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Abstract Assembly sequence planning (ASP) can signifi-
cantly improve assembly accuracy and reduce assembly costs
in modern manufacturing industries. Large reflector antennas
are difficult to assemble and urgently need ASP. Based on
genetic algorithms (GAs) and ant colony optimization
(ACO), an approach for ASP of reflector antennas was devel-
oped. An accurate simulation of the assembly of the reflectors
was required for the evaluation and optimization of the ASP.
The initial population was created by ACO and optimized by
GA operators to generate an optimal solution. By releasing the
information on the optimal solution to the ant search paths of
ACO, convergence to a globally optimal solution was accel-
erated. A model of the finite element simulation was used to
simulate the dynamic assembly process of reflectors according
to the algorithm results of the proposed approach (GAACO).
The proposed approach was tested and compared to GA, and
the results indicate that GAACO can improve the quality of
the optimal solution, increase the searching efficiency, and
reduce the probability of finding a local optimal solution.

Keywords Reflector panel assembly . Assembly sequence
planning . Genetic algorithm . Ant colony optimization

1 Introduction

Assembly sequence planning (ASP) is the arrangement of
assembly operations in the product manufacturing industry,
where an optimal assembly sequence is selected from possible
assembly sequences that have been automatically generated
using assembly modeling and are based on some quantitative
and qualitative criteria [1, 2]. Research has determined that
assembly tasks account for 20–70% of the total production
work [3], and in the manufacturing industry, the assembly of
manufactured products accounts for more than 50% of the
total production time and 30–50% of the labor costs, which
makes the ASP problem as one of the basic problems in the
assembly process [4]. The ASP problem determines many
assembly aspects including the number of assembly orienta-
tion changes, number of assembly tool changes, and number
of assembly operation type changes. The optimization results
of the above three aspects can reduce the cost and time re-
quired for the assembly process [5]. Because of the impor-
tance of the assembly sequence, it has attracted interest from
many researchers and engineers in recent decades.

The assembly precedence relation and assembly associa-
tion figure model were first employed to solve the ASP prob-
lem in 1984 [6]. DeFazio and Whitney [7] optimized the
method proposed in [6] by improving the form of questions
and reducing the number of questions to ask the operators.
Mello [8] presented an algorithm method to generate mechan-
ical assembly sequences using a relational model of assem-
blies and disassemblies. Dong et al. [9] proposed a
knowledge-based approach to the ASP problem, which is
connection-semantics-based assembly considering both geo-
metric information and non-geometric knowledge. Bai et al.
[10] proposed an integration strategy for assembly sequence
planning and sequence scheme evaluation and for predicting
whether a collision will occur between the assembly tool and
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assembled components by considering factors such as target
components and assembly resources.

Recently, intelligent algorithms have been rapidly devel-
oped, including the particle swarm optimization (PSO) algo-
rithm, immune optimization approach (IOA), genetic algo-
rithm (GA), and ant colony optimization (ACO) algorithm.
These intelligent algorithms are also widely applied to ASP
problems.

The PSO algorithm, which has powerful local and global
search abilities, has been widely used in assembly sequence
planning and related fields [11, 12]. Lv and Lu [13] proposed
the assembly sequence planning approach with a discrete par-
ticle swarm algorithm (DPSO). The DPSO algorithm can
achieve good results, but is easily affected by the individual
optimal fitness value, and easily tends to convergence in the
early evolution.

The artificial immune system (AIS) has emerged as a novel
branch of computational intelligence [14] during the last de-
cade. Cao and Xiao [15] explored the application of the arti-
ficial immune system (AIS) in the problem of assembly plan-
ning and proposed a novel approach, called the IOA, to gen-
erate the optimal assembly plan based on the bionic principles
of AIS.

In addition to powerful random and global research abili-
ties, less time consumption and high robustness, the GA can
converge efficiently and is easily implemented. In view of the
mentioned advantages, Bonneville et al. [16] first employed a
genetic algorithm for ASP in 1995. After that, many contribu-
tions have been made in ASP topics using GA.

Kongar and Gupta [17] found an optimal (or near-optimal)
disassembly sequence that is crucial to increasing the efficien-
cy of the process based on GA, and a case example was con-
sidered to demonstrate the functionality of the algorithm.

Giudice and Fargione [18] proposed an approach to disas-
sembly process planning that supports searching for the dis-
assembly sequence best suited for both aspects, service of the
product, and recovery at the end of its useful life, developing
two different algorithms.

Seo et al. [19] presented a GA-based approach for an opti-
mal disassembly sequence considering economic and environ-
mental aspects, which is based on a disassembly tree, the
disassembly precedence, and the disassembly value matrix
to optimize a disassembly sequence.

The ant colony (AC) algorithm was first employed for ASP
by Failli et al. [20] in 2000. Based on the assembly by disas-
sembly philosophy, Wang [21] proposed an ant colony algo-
rithm considering feasible and reasonable disassembly
operations.

Yu [22] proposed an improved ACO-based ASP method
for complex products that combines the advantages of the ant
colony system (ACS) and max–min ant system (MMAS) and
compared them with the methods of priority rule screening,
genetic algorithm, and particle swarm optimization. MMACS

is verified to be superior in efficiency and sequence
performance.

Cong and Zhuo [23] proposed an approach for solving
integrated assembly sequence planning and assembly line
balancing with the ant colony algorithm, in which the assem-
bly task priority diagram was built based on the assembly
information, and the assembly sequences were evaluated at
each work station of the assembly line separately.

Many researchers have also mixed two or more intelligent
algorithms, including bacterial chemotaxis combined with the
genetic algorithm [24], immune algorithm combined with the
particle swarm optimization algorithm [25], and ant colony opti-
mization combined with the genetic algorithm [26, 27] to obtain
hybrid algorithms with better searching ability. Due to the large
radius, hundreds of parts, and complicated structures, the assem-
bly of a large reflector antenna has a great impact on its devel-
opment cycle and reflector accuracy [28, 29]. For example, the
development cycle—which includes the design, manufacture,
assembly, and more—of an antenna with a 35-m radius is
15 weeks, and its assembly requires 8 weeks, where 2/3 of the
8 weeks are used to adjust the reflector panels to meet the surface
accuracy requirements. These problems can be improved by
ASP during the design stage to shorten the development cycle,
reduce labor costs, and improve reflector accuracy.

When comparing the advantages and disadvantages of GA
and ACO, it can be determined that these two intelligent al-
gorithms (IAs) are complementary, which suggests that the
combination of GA and ACO could produce a more efficient
and superior IA for ASP problems. Based on this idea and the
assembly process of a reflector antenna, an ASP method for a
reflector antenna was developed by combining the finite ele-
ment analysis method and GAACO.

There has been some research on the combination of GA
and ACO [26, 27]. Kucukkoc and Zhang [26] proposed a novel
hybrid-agent-based ant colony optimization–genetic algorithm
approach for the solution of a mixed model parallel two-sided
assembly line balancing and sequencing problem. Akpinar
et al. [27] presented a new hybrid algorithm that executes ant
colony optimization in combination with the genetic algorithm
(ACO-GA) for a type I mixed-model-assembly line balancing
problem with some particular features of real world problems
such as parallel workstations, zoning constraints, and sequence-
dependent setup times between tasks.

However, these combination algorithms of GA and ACO
are unsuitable for the assembly optimization of the reflectors.
In [26] and [27], ACO is the main algorithm, and GA is intro-
duced into ACO; in addition, assembly line balancing is also
the aim of these two ACO-GA algorithms; third, the assem-
blies of reflectors are much different from common products,
which are more complex and difficult to control.

The basics of our proposed ASP method are as follows: First,
we analyze the assembly process of the reflector and propose a
finite element simulationmethod for it. Second, the parameters of
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the panels are encoded into chromosomes, considering the pre-
tightening forces and the assembly sequences of panels. Third,
the initial population is generated by the ACO algorithm, which
can guarantee the quality and improve the diversity of this initial
population to a great extent. Fourth, an optimized solution is
obtained and optimized further by GA operations, which in-
cludes selection, crossover, and mutation. The pheromones ac-
cording to the quality of the optimized solution are then released
into the ant optimization paths, which are the feedback to guide
the searching ants. This operator can obviously accelerate the
accumulation of information about the optimal solution. Fifth,
when the termination condition is met, the optimal solution is
decoded and employed into a finite element simulation for the
assembly process of the reflector. The optimal solution is obtain-
ed under the condition that the simulation results satisfy the ac-
curacy requirement. Otherwise, the pheromones are updated, the
information on each ant is cleared, and the process is repeated
until an optimal solution that meets all conditions is obtained.
The proposed ASP algorithm considers the finite element meth-
od, GA and ACO algorithm, which can improve the quality and
searching efficiency to find the best assembly sequence and re-
duce the probability of finding a local optimal solution.

2 Finite element simulation method of reflector

Because a reflector is divided into several rings and consists of
numerous panels, which are limited only by their manufactur-
ing technology, the large reflector antenna is always assem-
bled as follows: first, the back-up structure is assembled, and
then the panels are assembled successively to compose the
reflector. Each panel is placed in its appropriate position on
the backup structure, and then the screws or rivets of the panel
are tightened in a fixed sequence to fasten the panel.

To precisely simulate panel assembly and reduce the num-
ber of calculations, we propose that the “life–death element
technique” be employed for finite element simulation. The
“life–death element technique” can control the states of the
parts during the assembly simulation by commands named
“ekill” and “ealive”. This method can overcome the multiple
modeling, meshing times, and computationally high expense
of the conventional method.

All components of the reflector are created first. All panels
are then “killed” via the command “ekill”, which means that
the panels do not appear in the model. When one panel will be
assembled, the panel can be “revived” via the command
“ealive” to express the panel appearing in the model.
“Killed” in this paper refers to multiplying a very small coef-
ficient [ESTIF] to the stiffness matrix of a panel unit; the panel
will disappear in the model, and all its parameters—including
mass, damp, and specific heat—are set to zero. “Revived”
means using the same method to make the panel appear in
the model, and all its parameters are recovered.

This simulation method overcomes the requirements of the
conventional simulation method including multiple modeling
and meshing times and much algorithmic work, and it is com-
putationally very expensive, which also improves the preci-
sion of the simulation of the reflector’s assembly.

The simulation process is illustrated by an example of a 9-
m reflector antenna shown in Fig. 1. The finite element geo-
metric model of this case is shown in Fig. 2. The reflector is
made up of three rings; each ring has 12 large-scale panels
(Fig. 2), and each panel has four screws (Fig. 3) to fasten the
panel onto the structure. This antenna is also based on the
finite element method proposed above; the simulation model
is created and the simulation is performed by ANSYS. The
test of this simulation method is shown in Section 6.

3 Basic genetic algorithm

3.1 Chromosome code for assembly sequence

According to the features of the assembly process of the
panels, each panel can be encoded into genomes of the GA
that can be modeled with the following parameters:

Paneli={Numberi,Ringi,Gravityi,Fi, Seqi};
iith assembly step
NumberiNumber of panels
RingiRing number of ith assembly step
GravityiGravity of ith assembly step
FiPre-tightening force of screws
SeqiTightening sequence of screws
The fixture and fastening tools are not considered in the

genomes because these tools will not change during the re-
flector assembly process. That means all panels will be fas-
tened with the same fastening tools, and all panels will be
fixed with the same fixtures.

In this section, a description of the GA formulation in this
paper is provided. The example of the 9-m reflector antenna
mentioned in Section 2 is used to illustrate this process.

There are several main encoding rules of GAs, including
binary encoding rules, floating point number (decimal num-
ber) encoding rules, and delta encoding rules. We chose float-
ing point number encoding rules because of their high preci-
sion and ease of expansion.

(1) i is the assembly step number, where i∈{1, 2, 3, ..... ,N},
which is different from the value of Numberi. N is equal
to the number of sheet parts. We use an integer to denote
the assembly step number, which can be described as the
ith step. In this case, i∈{1, 2, 3, ..... , 36}.

( 2 ) Number i i s t h e shee t pa r t numbe r, whe re
Numberi∈ {1, 2, 3, ..... ,N}. N is equal to the number
of sheet parts. In this case, Numberi∈{1, 2, 3, ..... , 36}.
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(3) Gravityi is the gravity number of the ith assembled sheet
part, where Gravity i=1 ,2 ,3.....G. In this case,
Gravityi∈{1, 2, 3}.

(4) Fi is the pre-tightening force of one screw or rivet of the
ith assembled sheet part, where Fi=1, 2, 3, 4.....F. In this
case, Fi∈{1, 2, 3, 4}.

(5) Seqi is the tightening sequence number of one screw or
rivet of theith assembled sheet part, where Seqi=1, 2,
3,......S. For example, in this case, Seqi=1, 2, 3,....19
when the number of screws in one sheet part is four
(Fig. 2, Table 1). Plan 1 (1–2–3–4) means tightening
the four screws in the sequence of 1, 2, 3, and 4. Plan
13 (1, 2–3, 4) means tightening screws 1 and 2 simulta-
neously and then tightening 3 and 4 simultaneously. Plan
17 (1, 2, 3–4) means tightening 1, 2 and 3 at the same

time and then subsequently tightening 4. Plan 19 (1, 2, 3,
4) means tightening the four screws at the same time.

3.2 Fitness function

A fitness function is used to evaluate the quality of the assem-
bly sequence and can be expressed by considering the prop-
erties of certain assembly processes [18–21].

In the actual engineering, the accuracy is not the only factor
considered; the cost to develop an antenna—labor cost and
time cost—is the other main factor. Thus, the fitness function
has considered the accuracy and the cost of the assembly of
the reflector to establish a more accurate and comprehensive
evaluation criterion. The fitness value of the individual of the
algorithm influences the quality of the next generation. The
accuracy of each optimal solution considered in the fitness
function (obtained assembly sequence of every search) is fed
back to the algorithm to reach the optimal solution quickly.

Panels are “ revived” and

assembled in any sequence

until all panels have

been assembled

Framework assembly

has finished

Panels have been

created and “ killed”

The first panel has

been “ revived” and

assembled
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Fig. 1 The finite element
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This can make the fitness function smarter and more suitable
for this case and revise the next generation searching solution
of the algorithm. Therefore, in this study, considering the as-
sembly process of this reflector, the fitness function is defined
as follows:

Fitness Pið Þ ¼
XN
i¼1

1

gi xð Þ
� �

þ
XN
i¼1

1

f 1ij þ f 2i
� � ð1Þ

where N is the number of panels in the antenna, and
gi(x), f1ij and f2i represent three major factors of the
assembly sequence for this antenna, which are the

assembly deformation of panels, the extra cost between
the ith panel and i + 1st panel, and the cost of each
panel during assembly, respectively. The cost consists
of labor cost and time cost, and the labor cost is judged
by the salary (hourly wages multiplied by working time)
of the assembly workers, and the time cost is judged by
the time to complete the assembly of the reflector.

gi(x) is related to the tightening sequences and forces of
screws and the gravity of panels. It can be computed by the
finite element method proposed in Section 2 based on F=Kδ,
where F is the force, K is the fitness matrix, and δ is the

displacement of panels.

f 1ij ¼
Ringi−Ring j

�� ��þ mod
Numberi

12

� �
−mod

Number j
12

� �����
����; mod

Numberi
12

� �
−mod

Number j
12

� �����
����≤6

Ringi−Ring j

�� ��þ 12− mod
Numberi

12

� �
−mod

Number j
12

� �����
����

����
����; mod

Numberi
12

� �
−mod

Number j
12

� �����
���� > 6

8>><
>>:

ð2Þ

f1ijis computed as Eq. (2). The mass of each panel is
always in the tens or hundreds of kilograms, which
must be moved by several workers and lifting machin-
ery. The distance between the ith panel and the i+ 1st
panel determines the workload and required time for
moving the panel and the lifting machinery, which is
related to the assembly sequence of panels. The distance
between the Nos. 2 and 6 panels is longer than the
distance between the Nos. 2 and 3 panels. Eq. (2) is
used to estimate the distance between the panels, where
“mod” means taking the remainder of the calculation
results of Numberi

12

� �
and Number j

12

� �
. |Ringi−Ringj| is the

ring distance between the two panels (radial distance).
mod Numberi

12

� �
−mod Number j

12

� ���� ��� and
12‐ mod Numberi

12

� �
−mod Number j

12

� ���� ������ ��� are the circumference
distances.

f2i, defined as f2i=Fi+ωi ⋅Fi, estimates the labor costs
and required time of the ith panel during the assembly
process based on the assumptions that the pre-tightening
force and the labor cost for tightening each screw are
the same. The value of Fi, illustrated in Section 3.1, is
the time cost required to tighten the screws. Pre-
tightening forces of screws may be imposed several
times, which will cause extra time to tighten the screws.
The value of ωi is illustrated by Eq. (3) and is the time

cost of each tightening sequence. ωi ⋅Fi is the extra la-
bor cost to tighten screws.

ωi ¼
4; Seqi∈ 1; 12½ �
3; Seqi∈ 13; 16½ �
2; Seqi∈ 17; 18½ �
1; Seqi ¼ 19

8>><
>>:

ð3Þ

3.3 Operations of GA

The population selection is based on the roulette wheel meth-
od which generates a mating pool from the previous genera-
tion to select parent chromosomes [21]. Once the parent chro-
mosomes are selected, the crossover operation that depends on
Pc can begin. After the crossover operation, the chromosomes
mutate with Pm. The crossover operation will exchange the
attributes between the genes of two parents with the same part
number, and the crossover genes are selected randomly. If the
probability Pm(Pc) set in advance is greater than the random
probability Prm(Prc) generated by the system in each opera-
tion, then the candidate is ready to undergo a mutation (cross-
over). Otherwise, it maintains its properties and does not un-
dergo change.

Table 1 Tightening sequences of screws

No. 1 2 3 4 5 6 7 8 9 10

Tightening sequence 1–2–3–4 1–3–4–2 1–2–4–3 1–3–2–4 1–4–3–2 1–4–2–3 3–4–1–2 3–1–2–4 3–1–4–2 3–1–4–2

No. 11 12 13 14 15 16 17 18 19

Tightening sequence 3–2–1–4 3–2–4–1 1, 3–2, 4 1, 2–3, 4 1, 4–2, 3 3, 4–1, 2 1, 2, 3–4 1, 4, 3–2 1, 2, 3, 4
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4 Basic ant colony optimization

Each panel is an assembly part. The ants are gathered in the
first panel (the basic assembly part, which is selected random-
ly), and then under the guidance of pheromone intensity τij
(namely, transition probability) and the heuristic information
ηij, the ants move to the next node and select the next panel
from the candidate list. The assembly information matrices of
panels are the genomes of the panels in GA. Thus, the calcu-
lation of the main parameters of ACO, including pheromone
intensity and heuristic information, are all related to the pa-
rameters of the genomes of GA.

The ACO algorithm rules are derived in this section, and
there are two basic parameters of ACO to explain. One is the
pheromone intensity, τij, which is the positive feedback of
pheromone accumulation [24]. The more ants are in one path,
the greater the probability of the later ants choosing this path.
ηij relates to the distance and assembly direction between two
cities and is the problem-dependent heuristic information of
ACO that can evaluate the pros and cons of pheromone tours.
In this study, ηij concerns the changes from the ith step to the
jth step and can be defined as

ηij ¼
1

f 1ij
ð4Þ

In the integrated ASP and ACO, the ants should search the
tasks with a transition probability. The transition probability
through which each ant selects task j after current task i is
completed by introducing a new constant, a threshold q0 of
the pheromone, which determines the relative importance of
exploitation versus exploration to avoid losing diversity and
appearing “stagnant”. When ant k of the searching process
moves from i to j, the algorithm will generate a random num-
ber q that is uniformly distributed (0<q<1). Ant kwill choose
the tour with more pheromones when q>q0. Considering the
above, the transition probability P is defined as follows:

P ¼
pkij ¼

ταijη
β
ijX

ταijη
β
ij

; q > q0

argmax τ ij
	 
α

ηij
h iβ� �

; q≤q0

8>>><
>>>:

ð5Þ

where the probabilistic state transition rule pkij is calculated
according to the number of pheromones and heuristic infor-
mation, and α and β are the parameters that determine the
relative importance of pheromone versus distance.

In this case, all ants can deposit pheromones, and the pher-
omones will guide the ants to select a tour and volatilize at the
same time [23–25]. The global updating rule is used for
updating the pheromone level of all paths after the ants finish
the tour, after which the pheromones on all paths will be evap-
orated, and the extra pheromones will be added only to the

paths of the current global optimal solution. The global
updating rule can be represented by

τ ij ¼ 1−ρð Þ⋅τ ij þ ρ⋅Δτ ij ð6Þ

Δτ ij ¼ L−1gb ; pathij∈gbt
0; otherwise

�
ð7Þ

where 0<ρ<1 is the global pheromone release coefficient
that can evaluate the decay of pheromones, gbt is the global
best tour,Δτij is the addition of the extra pheromone of the ant
moving from i to j, and Lgb is the length of the global best tour
of the trial. In this case, Lgb is the fitness of the global optimal
solution found at the current evolution stage.

The local updating is used for updating the pheromone
level of the path only when the ants visit it, and it can be
represented by

τ ij tð Þ ¼ 1−ζð Þτ ij þ ζ⋅τ0 ð8Þ

where 0< ζ<1 is the local pheromone release coefficient,
which determines the pheromone volatility on the path from
task i to task j, and τ0 is the initial pheromone level on the tour.

The candidate list allowedki is based on the assembly rela-
tions between panels, which are all contained in the genomes
of panels. In the dynamic update of the candidate list, kwill be
removed from candidate list allowedki ¼ 1; 2; 3; ⋅⋅⋅⋅⋅⋅;Nf g af-
ter the assembly of the No.k panel.

5 The algorithm framework

Combining the GA rules and ACO rules, Fig. 4 shows the
framework of GAACO for assembly sequence planning.
The following is the detailed procedure:

Step 1: Set the initial parameters of GA and ACO, includ-
ing the initial population, mutation rate, crossover
rate, and stoppage criteria, and set the initial gen-
eration n = 1 and cycle counter nc = 1.

Step 2: Set the initial population; each ant selects its initial
feasible node and starts its tour.

Step 3: Generate the initial population by the sequences ofm
ants obtained from the completed tour. Then go to
step 6.

Step 4: Choose the next feasible node according to the ACO
rules described in Section 3. Add the component of
the feasible node to the tabu list of the ant. Locally
update the pheromone according to Eq. (8), and re-
turn to step 3.

Step 5: Calculate the fitness of each chromosome, which
will serve as the criterion for the evaluation of the
chromosome (Section 3.3), and sort the chromo-
somes by fitness value.

Step 6: If the termination condition is met, execute step 11.
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Step 7: Choose chromosomes from parents using the rou-
lette wheel method (Section 3.3) and according to
the fitness value calculated in step 5.

Step 8: Crossover operations are performed, and the unfea-
sible chromosomes are removed.

Step 9: Mutate chromosomes according to Section 3.3. After
the operations of crossover and mutation, the attribu-
tions of parent chromosomes are changed.

Step 10: A new population is generated, and the information
of the new population will feed back to the tour of
ACO. Globally update the pheromone using
Eq. (6); empty the sequence, candidate list, and
tabu list of each ant; set n = n + 1 and nc = nc +
1; and return to step 2.

Step 11: Output the reversed best sequence.

6 Case study

6.1 Case study

To validate the proposed method and algorithm, the fi-
nite element simulation model of this 9-m reflector an-
tenna (described in Section 2) was created with ANSYS
according to the method illustrated in Section 2, as

shown in Fig. 5. The simulation results can be judged
by the RMS (root mean square) value of the panel de-
formation, which is to judge the accuracy of the reflec-
tor. The calculation of the RMS is shown in reference
[27]. In this section, Max-Z represents the max dis-
placement of the Z-axis; δz represents the RMS value
of the Z-axis displacement; and Max-δz represents the
maximum value of δz of the assembled panels.

Based on the guidelines of studies in [18, 26], the
parameters were selected as follows: termination gener-
ation N=400, Pc=0.9, Pm=0.05, α=1, β=1, ζ=0.1, ρ=0.2,
and q0=0.2. With the above parameters and simulation
model, the ASP algorithm model of the reflector was
completed, and the flowchart of the reflector assembly
based on ASP is shown in Fig. 6. The GAACO algo-
rithm, programmed by the MATLAB software program,
and the finite element simulation model, created by
ANSYS (APDL), are joined by programming (C pro-
gramming language). The calculation results of
GAACO will be parsed and employed into the finite
element simulation automatically by programming, and
then the simulation is started, and the simulation results
(deformation) are fed back to the algorithm to calculate
the fitness function (including the deformation and the
cost) by programming.

It is noted that the unfeasible chromosomes (identi-
fied in this case) were removed and not classified in the
new population. The unfeasible chromosomes were
identified if the following were not met: first, the new
genes should be in line with part features in engineer-
ing; and second, at least one of the new genes should
be different from the genes of the original chromosome.
The unfeasible chromosomes are identified, detected,
and removed automatically by the algorithm program-
ming with MATLAB after each searching and
optimization.

Start tour, let nc=1

Calculate the fitness of 

all chromosomes and order them 

Choose chromosomes as parents

Crossover operation

Mutation operation

Generate new population, 

let n=n+1,nc=nc+1

Y

Initialize population by ACO, let n=1

Locally update pheromone

Set all parameters

Optimal solution obtainedTermination condition 

N

Globally update pheromone

Fig. 4 Flowchart of GAACO

Fig. 5 The finite element simulation model (meshing) of the antenna
reflector
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6.2 Discussion

Figure 7 shows the comparison of the simulation results and
the measurement results of the assembly of the reflector in
actual engineering. The Max-Z values of the simulation re-
sults and measurement results are 5.362 and 5.563 mm, re-
spectively, the Max-δzvalues are 0.604 and 0.62 mm, respec-
tively, and the final (36th assembly step) δz values are 0.482
and 0.5 mm, respectively. The error of δz (3.6%) is less than
5% (value of engineering experience), which indicates that the

simulation results conform to the measurement results. This
demonstrates that the reflector antenna model and simulation
method are correct and effective.

The algorithm that contains only GAwas used as the basis
of the comparison, and all parameters were the same as in
GAACO. The algorithm results are discussed in this section.

Based on the assembly optimization process in Section 5,
the convergence curves of GA and GAACO are shown in
Fig. 8 (calculation results of MATLAB). The multi-objective
fitness value is on the Y-axis, and the iteration number is on the
X-axis. The best assembly sequence (BAS)—that is, the glob-
al optimal solution obtained by GA (n = 372)—is 9–4–3–10–
1–6–14–2–7–11–8–20–12–5–23–16–22–15–18–21–13–33–
17–19-34–28–36–30–26–24–32–31–27–29–25–35. The
BAS obtained by GAACO (n = 298) is 2–6–10–5–3–1–9–
4–14–11–7–12–8–20–16–36–30–26–22–13–23–25–15–18–
19–17–34–28–33–24–32–21–31–27–29–35. The above two
BAS are employed in the finite element simulation model
(explained in Section 2) to calculate the deformation results
of the reflector, which are shown in Fig. 9, and to compare the
measurement results to those of the actual assembly of this
reflector without considering the ASP problem.

The following conclusions can be obtained through the
calculation results and experimental data:

The ASP algorithms based on GA and GAACO for the
reflector converge to n = 372 and n = 298, respectively, which

a) The comparison of Max-Z of panel deformation 

b) The comparison of RMS of panel deformation 

Fig. 7 Comparison of the actual
process and simulation results. a
The comparison of Max-Z of
panel deformation. b The
comparison of RMS of panel
deformation

Construct mathematics model of ASP based on GA and ACO

Calculate the optimal solution

Satisfy accuracy requirement

Finite element simulation of

the optimal solution

Generate new population

based on the GA and ACO

Finish

Decode the optimal solution

N

Y

Fig. 6 Flowchart of the reflector assembly based on ASP
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intuitively suggest that the two ASP algorithms are both cor-
rect. It also proves that the GAACO converges more quickly
than GA. This is because the initial population in the GAACO
is of higher quality than that in the GA. The initial populations
are obtained from the ants that completed the tour in the ACO
and randomly by system in the GA. In addition, the samples of
GAACO are more diverse than GA in the later searching
stage.

1) The reflector accuracies of the BAS based on GA and
GAACO are 0.225 and 0.2 mm, respectively (Fig. 9)

and are much smaller than the measurement result
(0.447 mm), which demonstrates that the ability of ASP
to improve the accuracy of the reflector is highly efficient,
and the better accuracy of GAACO than GA may be
because the evaluations of GAACO are made more pre-
cise and efficient by introducing the simulation results.

2) The best fitness values (Fig. 8) of GA and GAACO are
1.7104 (n = 392) and 1.5689 (n = 332), respectively,
which also indicate that GAACOhas a faster convergence
rate than GA and a superior optimal solution. The fitness
function of GAACO considering the simulation results is

a) The comparison of Max-Z of panel deformation 

b) The comparison of RMS of panel deformation 

Fig. 9 Comparison of the actual
process with the GA andGAACO
results. a The comparison of
Max-Z of panel deformation. b
The comparison of RMS of panel
deformation

Fig. 8 The calculation results of GAACO
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smarter than the fitness functions of other algorithms and
more precise and efficient to guide the research.

3) According to Fig. 8, the convergence curve of GAACO
decreases more rapidly than GA, which is evidence that
the searching ability of GAACO is more efficient than
that of GA. The faster convergence rate of GAACO ben-
efits from the information of the optimized solution feed-
back to the tour of ACO, which accelerates the progress
towards an optimal solution.

4) According to the accumulation results (Fig. 8), the com-
putation speed of the GAACO algorithm is relatively
faster than GA, and the algorithms of GA and GAACO
have great stability. The combination of GA and ACO
improves the convergence to an optimal sample.

7 Conclusion

The difficulties faced in accurately assembling and evaluating
large reflector antennas have significant influences on their
electrical properties. This paper presents an assembly optimi-
zation approach based on the GA and ACO algorithms to
predict and control the assembly of reflectors.

Using the GA as a base algorithm and introducing ACO
into the GA, the proposed GAACO algorithm compensates
for the low diversity of samples in later GA searches and
offsets the “stagnation” and “blind random searching” of the
single ACO algorithm, thus accelerating the convergence rate
of the algorithm. Simultaneously, the finite element simulation
results of the optimal solutions are introduced into the fitness
function and termination criteria to evaluate the performance
of the proposed approach precisely, which make the fitness
function more efficient, smarter, and more suitable for the
assembly optimization of the reflector. In addition, the finite
element simulation method of this optimization approach is
achieved using the “life–death element technique”, which re-
quires less computation time and is computationally cheaper
than the conventional method. A case study of a 9-m reflector
antenna is performed, and the algorithm results based on the
proposed approach were compared against the measurement
results and the results of GA, which indicate that the proposed
approach can obtain the optimized results faster and better,
accurately predict the reflector’s assembly results, significant-
ly reduce the assembly errors, shorten the assembly cycle, and
reduce the labor consumption.

Further work may examine the performance of this ap-
proach with other constraints in assembly sequence planning,
including human factors, and machine and workstation as-
signment, and develop an algorithm with faster convergence
and possibly specialized software.
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