + cg

(
dXg
dt

)2)
, (35)

where cw is the equivalent viscous damping coefficient with
respect to workpiece bending, and cg is that of the wheel.

For simplicity, the bending displacement of the work-
piece in the x direction is assumed as

Xw(t, S) =
{

ax0(t) + ax1(t)S + ax2(t)S
2 + ax3(t)S

3 , if 0 ≤ S ≤ P ,

bx0(t) + bx1(t)S + bx2(t)S
2 + bx3(t)S

3 , if P ≤ S ≤ L,

(36)

where axi and bxi (i = 0, 1, 2, 3) vary with respect to time.
Furthermore, boundary conditions with respect to Xw(t, S)

are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xw(t, 0) = 0,
dXw(t,0)

dS = 0,
Xw(t, S) |S→P −= Xp(t),

Xw(t, S) |S→P += Xp(t),
dXw(t,S)

dS |S→P −= dXw(t,S)
dS |S→P +,

d2Xw(t,S)

dS2 |S→P −= d2Xw(t,S)

dS2 |S→P +,

Xw(t, L) = 0,
d2Xw(t,0)

dS2 = 0,

(37)

where Xp(t) = Xw(t, P ) is the horizontal displacement of
the disc. Substituting (36) into Eq. 37, and solving for axi

and bxi (i = 0, 1, 2, 3) yield

Xw(t, S) =
⎧⎨
⎩

3L(2L−P)PS2+(P 2−2LP−2L2)S3

P 3(4L−P)(L−P)
Xp(t), if 0 ≤ S ≤ P ,

−2L3P+6L3S+3L(P−3L)S2+(3L−P)S3

(L−P)2P(4L−P)
Xp(t), if P ≤ S ≤ L.

(38)

Similarly, Yw(t, S) is represented by

Yw(t, S) =
⎧⎨
⎩

3L(2L−P)PS2+(P 2−2LP−2L2)S3

P 3(4L−P)(L−P)
Yp(t), if 0 ≤ S ≤ P ,

−2L3P+6L3S+3L(P−3L)S2+(3L−P)S3

(L−P)2P(4L−P)
Yp(t), if P ≤ S ≤ L,

(39)

where Yp(t) = Yw(t, P ) is the vertical displacement of the
disc.

Next, the governing equation of the grinding is obtained
by Lagrange’s equations

d

dt

∂L

∂(dqi/dt)
− ∂L

∂qi

+ ∂D

∂(dqi/dt)
= Qqi

, (40)

where the Largrange L is L = T − V , qi represents gen-
eralized coordinates, Xg(t), Xp(t) and Yp(t), and Qqi

indi-
cates corresponding generalized forces. Substituting (33),
(34), (35), (38) and (39) into Eq. 40 yields (2), where the
equivalent stiffness and mass for the workpiece are:

kw = 12EIL3

(L−P)2(4L−P )P 3 ,

mw = 70mdP
2(4L2−5LP+P 2)2

35(L−P)2P 2(4L−P )2

+πρL3R2
w(24L4−24L3P−4L2P 2+8LP 3−P 4)

35(L−P)2P 2(4L−P )2
,

(41)
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Appendix B Coefficient matrices

The linear part of the dimensionless governing equation of
the grinding, Eq. 29, has the coefficient matrices M, C, K
and A given by

M =
⎛
⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎠ , C =

⎛
⎜⎝

ξg 0 0

0 ξw 0

0 0 ξw

⎞
⎟⎠ , K =

⎛
⎜⎝

κg 0 0

0 1 0

0 0 1

⎞
⎟⎠ ,

A = (
aij

)
3×3 ,

(42)

where

a11 = wκf
τg0
τw0

√
dg0 (μ cos(γ0) − sin(γ0)) + wκc

τg0
τw0

dg0 (ψ cos(γ0) − sin(γ0)) ,

a12 = wκf
τg0
τw0

1
2
√

dg0
(cos(γ0) + μ sin(γ0)) + wκc

τg0
τw0

(cos(γ0) + ψ sin(γ0)) ,

a13 = −wκf
τg0(τg0+τw0)

2πτw0

√
dg0 (cos(γ0) + μ sin(γ0))

−wκc
τg0(τg0+τw0)

2πτw0
dg0 (cos(γ0) + ψ sin(γ0)) ,

a21 = − a11
γw

, a22 = − a12
γw

, a23 = − a13
γw

,

a31 = wκf
γw

τg0
τw0

√
dg0 (cos(γ0) + μ sin(γ0)) + wκc

γw

τg0
τw0

dg0 (cos(γ0) + ψ sin(γ0)) ,

a32 = wκf
γw

τg0
τw0

1
2
√

dg0
(sin(γ0) − μ cos(γ0)) + wκc

γw

τg0
τw0

(sin(γ0) − ψ cos(γ0)) ,

a33 = wκf
γw

τg0(τg0+τw0)
2πτw0

√
dg0 (μ cos(γ0) − sin(γ0))

+ wκc
γw

τg0(τg0+τw0)
2πτw0

dg0 (ψ cos(γ0) − sin(γ0)) .

(43)

The matrix, D, introduced in Eq. 30 is

D =
⎛
⎝

d11 d12 d13
d21 d22 d23
0 0 0

⎞
⎠ (44)

where

d11 = −yp0

(1−ν+xg0−xp0)
2+y2p0

, d12 = −d11,

d13 = 1−ν+xg0−xp0

(1−ν+xg0−xp0)
2+y2p0

,

d21 = −(1−ν+xg0−xp0)
3−(−ν+xg0−xp0)y

2
p0

(
(1−ν+xg0−xp0)

2+y2p0

) 3
2

, d22 = −d21,

d23 = −yp0
(ν−1)(ν−2)+(xp0−xg0)

2+y2p0+(2ν−3)(xp0−xg0)

(
(1−ν+xg0−xp0)

2+y2p0

) 3
2

.

(45)

Dw is

Dw =
⎛
⎝

0 0 0
w21 w22 w23

0 0 0

⎞
⎠ , (46)

where

w21 = (1−ν+xg0−xp0)
3+(xg0−xp0)y

2
p0

(
(1−ν+xg0−xp0)

2+y2p0

) 3
2

, w22 = −w21,

w23 = (1−ν+xg0−xp0)(2−2ν+xg0−xp0)yp0+y3p0
(
(1−ν+xg0−xp0)

2+y2p0

) 3
2

.

(47)

Fig. 20 Continuation scheme
with eigenvalue calculation for
the stability boundaries
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Dg is

Dg =
⎛
⎝

0 0 0
g21 g22 g23
0 0 0

⎞
⎠ , (48)

where

g21 = gw21, g22 = gw22, g23 = gw23. (49)

Dv is

Dv =
⎛
⎝

0 0 0
0 0 0

v31 v32 v33

⎞
⎠ , (50)

where

v31 = d11, v32 = d12, v33d13. (51)

Appendix C Continuation

A block diagram of the continuation algorithm employed
for stability analysis is illustrated in Fig. 20. As seen, the
algorithm is an iterative trial-and-correct procedure. The
scheme is started with two known adjacent solutions (the ith
and the i + 1st solutions), and the guess for the third (the
i + 2nd) is given with a relaxation parameter r . Next, the
Newton-Raphson iteration scheme is adopted to correct the
guess. In case of non-convergence iteration, r is decreased
for a new guess, until the iteration converges for the third
solution. Moreover, the new solution is accepted only if it
is located in the predefined region. Next, the algorithm goes
to next loop (i = i + 1) if the solutions are insufficient i <

max steps.
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