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Abstract Against the sweeping trend of mass customization,
the importance of product platform design is becoming in-
creasingly recognized by the manufacturers. Module design
is the foundation of product platform design, and module par-
tition determines the effectiveness of module design.
Traditionally, the vast majority of existing module partition
methods ignored the design factor of customer preferences.
This study proposes to employ the basic principles of robust
design to make the module partition schemes less sensitive to
the dynamically changing customer preferences by consider-
ing them as a noise factor. A criterion function and a noise
function are each established based on the component-
component correlation matrix and component-function contri-
bution matrix, respectively. The criterion and noise functions,
when combined, lead to a unique multi-objective optimization
problem. Furthermore, an improved Pareto archive particle
swarm optimization (PAPSO) algorithm is introduced to solve
the multi-objective optimization problem in order to prevent
the premature selections of non-optimal solutions. A case
study is presented to showcase how the proposed new method
is followed to conduct the module partition on an electric-
traction drum shearer. The improved algorithm demonstrates

highly competitive performance in comparison to the existing
multi-objective optimization algorithms.

Keywords Module partition .Multi-objective optimization .
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1 Introduction

The manufacturing paradigm is rapidly transforming from
mass production to mass customization. Against such a back-
ground, customers’ growing demands for a greater variety of
products have motivated the manufacturers to increasingly
adopt the product platform strategy [1]. Modular design is
the foundation of product platform design, which is widely
considered to be a practically viable strategy to achieve mass
customization in an economical manner [2]. Module design
consists of module partition and module combination. The
former and the latter are each related to a product’s functional
structure and physical architecture, respectively. It has been
indicated by many previous studies that the design decisions
regarding module partition impose significant impacts on a
product’s functionality and cost [3].

To date, the topic of module partition has been extensively
investigated by many researchers. For example, Umeda pro-
posed a method to first determine the modular structure by
aggregating various attributes that are related to a product’s
lifecycle and then evaluate the geometric feasibility of the
modules. Simpson et al. discussed the applicability of the
multi-objective optimization approach in modular design,
based on which they introduced a genetic algorithm-based
approach [4]. Moon et al. prescribed a multi-objective particle
swarm optimization (MOPSO) method to identify the most
suitable product platform from a set of Pareto-optimal solu-
tions [5]. Algeddawy et al. employed the design structure
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matrix (DSM) to cluster different product components into
modules based on the principles of minimum external inter-
faces and maximum internal integration [6]. Özacar et al. pro-
posed a method for modular ontology development, in which
modules are designed as a combination of more abstract mod-
ules found in the upper levels of the hierarchy [7]. By com-
bining the essences of flow analysis, DSM, and fuzzy cluster-
ing, Li et al. proposed an integrated product modularization
approach to build flexible product platforms [8]. Jin Cheng
proposed a nested genetic algorithm to address the nonlinear
constrained interval optimization issues, and this method is
proven to be especially effective for optimizing complex en-
gineering structures under uncertainties [9]. Based on the
combination of axiomatic design and fuzzy dendrogram,
Rijun Wang proposed an integrated module division method,
which uses the top-down product module partition strategy to
make different modules functionally independent of each oth-
er and reduce the computational efforts required to complete
the module division [10]. Based on the theory of function
flow, Cong Xiao proposed a module partition method that
combines customer requirements, function decomposition,
and function realization with modular partition by the function
chain [11]. Based on the functional flow, Shuying Gao pro-
posed three basic rules of module partition for the complex
engineering systems [12]. Shuangxia Pan proposed a module
partitionmethod, which comprehensively considered a variety
of different design factors such as assembly, cost, and main-
tenance [13]. Renbin Xiao proposed a systematic approach to
dispose undesirable couplings within product family design
based on a two-level structure that includes a strategic level
and an operational level [14].

Despite the obvious contributions of these previous
studies, a remaining challenge is that the customer prefer-
ences are not properly considered in the module partition
process. Against such a background, this paper presents a
new method to support module partition based on the prin-
ciples of robust design together with an improved Pareto
archive particle swarm optimization (PAPSO) algorithm.
Firstly, the criterion function and noise function for a ro-
bust design are established on the basis of component-
component correlation and component-function dependen-
cy, respectively. Next, the existing PAPSO is improved by
introducing some chaotic variables, which prevent the al-
gorithm from selecting the premature (or non-optimal) so-
lutions. Thereafter, the mappings between real coding and
natural number coding are established, in order to solve the
problem of discrete optimization for module partition
through continuous optimizations. The proposed new
method is characterized by its powerful searching capabil-
ity for the optimal solution, in particular, when the number
of modules is defined as an unknown variable. By doing
so, it equips the resulting solution set with a stronger
adaptability than the traditional methods.

2 Module partition based on robust design

A great majority of existing module partition methods
heavily depend on the designer’s empirical experiences to
assign the weighting factors in consideration of customer
preferences. On the one hand, different customers have
diverse preferences, and the customer preferences are dy-
namically changing over time. On the other hand, the man-
ufacturers cannot afford to keep adjusting the weighting
factors purely driven by the customer preferences, because
it results in huge development cost every time the
weighting factors are reset. In order to reduce the effects
of the fluctuation of customer preferences, a module parti-
tion model based on robust design is introduced in this
section, as illustrated in Fig. 1. Generally speaking, robust
design aims to make the performance of an engineered
system (e.g., a product, device, equipment, and even pro-
cess) insensitive to those variances, for example, the cus-
tomer preferences [15].

The model is constructed based on the IDEF0 functional
modeling method, with respect to input, output, mecha-
nism, and control. The inputs are different components of
a product, whereas the outputs are different schemes of
modular partition. Various design factors are incorporated
into the model as its mechanism (or rule) of clustering
different components towards a module, which is in line
with how the design factors are employed in those tradi-
tional module partition methods. The dynamically chang-
ing customer preferences are considered as a noise factor
that affects the robustness of the module partition schemes.
A robust product platform differs from a traditional prod-
uct platform in a way that not only the controllable vari-
ables are considered but also those uncontrollable variables
(for example, customer preference) are treated as noise
factors. By doing so, the module partition targets obtain
the optimal response outputs (i.e., module partition
schemes) by considering both noise factors and design fac-
tors in a synthetic manner.

The underlying assumption of robust design for module
partition, which is important to understand the intellectual
merit of this work, is that, if the variances of customer prefer-
ences can be considered beforehand, the manufacturers can
respond to the dynamic market competition, by imposingmin-
imum changes on the design in a more timely manner [16]. It
should be noted that the notion of robust design used in this
study is an extension of the traditional robust design para-
digm. The premise is that the performance and quality of
modular products during the design process, based on a prod-
uct platform considering the variation, also described as noise,
are affected by changes in customer preferences at the stage of
module partition. The step-by-step process of the proposed
module partition method for robust design is illustrated by
Fig. 2.
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3 Mathematical model of module partition based
on robust design

That being explained above, the problem of establishing a
robust product platform can be converted to building a math-
ematical model regarding the criterion function and noise
function. The former indicates the product architecture,
whereas the latter represents the customer preference. The
mathematical model of the proposed module partition method
is elaborated in this section.

3.1 Establish criterion function based
on the component-component correlation matrix

As mentioned above, the effectiveness of module partition
determines the quality of product platform design. This re-
mains true when the generic principles of robust design are
considered. The process of module partition based on robust
design includes five steps:

1. Establish a component-component correlation matrix by
employing the method of analytic hierarchy process
(AHP) [17]

2. Develop amathematical model based on the robust design
principles

3. Find out the multi-objective optimization problem from
the mathematical model

4. Deploy the PAPSO-C algorithm to produce the optimal
solution

5. Produce the module partition schemes

The weighting factor of each element is determined via two
steps: (1) assign the weight factor to different elements at each
layer and (2) aggregate those weight factors based on the
primary and secondary weight values.

As illustrated in Fig. 3, a product component can be analyzed
at three different layers: the target layer, the rule layer, and the
indicator layer. The similarity component is decomposed in the
same group. At the rule layer,w1 ,w2 , andw3 each represents the
functional property, structural property, and auxiliary property,
respectively. Functional property [18] represents the aggregation
of all the functions that are associated with and affected by a
certain component. Structural property indicates the dependency
relationship among different components of a product, which is
specified by the coupling degree and polymerization degree.
Auxiliary property means other relevant properties of a product
that play additional roles in enhancing customer’s satisfaction
with the product. The examples of auxiliary properties include
but are not limited to “appearance,” “material,” “color,” and
“shape.” Each of the three properties can be measured by differ-
ent indicators. Therefore, at the bottom layer, w1l ,w2h , and w3k

each represents the weight of different functional, structural, and
auxiliary indicators, respectively.Bi ,Dij(i= 1, j= 1, 2, … ,
L; i=2, j=1,2, … ,H; i=3, j=1,2, … ,K) represent the charac-
teristic factors in the corresponding layer, respectively, which
affect the distribution of the weight. The correlation degree be-
tween any two componentsmust satisfy the following condition,
as specified by Eq. (1)

w1 þ w2 þ w3 ¼
X L

l¼1
w1l þ

X H

h¼1
w2hþ

X K

n¼1
w3k ¼ 1 ð1Þ

The correlation degree between two components is
intended to quantitatively describe the functional, structural,
and auxiliary properties of a product, which are the premises
of module partition using the mathematical method. The cor-
relation degree between two components can be expressed in
the fashion of fuzzy relations, the value range of which is
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defined as [0,1] [19]. The correlation degree between any two
components Ciand Cj(i, j=1,2, ⋯ ,N; i≠ j) can be calculated
via Eq. (2):

A i; jð Þ ¼
X L

L¼1
A1L i; jð Þw1l þ

X H

h¼1
A2h i; jð Þw2h

þ
X K

k¼1
A3k i; jð Þw3k ð2Þ

A1L(i, j) ,A2h(i, j) , and A3k(i, j) each represents the correla-
tion degree between Ci and Cj with respect to the functional,
structural, and auxiliary properties, respectively. A(i, j) is the
comprehensive correlation degree between component Ci and
component Cj. The component-component correlation matrix
can be established via Eq. (3):

S ¼

C1 C2 ⋯ CN
A 1; 1ð Þ
A 2; 1ð Þ

A 1; 2ð Þ
A 2; 2ð Þ

⋯
⋯

A 1;Nð Þ
A 2;Nð Þ

⋮ ⋮ ⋱ ⋮
A N ; 1ð Þ A N ; 2ð Þ ⋯ A N ;Nð Þ

2
64

3
75
C1

C2

⋮
Cn

ð3Þ

Based on the above established component-component
correlation matrix, the polymerization degree within one mod-
ule and the coupling degree between different modules are the
two most important indexes. Suppose there are Nu compo-
nents in the module, Mu ,Ci , j(i ≠ j) means the correlation

degree between any two components, the correlation degree
A(i, j) between Ci and Cj is obtained by using AHP [20], and
then the total polymerization degree F1 of V modules can be
calculated using Eq. (4):

F1 ¼
X V

u¼1
f u ¼

X V

u¼1

X Nu−1

i¼1

X Nu

j¼iþ1
A i; jð Þ

. Nu Nu−1ð Þ
2

� �

ð4Þ

The coupling degree between any two modules mea-
sures an aggregation of individual correlation degrees
among all the components within the two modules.
Suppose the module Mp includes Np components, and
the module Mq includes Nq components, and component
Ci and component Cj each represents a component in
module Mp and module Mq, respectively, then the cou-
pling degree between module Mp and module Mq can be
calculated using Eq. (5):

f pq ¼
X Np

i¼1

X Nq

j¼1
A i; jð Þ

.
f max

¼
X Np

i¼1

X Nq

j¼1
A i; jð Þ

.
NpNq
� � ð5Þ

Fig. 3 Hierarchy of
characteristics of a component

Fig. 4 Bifurcation diagram of
logistic function
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The total coupling degree of all modules can be calculated
via Eq. (6):

F2 ¼
X V−1

p¼1

X V

q¼pþ1 f pq
ð6Þ

According to the basic principle of module partition, when
the polymerization degree goes high, the coupling degree goes
low, and vice versa. Therefore, the criterion function can be
expressed as Eq. (7):

minF0 ¼ F2

F1⋅V
ð7Þ

For certain modules that consist of no more than one compo-

nent,Mu becomes equivalent toCi, hence, f max ¼ Nu Nu−1ð Þ
2 ¼ 0.

In other words, no polymerization degree can be derived.
Therefore, before calculating the coupling degree with another
module, it is important to determine whether the module consists
of only one component. In the component-component correla-
tion matrix, the value of each entry represents the correlation
degree between any pair of two components. In any row of the
matrix, if max

i; j∈n;i≠ j
A i; jð Þ≤0:4, then the componentCi itself con-

stitutes an individual module.

3.2 Establish noise function based
on the component-function contribution matrix

By calculating the corresponding contribution of various com-
ponents to each function, a component-function matrix A can
be used to deal with the noise factors in robust design, towards
establishing a noise function. Through adjusting the noise
function, the result of module partition can be made less sen-
sitive to the variation of customer preferences. In
Eq. (8), Ci(i=1, 2, ⋯ ,m) and Fj(j=1, 2, ⋯ ,p) each repre-
sents a product’s different components and functions, respec-
tively. Furthermore, Ctbij(i=1,2, ⋯ ,m; j=1,2, ⋯ ,p) repre-
sents the contribution of the component i to the function j, and
0≤Ctbij≤1. The contribution degrees are assigned by the ex-
pert designers based on soliciting individual customer prefer-
ences and then aggregating the individual preferences towards
a collective preference.

A ¼

C1 C2

F1 Ctb11 Ctb12
F2 Ctb12 Ctb22

⋯ Cm

⋯ Ctbm1
⋯ Ctbm2

⋯ ⋯ ⋯
Fp Ctb1p Ctb2p

⋯ ⋯
⋯ CtbmpX p

j¼1
Ctbij ¼ 1

ð8Þ

where the sum of the contribution degrees of any component i
to all the functions is equivalent to “1” as Eq. (8) depicts.

The noise function can be established according to the con-
tribution degrees (i.e., to what degree a particular component

contributes to the realization of a certain function). When di-
viding modules according to the noise function, the internal
polymerization within each module should be minimized, and
the external coupling among different modules should be
maximized. Mk(k=1,2, ⋯ ,R) means different modules, and
Qk(k=1,2, ⋯ ,R) means the quantity of components within a
module. For the kth virtual module, the index dk (i.e., the inner
degree of relevance within the module) can be calculated
using Eq. (9).

dk ¼
X Qk

i¼1

X Qk

j¼1

X P

p¼1
Ctbip−Ctbjp
� �2

X Qk

i¼1

X Qk

j¼1

X P

p¼1
1

¼
X Qk

i¼1

X Qk

j¼1

X P

p¼1
Ctbip−Ctbjp
� �2

PQk Qk þ 1ð Þ
2

ð9Þ

The parameter P defines the number of customized features
according to the customer preferences. Ctbip and Ctbjp each
represents the contribution degree of component i and com-
ponent j to the same customized feature P, respectively. A
small dk suggests a high relevance within the modules. For
all the modules Mk(k=1, 2, ⋯ ,R), the total degree of rele-
vance in the modules can be calculated via Eq. (10):

d ¼
X R

k¼1
dk ð10Þ

Finally, the noise function can be established using Eq. (11)

dtotal ¼ min
X R

k¼1
dk

� �
ð11Þ

4 Module partition based on an improved particle
swarm optimization algorithm

4.1 Mathematical model of an improved particle swarm
optimization algorithm

The particle swarm optimization (PSO) algorithm is selected to
solve the above formulated multi-objective optimization prob-
lem, because of its featured advantages of simple rule, quick
convergence speed, and few adjustable parameters. This sec-
tion explains how and in what ways the PSO algorithm is
improved for the module partition based on robust design.

In the past, PSO has been widely validated to be an effec-
tive approach for the continuous optimization problems [17].
The algorithmwas inspired by the social behaviors of flocking
birds. To date, some variations of PSO have been proposed in
order to solve different kinds of discrete-valued optimization
problems (DOP). When extending a single PSO to a multi-
objective PSO (MOPSO), the most critical task is to find the
best route for each particle within the swarm. Moreover,
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unlike a single-objective problem, a multi-objective problem
demands a global optimal solution that can be selected from a
set of Pareto optimal solutions [21, 22]. That being explained
above, MOPSO is intended precisely to solve the multi-
objective optimization problem [23, 24].

Because PAPSO is more efficient in solving the integer
programing problem, the mapping from the real coding to
the natural number coding is established in order to solve the
discrete optimization problem for module partition by means
of the continuous optimization method. Although the basic
arithmetic operation is a relatively simple operation, it still
shows a strong ability to perform global searching with a
reasonably fast speed of convergence [25]. This method is
intended to solve a two-objective optimization problem,
which concerns both a criterion function based on designer’s
experience and a noise function based on customer’s prefer-
ences, towards a more robust scheme of module partition.

5 Coding and transcoding

In the interest of the convenience of coding and transcoding,
as well as the applicability of particle swarms, the natural
number (integer) is used. Using the natural numbers has many
advantages. First, the natural numbers are more straightfor-
ward to comprehend, which is important for practical applica-
tions of the proposed method. Next, the PAPSO algorithm is
proven to be more effective and efficient in solving the integer
problem. Thirdly, using the natural numbers is in the best
interest of shortening computing time and improving the cal-
culation accuracy. Specifically, every component belongs to
only one module, and the “module coding” of a particular

component is represented by two digits. Every digit is defined
from zero to four. If necessary, the digit may increase beyond
four to deal with a larger number of components. All compo-
nents of a product are numbered sequentially, which consti-
tutes a linear vector. For example, suppose a product is com-
posed of ten components, and the module partition scheme is
M0 : [1, 2, 5] ,M1 : [3, 6, 7] ,M2 : [4, 9] ,M3 : [8, 10], then the
co r r e spond i ng cod i ng s t r i ng i s e xp r e s s ed a s :
||00|00|01|02|00|01|01|03|02|03||.

The adjacent four digitals are merged together to constitute
the substrings. Therefore, the above coding string can be
transformed to ||0000|0102|0001|0103|0203||. Every substring
has 625 combinations. Arrange h1、 h2、h3、 h4 as four
digitals of a substring and then transcode them in accordance
with the following formula: zi=0.01(5

3h1 +5
2h2 + 5h3 +h4).

Finally, the vector z ¼ 0; 0:27; 0:01; 0:28; 0:53f g is obtained
after transcoding the sample string.

6 The updating of particle velocity and position

In PSO, suppose that a population has N particles, then each

decision variable X kþ1ð Þ
n has a velocity that concludes a loca-

tion of the next step. The position of each particle can be
calculated using Eq. (12) [26]. The component vector in gen-

eration k about the ith particle is described as X kþ1ð Þ
i . Finally,

the velocity of a particle is defined by Eq. (13) [25].

X kþ1ð Þ
i ¼ X k

i þ λV kð Þ
i ð12Þ

v kþ1ð Þ
id ¼ wv kð Þ

id þ c1r1 pbestid−x
kð Þ
id

� 	
þ c2r2 gbestid−x

kð Þ
id

� 	
ð13Þ

Fig. 5 Illustration of an electric-traction drum shearer
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X k
i means the position of the ith particle in generation k,

and V kð Þ
i means the moving speed of the ith particle in gener-

ation k. λmeans a constraining factor that limits the velocity’s
magnitude, and the interval of λ is [0,1]. In this case, the value
of λ is assigned to be “1.” Equation (12) can be used as a
general equation to obtain the location of a particle in gener-
ation k + 1 based on the location and velocity in generation k.
The velocity of each particle is updated to fly into the personal
best (pbestid) and the global best (gbestid) for the dth compo-
nent of the ith particle. The parameter w, which represents the
inertia, controls the trade-off between the global search and
the local search, and its value is set to be “0.4.” r1 and r2 are
two uniformly distributed random numbers in the range [0,1].
Two constants, c1 and c2, manipulate the weighting factors of
the personal best value and global best value. In this study,
both c1 and c2 are assigned to be “1.”

In order to exclude those premature solutions of PAPSO, a
logistic function is used to improve the inertia weight w with
chaotic variables [27]:

X nþ1 ¼ X n � μ� 1−Xnð Þ ð14Þ

where μ ∈ [0, 4] represents the status variable, whereas
X∈ [0, 1] represents the system control parameter. The func-
tion values obey distribution of pseudorandom if
3.5699456<μ≤4, which improves the search capability of
particles. The logistic property of chaos can prevent the algo-
rithm from falling into local optimum. The bifurcation dia-
gram of the logistic function is illustrated by Fig. 4.

7 Archive maintenance

External archives are used to store the non-inferior solutions
during the searching process. Because the capacity of the

Table 1 List of components of an electric-traction drum shearer

No. Component No. Component No. Component

1 Cutting motor 14 Traction motor 27 Pressure relay

2 Rocker gear box 15 Transmission shaft 3 28 Oil level detector

3 Transmission shaft 1 16 Transmission shaft 4 29 Pressure gauge

4 Double planetary gear reducer 1 17 Double planetary gear reducer 2 30 Reversing valve handle

5 Transmission shaft 2 18 Transmission shaft 5 31 Hoisting ring

6 Drum base 19 Guide foot 32 Cylinder

7 Cutting drum 20 External traction shell 33 Check valve

8 Brake 1 21 Filling fittings 34 Cooler

9 Picks sprayer 22 Induction motor 35 Motor cover

10 Clutch handle 23 Height adjustment pump 36 Hose guardrail

11 Brake 2 24 Oil tank 37 Towing device

12 Main frame part 1 25 Valve block 38 Magnetic filter

13 Main frame part 2 26 Accumulator 39 Pipe accessories

Table 2 The component-component correlation matrix

#1 #2 #3 #4 … #37 #38 #39

#1 1 0.75 0.68 0.78 … 0 0 0.02

#2 0.75 1 0.82 0.59 … 0.29 0 0

#3 0.68 0.82 1 0.69 … 0.22 0 0.08

#4 0.78 0.59 0.69 1 … 0.12 0 0.08

#5 0.64 0.67 0.69 0.77 … 0.22 0 0.08

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
#36 0 0.27 0 0 … 0.87 0.73 0.91

#37 0 0.29 0.22 0.12 … 1 0.69 0.77

#38 0 0 0 0 … 0.69 1 0.82

#39 0.02 0 0.08 0.08 … 0.77 0.82 1

Table 3 The component-function contribution matrix

#1 #2 #3 … #37 #38 #39

Rocker arms 0.89 0.87 0.92 … 0 0 0

Drums 0 0 0 … 0 0 0

Traction drive 0 0 0 … 0 0 0

External traction 0 0 0 … 0 0 0

Pumping station 0 0 0 … 0 0 0

Height oil vat 0 0 0 … 0 0 0

Main frame 0 0 0 … 0.11 0.07 0.13

Auxiliary components 0.11 0.13 0.08 … 0.89 0.93 0.87
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external archives is limited, they should be regularly main-
tained in order to determine whether a new solution can be
stored into the archives without exceeding the capacity (i.e.,
the number of non-inferior solutions reaches the limitation).
Each solution contained in the archive At should be the global
optimum result of a certain particle in order to avoid ap-
proaching the local optimum result of the Pareto front [28].

8 Mutation

The non-inferior solutions in the external archives should be
regularly updated in order to prevent the algorithm from stop-
ping, which is often caused when the solutions are crowded
within a small local region. In order to improve the conver-
gence and expand the solution space, the mutation of solutions
is necessary after maintaining the external archives.

8.1 Description of PAPSO-C used in module partition

objective vector functions :
minF0 ¼ F2

V ⋅F1

mind ¼
X R

k¼1
dk

� �
8>><
>>:

ð15Þ

Each variable is the function of the correlation
matrix S= (A(i, j))N ×N or the function matrix A= (Ctbij)m × p,
and the searching space is the domain of the corresponding
function [29]. The smaller the objective function value is, the
better the module partition scheme is.

Each step of the algorithm is specified as the following:

Step 1: t=0, initialize the particle swarm St, calculate the
vector of objective function of each particle, and
store the non-inferior solutions into archive At.

Step 2: Set the initial Gt and Pt, which respectively means
the pbest and gbest of the particle at time t.

Step 3: Update the velocity and position of the particles ac-
cording to Eqs. (12) and (13) within the searching
space in order to obtain St + 1, and then update Pt of
the particles.

Step 4: Maintain the archives, obtain At + 1, and then calcu-
late the Gt of each particle.

Step 5: t = t + 1, stop searching if the termination conditions
become satisfied, or go back to repeat step 3.

The following method can be followed to prevent the par-
ticles from flying out of the boundaries in step 3:

If xitj þ vitj > β j; v
i
tþ1ð Þ j ¼ θ β j−xitj

� 	
; xi tþ1ð Þ j ¼ xitj þ vi tþ1ð Þ j,

If xitj þ vitj < α j; vi tþ1ð Þ j ¼ θ xitj−α j

� 	
; xi tþ1ð Þ j ¼ xitj−vi tþ1ð Þ j;

θ < 1; vt ¼ vt1; vt2;⋯; vtnð Þ; xt ¼ xt1; xt2;⋯; xtnð Þ; xij∈ α j;β j


 �
; α j; β j


 �
is the domain of the j-th decision variable, j=1 , 2 , ⋯ ,n.

9 Case study

9.1 Module partition of an electric-traction drum shearer

A case study is presented in this section to demonstrate how
the proposed new method can be used to solve real-world
design problems. The case study is regarding a complex
engineered system, the electric-traction drum shearer, a heavy
machine commonly used in the mining industry. Because of
the demanding conditions of longwall mining, robustness is
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an important quality of a drum shearer. A typical shearer con-
sists of 39 components, as illustrated in Fig. 5 and summarized
in Table 1.

The weights of the functional property (ω1), structural
property (ω2), and auxiliary property (ω3) are assigned based
on the designers’ domain knowledge and empirical experi-
ence. Specifically, the weights are determined to be
ω1 = 0.6 ω2 = 0.25 ω3 = 0.15. The correlation degree A(i, j)
of any pair of two components is calculated using the Eq. (2).

For example, the correlation degree between the compo-
nent #18 and component #21 is calculated as A 18; 21ð Þ ¼
∑

6

L¼1Al i; jð Þwl ¼ 0:6� 0:6þ 0:6� 0:25þ 0:4� 0:15 ¼ 0:57

By thoroughly calculating the correlation degree of every
possible pair of two components from component #1 to
component #39, a full component-component correlation
matrix R is established, as shown in Table 2.

The component-function contribution matrix indicates the
contribution of the 39 components to the ten major functions
of a drum shearer. Based on a thorough literature review and
in consideration of the experts’ opinions, the component-
function contribution matrix is established, as shown in

Table 3. Please note that these experts’ opinions indirectly
represent the customer preferences.

The next step is to establish a criterion function using
Eq. (7) and a noise function using Eq. (11). As a result, a
multi-objective optimization problem is formulated, which
can be solved using Eq. (15).

9.2 Module partition based on an improved particle
swarm optimization algorithm

The PAPSO-C algorithm was developed using the MATLAB
and run with a population of 100 particles and 200 genera-
tions. After 20 calculation cycles, the result of the optimal
Pareto front is shown in Fig. 6:

The abscissa values are the values of criterion function
calculated based on the component-component correlation
matrix, while the ordinate values are the values of noise func-
tion calculated based on the component-function contribution
matrix. The curve shows that the Pareto front is convex, with
an inflection point (f0,d0) at F0 =0.055. The curve is initially
steep within the interval (0, f0), while it becomes gentle within
the interval (f0, fmax). As suggested by the low sensitivity of
the criterion function, the noise function has a relatively low
impact on the result of module partition. Based on a compre-
hensive consideration of the two-objective optimization result
and the robust design, it is determined by the designers that the
optimal result of module partition can be achieved near the
inflection point when F0 =0.058 and d=0.05476. The final
result of module partition is summarized in Table 4.

In summary, the component-component correlation matrix
is established by using the traditional methods. In the mean-
time, the basic principles of robust design are complied with to
establish the component-function contribution matrix by con-
sidering customer preferences as a noise factor that affects the
design decisions regarding module partition. Furthermore, the
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Fig. 7 Comparison of the Pareto
sets among the four algorithms

Table 4 The optimal result of module partition

Module Component Main function

1 [1–6, 10] Rocker arm

2 [7–9] Cutting drums

3 [12, 13] Main frame

4 [11, 14–18, 21] Traction gearbox

5 [19, 20] Traction drive

6 [22–30] Pumping station

7 [31,32,33] Height oil vat

8 [34,35,36,37,38,39] Auxiliary components
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multi-objective particle swarm optimization is improved by
introducing the notion of chaotic variables, which serves to
prevent selecting those premature solutions. By doing so, the
module partition is conducted in consideration of functional
independence, structural integrity, as well as enhanced robust-
ness against dynamically changing customer preferences.

9.3 Comparison and analysis of the algorithms

For a two-objective optimization problem, the algorithm this
paper favors (i.e., PAPSO-C) is compared to the other three
commonly used algorithms, which are the multi-objective ge-
netic algorithm (MOGA) [30], the strength Pareto evolution-
ary algorithm (SPEA2) [31], and the multi-objective artificial
immune clone algorithm (NICA) [32], with respect to the
resulted optimal Pareto fronts as illustrated by Fig. 7.

The four algorithms are compared against a variety of dif-
ferent metrics (i.e., running time, approximation to Pareto
front, uniformity, breadth, and covering space of Pareto front).
The comparison results are summarized in Table 5. In partic-
ular, the PAPSO-C algorithm significantly outperformed the
other three algorithms with respect to the metrics of “running
time” and “approximation to Pareto front.” Furthermore, the
PAPSO-C algorithm also demonstrated competitive perfor-
mance in regard to the metrics of “uniformity” and “breadth”
of distribution.

10 Conclusion and future work

In conclusion, this study contributes to the understanding and
practice of module partition for product platform design in
two ways:

1. The basic principles of robust design are incorporated into
the module partition process. The primary objective is to
make the module partition schemes less sensitive to the
customer preferences, which are always dynamically
changing and can be hardly manipulated by the manufac-
turers. Firstly, a criterion function is established based on
the component-component correlation matrix. Next, a

noise function is established based on the component-
function contribution matrix in consideration of customer
preferences as a noise factor. Finally, the criterion function
and the noise function together constitute a multi-
objective optimization problem.

2. An improved particle swarm optimization algorithm is
proposed to address the above formulated multi-
objective optimization problem. Specifically, the chaotic
variables are introduced in order to exclude those prema-
ture solutions without significantly increasing the algo-
rithm’s complexity. The improved algorithm significantly
outperformed some traditional algorithms in terms of both
running time and approximation to Pareto front.

With respect to the future works, the proposed method will
be applied and validated through another more complex prod-
uct, for instance, a certain product from the automotive, aero-
space, or shipbuilding industries.
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