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Abstract Pocket milling is widely used in the machining of
large thin-walled parts. The remaining wall thickness of the
pocket is critical to compromise the weight reduction and the
strength, and becomes a crucial dimension requirement during
machining. However, the cutting deformation of large thin-
walled parts will greatly decrease the accuracy of the remain-
ing wall thickness and needs to be compensated online due to
the stochastic characteristics of the deformation. For online
compensation methods, the time-delay is usually the critical
factor to reduce the control accuracy. The forecasting compen-
satory control (FCC) provides an effective way to compensate
the stochastic errors and solve the time-delay problem. The
key of the FCC is the prediction accuracy of the modeling
technique. An improved FCC system with an accurate cutting
deformation prediction model is developed to guarantee the
remaining wall thickness for the pocket milling of a large thin-
walled part. The improved FCC system makes use of the
advanced online measurement system, the deformation pre-
diction modeling, and the real-time compensation. The pro-
posed prediction model considers the deterministic and sto-
chastic cutting deformations to improve the prediction

accuracy. The Kalman filtering is also applied to further en-
hance the prediction accuracy because of its correctable abil-
ity. The cutting simulation and the experiment of machining a
rectangular pocket on a large thin-walled plate are both carried
out to validate the effectiveness of the proposed method. The
accuracy of the remaining wall thickness of the pocket is fi-
nally improved.

Keywords Large thin-walled parts . Forecasting
compensatory control . Deformation predictionmodel .

Kalman filtering . Remainingwall thickness

Nomenclature
dk Real cutting deformation at step k
d k̂

− Forecasted cutting deformation at step k
yk Deterministic deformation at step k
zk Stochastic deformation at step k
z k̂
− Predicted value of the stochastic deformation

at step k
uk Control signal at step k
r Reference signal
k10,k20,k30,k40 Stiffness coefficients of two transversal and

two rotational elastic springs
k1,k2,k3,k4 Non-dimensional stiffness coefficients of

two transversal and two rotational elastic
springs

ρ,As,E,I,l,ξ Parameters related to material and geometry
of the beam

x spatial coordinate along the neutral axis of
the beam

Yi(ξ) ith mode shape of the beam
qi(t) ith generalized modal coordinate of the beam
Wi Function representing the ith mode shape of

the beam
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ωi ith natural frequency of the beam
Ni(t) ith generalized force of the beam
f External force applied on the beam
ωF Excitation frequency of the external force
Mi ith generalized mass of the beam
δ Deviation between the response of the beam

model and the actual cutting deformation
δ(ξ - c / l) Unit impulse function
sk , s ̂k� Real and priori estimate state variable at

step k
wk, vk Process and measurement noise at step k
p(w) State distribution of w
N(0,Q) Gaussian distribution with mean 0 and vari-

ance Q
Q, R Process and measurement noise covariance
Kk Kalman gain at step k
ek� Priori estimate error at step k
Pk, P−

k Real and priori estimate error covariance at
step k

1 Introduction

Large thin-walled parts play a key role in the aerospace indus-
try. The geometrical accuracy needs to be strictly controlled in
the machining process. Pocket milling is widely used in the
machining of large thin-walled parts. The huge fuel tank cyl-
inder is taken as an example. On the inner wall, thousands of
pockets should be machined to reduce the weight and improve
the transport capacity. The remaining wall thickness of the
pocket, which refers to the normal distance between the outer
and inner surface of the pocket after machining, is critical to
compromise the weight reduction and the strength. The re-
maining wall thickness becomes a crucial dimension require-
ment during machining. However, the cutting deformation
with stochastic characteristics, which is mainly caused by
the weak rigidity of large thin-walled parts, severely decreases
the accuracy of the remaining wall thickness.

The cutting deformation is viewed as a deterministic defor-
mation superimposed on a stochastic deformation. Many
offline compensation methods are developed to compensate
the deterministic cutting deformation. Wan et al. [1] and Ma
et al. [2] established the cutting deformation estimation
models based on the cutting force modeling methods and
compensated the deformation by modifying the tool paths.
Some FEA-based models have been developed to predict the
force-induced deformations during milling [3–5]. With the
help of on-machine measurement (OMM), some error com-
pensation strategies have been proposed to modify the milling
paths [6–8]. These methods usually neglect the stochastic de-
formation which will decrease the accuracy of the large thin-
walled part machining.

The online error forecasting and compensation control
method is useful to enhance the accuracy of the remaining
wall thickness of a large thin-walled part. Li et al. [9–11]
proposed a novel flexible fixture that can online monitor and
compensate the workpiece deformation during machining.
This online adaptive machining gave a typical intelligent
method for large workpiece. The method transformed the dif-
ficult prediction problem caused by many uncertainty factors
such as material inconsistency to the accurate online inspec-
tion problem. The machining accuracy can be further im-
proved by solving the time-delay problem of the online tech-
nique. The forecasting compensatory control (FCC) [12] is
one of the most effective online methods to improve the
manufacturing accuracy by compensating the time-delay and
considering the stochastic process. Fung et al. [13] implement-
ed the FCC technology based on the linear and non-linear
stochastic exogenous autoregressive moving average
(ARMAX and NARMAX) models to predict the longitudinal
error of a lathe turning and solved the time-delay problem.
Precision control in grinder was achieved by integrating the
hybrid grey dynamic model into the FCC [14]. Li et al. [15]
applied the fuzzy-filtered neural networks into the FCC to
estimate the thermal deformation of the spindle and overcame
the time lag between the measurement and compensation. The
above researches show that the FCC can effectively compen-
sate the time-delay, and the performance of the FCC depends
much on the prediction accuracy of the compensation value.

An improved FCC system is developed to guarantee the
remaining wall thickness of the rectangular pockets of a large
thin-walled part. The prediction model of the improved FCC
system considering both the deterministic and stochastic de-
formations is developed to ensure the accuracy of the model-
ing technique. Besides, Kalman filtering algorithm [16],
which has been proved to be a credible method to improve
the prediction accuracy because of its correctable power [17],
is also introduced to the improved FCC system. The cutting
simulation and experiment finally prove the improved FCC
system is effective for the stochastic deformation compensa-
tion and solving the time-delay problem. The rest of this paper
is organized as follows. The improved forecasting compensa-
tory control system is introduced in Sect. 2. The deformation
prediction model is established in Sect. 3. In Sect. 4, the
Kalman filtering is employed to improve the prediction accu-
racy of the stochastic deformation. A simulation and a typical
experiment on the pocket milling of a large thin-walled plate
are conducted to validate the feasibility in Sect. 5. At last,
conclusions of the proposed method are drawn in Sect. 6.

2 Improved forecasting compensatory control system

The main objective of the research is to guarantee the remain-
ing wall thickness of the pockets of a large thin-walled part by
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compensating the cutting deformation. The challenge of the
deformation compensation is to consider both the determinis-
tic and stochastic deformations. The stochastic deformation is
time-variant and difficult to be compensated offline. To com-
pensate the stochastic deformation, the real cutting deforma-
tion ismonitored using the onlinemeasurement system and the
compensation is conducted in real-time. Besides, to overcome
the time-delay between the measurement and the compensa-
tion action, the compensation action is carried out according to
the prediction model. Therefore, the prediction accuracy is
crucial and directly affects the compensation accuracy. The
deformation prediction accuracy is improved based on an ac-
curate deformation prediction model and the Kalman filtering.

The aforementioned compensation control is carried out
according to the flowchart in Fig. 1. To solve the time-lag
problem, the lag time of the compensation system is chosen
as the sampling period, and the deformation of the next period
is predicted and used as a compensation value. The compen-
sation control starts with the determination of the real cutting
deformation dk − 1, which is the difference between the mea-
sured and the reference data, and k indicates the kth time
instant. The deterministic deformations yk ‐ 1 and yk are deter-
mined by the deterministic model. Then, the deviation of dk − 1

and yk − 1 is used as the stochastic deformation zk − 1. Based on
the previous and current stochastic deformation, the predicted
value of the stochastic deformation z k̂

− is calculated through
the stochastic model and the Kalman filtering. The forecasted

deformation d ̂k− is determined by z k̂
− and yk. Finally, accord-

ing to the forecasted deformation d k̂
−, the compensator is con-

trolled to compensate.
The structure of the improved FCC system is shown in

Fig. 2. The system is implemented on a mirror milling ma-
chine tool, which has two sides of manipulators. One manip-
ulator is used to perform the milling, while the other is used as
a support at the opposite side of the machining surface. Three
foremost elements are included in this control system: the
online measurement system, the deformation predictor, and
the compensation system. As mentioned before, the compen-
sation accuracy relies much on the prediction accuracy.
Therefore, the deformation predictor is the core part of the
control system. To enhance the prediction accuracy of the

predictor, two strategies are applied. Firstly, the cutting defor-
mation is viewed as a deterministic deformation superimposed
on a stochastic deformation. The deterministic deformation is
predicted by a general deformation model for beams, and the
stochastic deformation is predicted by an autoregressive inte-
grated moving average (ARIMA) model. Due to the random-
ness caused by the weak rigidity of the parts and the uncer-
tainties of process parameters, the prediction model consider-
ing both the deterministic and stochastic deformations is nec-
essary. Secondly, the Kalman filtering is introduced into the
predictor to achieve better prediction precision. According to
the Bayes principle, Kalman filtering algorithm can minimize
the variation of the estimation error [17]. Therefore, the
Kalman filtering can not only predict the cutting deformation
but also optimize the established model during machining to
approach the actual value.

2.1 Online measurement system

The online measurement system, which is used to obtain the
cutting deformation, consists of a laser displacement sensor
and a laser controller. The laser displacement sensor is fixed
on the supporting head. As such, it has the same linear move-
ment along the X axis as the machining head. The value ofD,
which represents the distance from the sensor to the workpiece
in the Y-direction, can be obtained in real time by using the
laser displacement sensor, as shown in Fig. 3. As the work-
piece and the measurement device are fixed in the X-direction
and Y-direction, respectively, the variation of the value D
equals the normal deformation of the workpiece during pro-
cessing. The laser controller collects the signal of the laser
displacement sensor and then performs filtering. Finally, the
value of D is transmitted from the laser controller to the com-
pensation system.

2.2 Deformation predictor

The deformation predictor is applied to calculate the forecast-
ed deformation considered as the compensation value. The
forecasted deformation includes two parts and can be
expressed as follows.

Compensation
system
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rFig. 1 Design flow of the
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compensatory control algorithm
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d k̂
− ¼ ykþz ̂k− ð1Þ

The deterministic deformation yk is calculated by a general
deformation model for beams, which will be described in Sect.
3.1. The predicted value of the stochastic deformation z ̂k− is
obtained by using the ARIMAmodel through the Kalman filter-
ing. The establishment of the ARIMA model and the Kalman
filtering cycle will be presented in Sects. 3.2 and 4, respectively.

2.3 Compensation system

The compensation system is developed based on the CNC ma-
chining system and includes three components: the program-
mable logic controller (PLC), the numerical controller (NC),
and the servo driver. The deformation predictor is integrated
in the PLC controlled to give commands for data acquisition
and outputting the control signal at a constant interval. During
the interval, the cutting deformation and the compensation con-
trol signal are collected and calculated, respectively. Then, the
compensation control signal is output from the PLC to the NC
through the PLC bus. Finally, according to the received signal,
the NC offsets the machine coordinate to compensate the cut-
ting deformation and guarantee the remaining wall thickness.

3 Deformation prediction model

Due to the stochastic characteristics of the large thin-
walled parts in the milling process, it is of great importance
to consider both the deterministic and stochastic cutting
deformations. The deterministic and stochastic deforma-
tions are viewed as the force-induced error and the devia-
tion between the actual deformation and the response of the
deterministic model, respectively. A general deformation
model for beams and an ARIMA model are both developed
to predict the deterministic and stochastic deformations
respectively.

3.1 Deterministic deformation modeling

In the aerospace industry, rectangular pockets can be usu-
ally found in some typical large flexible workpieces such as
fuel tanks of launch vehicles and aircraft panels. Therefore,
the rectangular pocket machining is taken into consider-
ation as a representative of the machining problems in the
large thin-walled part milling. Generally, the machining
process consists of rough machining and finished machin-
ing. In the rough machining of a large thin-walled part, the
tool is flexible compared with the workpiece. However, in
the finished machining, the workpiece is regarded to be
much more flexible than the tool. To predict the force-
induced deformation during the finished machining of the
pocket of a large thin-walled part, the workpiece model
needs to be developed.

The deterministic deformation model for each of the
direction-parallel tool paths, which are generated to ma-
chine the rectangular pocket, is developed separately. To
achieve the above objective, the boundary conditions
representing the effect of clamps at both ends and the
constraint force of the plane around the milling region
can be substituted by two transversal and two rotational
elastic springs. Therefore, the deterministic deformation
of the direction-parallel tool path can be represented by
the transversal deformation of a beam restrained with two
transversal and two rotational elastic springs, as depicted
in Fig. 4.

Laser displacement sensor

PLC unit
(Deformation predictor)

NC unit
Device net

Mirror milling CNC equipment

CMMC30-3

PLC bus

On-line measurement system

Laser controller

Servo driver

Compensation systemFig. 2 Structure of the improved
forecasting compensatory control
system

D
Supporting

head

Y
X

Machining
head

Laser
displacement

sensor

Work-piece

Fig. 3 Schematic of real-time deformation tracking based on the laser
displacement sensor
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3.1.1 Workpiece mathematical model

A general model for transversal deformation of the beam re-
strained with two transversal and two rotational elastic springs
[18] is used to represent the deterministic deformation of the
workpiece. Based on the Euler-Bernoulli assumptions, the
transversal deformation of a beam is described by the follow-
ing equation:

ρAs
∂2y
∂t2

þ EI
∂4y
∂x4

¼ f ð2Þ

where ρ is the beam density, Asis the beam cross-sectional area,
E is the Young’s modulus of elasticity, I is the cross-sectional
moment of inertia, y represents the transversal deformation, x
represents the spatial coordinate along the neutral axis of the
beam with length l, and f represents the applied force.

According to the modal superposition principle, the solu-
tion of Eq. (2) can be expressed as

y ξ; tð Þ ¼
X∞
i¼1

Y i ξð Þqi tð Þ ð3Þ

where ξ= x/l, Yi(ξ) is the ith mode shape of the beam and qi(t)
is the ith generalized modal coordinate. Yi(ξ) (Eqs. (25) and
(26), Appendix) is determined by satisfying the boundary con-
ditions as follows.

For force balance,

∂2Y i ξð Þ
∂ξ2

�����ξ¼0−k1
∂Y i ξð Þ
∂ξ

�����ξ¼0 ¼ 0;
∂2Y i ξð Þ
∂ξ2

�����ξ¼1 þ k2
∂Y i ξð Þ
∂ξ

�����ξ¼1 ¼ 0

ð4Þ

For moment balance,

∂3Y i ξð Þ
∂ξ3

�����ξ¼0 þ k3Y i ξð Þ
���ξ¼0 ¼ 0;

∂3Y i ξð Þ
∂ξ3

�����ξ¼1−k4Y i ξð Þ
���ξ¼1 ¼ 0

ð5Þ

where k1=k10l/(EI); k2=k20l/(EI); k3=k30l
3/(EI); k4=k40l

3/(EI);
and k10, k20, k30, and k40 are the stiffness coefficients of the springs
as shown in Fig. 4. As mentioned above, Yi(ξ) can be represented
by a function of the stiffness coefficients of the springs.

Y i ξð Þ ¼ Wi k10; k20; k30; k40; ξð Þ ð6Þ

whereWi is the function representing the ith mode shape of the
beam Yi(ξ).

According to the Lagrange equation, qi(t) is obtained by
solving the following decoupled system equation [19].

€qi tð Þ þ ωi
2qi tð Þ ¼ Ni tð Þ ð7Þ

where ωi is the ith natural frequency of the beam.
The machining process model is shown in Fig. 4. The

mode shape Yi(ξ) can be determined as mentioned above.
The machining force and the supporting force exerted at the
opposite side of the machining surface are assumed to be
represented by an external force. The external force is given as

f ξ; tð Þ ¼ δ ξ� c=lð ÞF ¼ δ ξ−c=lð ÞF0sin ωFtð Þ ð8Þ

where ωF is the excitation frequency of the external force. The
ith generalized force can be obtained as follows:

Ni tð Þ ¼ 1

Mi

Z 1

0
Y i ξð Þf ξ; tð Þdξ ¼ 1

Mi
Y i c=lð ÞF0sin ωFtð Þ

ð9Þ

where Mi is the ith generalized mass. Based on Eqs. (7) and
(9), the value of qi(t) with zero initial conditions can be for-
mulated as below:

qi tð Þ ¼
1

ωi

F0

Mi
Y i c=lð Þ

Z t

0
sin ωFτð Þsinωi t−τð Þdτ

¼ F0Y i c=lð Þ
Mi ωi

2−ωF
2ð Þ sin ωFtð Þ−ωF

ωi
sin ωitð Þ

� � ð10Þ

By inserting Eq. (10) into Eq. (3), the dynamic response of
the beam at the force-bearing point is computed as

y c=l; tð Þ¼F0

X∞
i¼1

1

Mi ωi
2−ωF

2ð Þ Y i
2 c=lð Þ sin ωFtð Þ−ωF

ωi
sin ωitð Þ

� �

ð11Þ

Owing to the low frequency of the servo compensation and
the small amount of memory in the numerical control system,
static deflection instead of dynamic vibration is considered.
Therefore, the external force is static and the excitation frequen-
cy ωF< <ωi. Based on Eqs. (6) and (11), the static deformation
of the beam at the force-bearing point can be obtained as

y c=l; tð Þ¼F0

X∞
i¼1

1

Miωi
2
Wi

2 k10; k20; k30; k40; c=lð Þ ð12Þ

10k

20k

30k

40k

l

X
Y

c
F

a b

Work-piece

One
direction-parallel

tool-path

Fixture

Fixture

Fig. 4 One cutting process of the direction-parallel tool paths. a
Machining condition and b simplified model
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3.1.2 Workpiece model identification

To ensure the accuracy of the beam model, the stiffness coef-
ficients of the springs k10, k20, k30, and k40 need to be identified
offline. The offline identification for the stiffness coefficients
is conducted by minimizing the deviation δ between the re-
sponse of the beam model and the actual cutting deformation
at the calibration points. To avoid solution trapping at local
optima, the genetic algorithm [20] is used to acquire the opti-
mum stiffness values of the springs. The objective function to
be minimized is presented as follows:

δ ¼ min
Xm
j¼1

d j−y j
� �2

ð13Þ

where m is the number of points for the calibration. The iden-
tification procedures can be repeated for all the direction-
parallel tool paths of the pocket, if needed.

3.2 Stochastic deformation modeling

To model the stochastic process, many mathematical model-
ing methods, like autoregressive integrated moving average
(ARIMA) model [13, 21] and grey model [14, 22], have been
used. ARIMA [23] has been widely used because of its pre-
diction power in stochastic process. ARIMA (5,0,0), extended
to five previous observations, is employed to represent the
stochastic process of the cutting deformation.

zkþ1 ¼ a1zk þ a2zk−1 þ a3zk−2 þ a4zk−3 þ a5zk−4 ð14Þ
where a1 ,a2 , . . .a5 are the coefficients which are indepen-
dent of the time variable k.

4 Prediction accuracy improvement with Kalman
filtering

The stochastic cutting deformation varies with time and is
difficult to be predicted. To guarantee the prediction accuracy

of the stochastic deformation, the Kalman filtering is
employed. Kalman filtering algorithm, a generalization of
the least-square method, is a set of mathematical equations
that provides an efficient computational means to estimate
the state of a process and minimizes the mean squared error
[16].

To estimate the stochastic deformation through the Kalman
filtering, it is necessary to develop a state-space expression.
According to Eq. (14), we can obtain

zk−3
zk−2
zk−1
zk
zkþ1

2
66664

3
77775 ¼

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
a5 a4 a3 a2 a1

2
66664

3
77775

zk−4
zk−3
zk−2
zk−1
zk

2
66664

3
77775 ð15Þ

Based on Eq. (15), the state-space expression of the sto-
chastic deformation model is given as

skþ1 ¼ Ask þ wk

zk ¼ Hsk þ vk

�
ð16Þ

w h e r e skþ1 ¼

zk−3
zk−2
zk−1
zk
zkþ1

2
66664

3
77775 , A ¼

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
a5 a4 a3 a2 a1

2
66664

3
77775,

H= [0 0 0 0 1], wk, and vk represent the process and mea-
surement noise, respectively. wk and vk are assumed to be
independent of each other and obey a Gaussian distribution,
as presented in Eq. (17):

p wð Þ ¼ N 0;Qð Þ
p vð Þ ¼ N 0;Rð Þ ð17Þ

where p(w) is the state distribution of w,Q is the process noise
covariance, and R is the measurement noise covariance. The
tuning of the filter parameters Q and R is performed offline
with the help of system identification. In general, the tuning
can acquire statistically superior performance [24].

Correction step

（1）Calculate the Kalman gain

（2）Correct estimate with measurement

（3）Update the error covariance

Prediction step

（1）Estimate the state

（2）Estimate the error covariance

Initial estimates
ˆ
ks

-
kP

-
1ˆ ˆ

k ks As

T
1k k

-P AP A Q

T - T -1( )-
k k k RK P H HP H

ˆ ˆ ˆ( - )- -
k k k k kzs s K Hs

( - ) -
k k kP I K H P

Fig. 5 The Kalman filtering
cycle [24]
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After obtaining the state-space expression, the Kalman fil-
tering cycle is built as shown in Fig. 5. The cycle is divided
into two steps: state prediction and correction. First, the initial
estimates s ̂k− and Pk

− need to be set as follows:

ek− ¼ sk−s ̂k−

Pk
− ¼ E ek−ek−T

� 	 ð18Þ

where sk̂− is the priori state estimate at step k given knowledge
of the process prior to step k, ek− is the priori estimate error, and
Pk

− is the priori estimate error covariance. In the correction
stage, the Kalman gain Kk is computed by the minimization
of the posteriori error covariance Pk. Then, the posteriori state
estimate s ̂k is corrected with the measured data zk. Finally, the
priori estimate error covariance Pk + 1

− and the priori state esti-
mate s ̂−kþ1 are forecasted in the prediction stage. After one
correction-prediction cycle, the predicted value of the stochas-
tic deformation z −̂

kþ1 can be obtained as z ̂−kþ1 ¼ Hs−̂kþ1.

5 Verification of the proposed method

The structure of the experimental system is illustrated in
Fig. 2. This system consists of a mirror milling CNC

equipment CMMC30-3, a compensation system and an online
measurement system. The compensation system is developed
based on a FAGOR 8070 CNC system, and 20 ms is the
compensation period. The online measurement system is
made of a laser displacement sensor (OPTEX CD5-W85)
and a laser controller (CD5A-N). A thin-walled plate
2000 mm high, 1500 mm wide, and 6 mm thick is used as
the workpiece, which is shown in Fig.6a. The material of the
workpiece is aluminum alloy 7075.

To demonstrate the validity of the proposed method, the
finished machining of a pocket of the large thin-walled plate
is taken as an example. Firstly, the profile error of pocket 1 and
pocket 2 is determined by on-machine scanning and compen-
sated by modifying the tool paths before processing.
Secondly, pocket 1 is machined without the proposed online
FCC compensation and the normal deformation of the work-
piece is obtained during machining. Thirdly, the deformation
predictionmodel and the Kalman filtering cycle are developed
based on the normal deformation of pocket 1. To make sure
that the machining conditions of pocket 1 and pocket 2 are
close, the tool paths of the two pockets are determined as
shown in Fig.6b. Furthermore, pocket 2 is machined using
the proposed online FCC compensation. At last, the remaining
wall thickness of the two pockets is measured using the ultra-
sonic measuring system. The machining parameters of the
processing are given in Table 1.

As shown in Fig. 6b, the measured normal deformation of
the first direction-parallel tool path of pocket 2 during machin-
ing is used to verify the prediction accuracy of the proposed
method in Sect. 5.1. Then, the results of the whole pocket ma-
chining obtained from the experiment are presented in Sect. 5.2

Table 1 The machining parameters of the rectangular pockets milling

Parameters Description

Pocket dimension 700 mm × 360 mm

Nominal thickness 1.1 mm

Spindle speed 8000 r/min

Feed rates 2500 mm/min

Axial depth of cut 1.5 mm

Helix angle 0°

Cutter diameter 18 mm

Number of flutes 2

Table 2 The non-dimensional stiffness coefficients of the springs for
the beam model

k1 k2 k3 k4

2.04 8.57E + 3 8.70E + 4 4.89

2000

1500

720 720

360 360

a b

Pocket 1Pocket 2
Tool-path
arrange
direction

Tool-path
arrange
direction

Fig. 6 a Integral drawing and b
partial enlargement drawing of
the workpiece for machining
(unit: mm)
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5.1 Effectiveness of the proposed method in deformation
prediction

Only first-order modal is considered, and the static deforma-
tion of the beam at the tool contact point can be expressed as

y ξð Þ ¼ Y 2 ξð ÞF0

M 1w2
ð19Þ

According to Eq. (19), only Y2(ξ) is a variable and the
others are all constants. Therefore, the deterministic deforma-
tion y(ξ) equals the value of Y2(ξ) after normalization. To
avoid obtaining other parameters like the machining force
and the Young’s modulus of elasticity, the value of Y2(ξ) and
the cutting deformation obtained from experiments are both
normalized and compared when conducting the offline iden-
tification. After the offline identification, the non-dimensional
stiffness coefficients of the springs k1, k2, k3, and k4 are cali-
brated and summarized in Table 2. Fig. 7 shows that the ten-
dency of the beam model and the measured data are almost
consistent. The cutting deformation of the first sample point is
nearly zero, because the position of the first sample point is
close to the fixture.

Two criteria, which are used to measure the deviation be-
tween the predictions and the eventual outcomes, are used for
evaluating the prediction accuracy. The first criterion is the
absolute mean error (AME) and given as

AME ¼ 1

n

Xn

k¼1

d k̂
−
−dk

�� �� ð20Þ

The second criterion is themean square error (MSE) and given
as

MSE ¼ 1

n

Xn

k¼1

d
−̂
k−dkÞ

2
�

ð21Þ

The two criteria AME and MSE are calculated and com-
pared in Table 3. Compared with the beam model, the beam

a

b

Fig. 7 a Integral drawing and b
partial enlargement drawing for
estimated profile of the beam
model, the beam model + the
ARIMA model, and the beam
model + the ARIMA model with
the Kalman filtering

Table 3 The comparative analysis of prediction errors

Models AME MSE

The beam model 0.027 2.10E−4
The beam model + ARIMA model 2.69E−3 2.67E−5
The beam model + ARIMA model

with the Kalman filtering
2.22E−3 1.29E−5
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model + the ARIMA model can obtain 90.00% and 87.29%
reduction in AME and MSE, respectively. Fig. 7 shows the
estimated profile of the beam model and the beam model +
the ARIMAmodel. It is seen that the proposed prediction mod-
el generates a smaller error than the beam model in the predic-
tion stage, but the prediction accuracy is not satisfactory when
original data shows high degree of stochastic uncertainty.
Hence, the Kalman filtering is employed to enhance the pre-
diction accuracy. As depicted in Figs. 7 and 8, the proposed

prediction model achieves the best prediction accuracy with the
help of the Kalman filtering. From the results shown in Table 3,
the proposed prediction model with the Kalman filtering can
get 17.47% reduction in AME and 51.69% reduction in MSE,
in comparison with the proposed prediction model without the
Kalman filtering. Furthermore, the proposed method can effec-
tively compensate the time delay as shown in Fig. 9. From the
results obtained in this simulation, the proposed method can
achieve good prediction accuracy within 0.011 mm.

a

b

Fig. 9 a Integral drawing and b
partial enlargement drawing for
estimated profile of the beam
model + the ARIMA model with
the Kalman filtering and system
with time delay

Fig. 8 Absolute residual error of
the beam model + the ARIMA
model and the beam model + the
ARIMA model with the Kalman
filtering
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5.2 Effectiveness of the proposed method in deformation
compensation

In this section, cutting experiments of the rectangular pocket
during the finished machining are presented and compared to
validate the effectiveness of the improved FCC system.
Fig. 10a presents the wall thickness error distribution of pock-
et 1 machined by the conventional machining method. The
maximum and minimum wall thickness error is 0.9mm and
0.01 mm, respectively. The upper end of pocket 1 is close to
the clamped edge, and the lower end of pocket 1 is close to the
middle part of the workpiece. The cutting deformation of the
upper area of pocket 1 is much smaller than of the lower area.
Therefore, the wall thickness error of the lower area of pocket
1 is larger as shown in Fig. 10a. Fig. 10b shows the wall
thickness error distribution of pocket 2 machined with the
proposed online FCC compensation. After the compensation,
the accuracy of the remaining wall thickness is within the
range of 0.1 mm. From the above discussion, the conclusion
can be reached that the proposed method can guarantee the
remaining wall thickness of the rectangular pockets of a large
thin-walled part. The machined pockets on the machine are
shown in Fig. 11.

6 Conclusions

An improved FCC system based on an accurate deformation
prediction model and the Kalman filtering is proposed and
validated for machining the rectangular pockets of a large
thin-walled part. The improved FCC system provides an ef-
fective way to guarantee the remaining wall thickness. The
prediction accuracy of the FCC is improved by establishing
a prediction model based on the beam model and the ARIMA

model. The proposed prediction model considers both the
force-induced and the stochastic deformations of a large
thin-walled part. Higher prediction accuracy is achieved by
taking the advantage of correctable power of Kalman filtering
algorithm. The proposed method can effectively compensate
the time-lag problem and achieve good prediction accuracy
within 0.011 mm. A large thin-walled plate has been used to
validate the effectiveness of the proposed method. The rect-
angular pocket milling experiment is conducted on the im-
proved FCC system. After the proposed online FCC compen-
sation, the accuracy of the remaining wall thickness is within
the range of 0.1 mm.
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a b
Fig. 10 The wall thickness error distribution of the machined pocket a without using the improved forecasting compensatory control and b using the
improved forecasting compensatory control (unit: mm)

Fig. 11 The machined rectangular pockets of a large thin-walled plate.
The left pocket is pocket 2 and the right one is pocket 1
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Appendix

The beam mode shapes [18] can be expressed as

Y i ξð Þ ¼ C1isin riξð Þ þ C2icos riξð Þ þ C3isinh riξð Þ þ C4icosh riξð Þ
ð22Þ

where 0≤ ξ≤1, ri ¼ ffiffiffiffiffi
αi

p
, αi ¼ ωi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρAsl4= EIð Þ

q
, and C1i, C2i,

C3i and C4i are four constants to be determined from the
boundary conditions.

By substituting Eq. (22) into the boundary conditions equa-
tions, it yields four equations with four constants:C1i,C2i,C3i,
and C4i.

k1riC1i þ ri2C2i þ k1riC3i−ri2C4i ¼ 0
−ri3C1i þ k3C2i þ ri3C3i þ k3C4i ¼ 0
rik2cos rið Þ−ri2sin rið Þ� �

C1i− rik2sin rið Þ þ ri2cos rið Þ� �
C2i

þ rik2cosh rið Þ þ ri2sinh rið Þ� �
C3i

þ rik2sinh rið Þ þ ri2cosh rið Þ� �
C4i ¼ 0

k4sin rið Þ þ ri3cos rið Þ� �
C1i þ k4cos rið Þ−ri3sin rið Þ� �

C2i

þ k4sinh rið Þ−ri3cosh rið Þ� �
C3i

þ k4cosh rið Þ−ri3sinh rið Þ� �
C4i ¼ 0

ð23Þ

The above equation needs to be singular to find the non-trivial
solution, and then the natural frequency equation can be obtained as

αi
2 þ k1k3

� �
αi

2 þ k2k4
� �

−2αi αi
2k1k2−k3k4

� �
sin

ffiffiffiffiffi
αi

p
sinh

ffiffiffiffiffi
αi

p
þ 2αi

2 k1k4 þ k2k3ð Þ− αi
2−k1k3

� �
αi

2−k2k4
� �� 	

cos
ffiffiffiffiffi
αi

p
cosh

ffiffiffiffiffi
αi

p
−

ffiffiffiffiffi
αi

p
αi

3−k3k4
� �

k1 þ k2ð Þ þ αi αi−k1k2ð Þ k3 þ k4ð Þ� 	
sin

ffiffiffiffiffi
αi

p
cosh

ffiffiffiffiffi
αi

p
−

ffiffiffiffiffi
αi

p
αi

3 þ k3k4
� �

k1 þ k2ð Þ−αi αi þ k1k2ð Þ k3 þ k4ð Þ� 	
cos

ffiffiffiffiffi
αi

p
sinh

ffiffiffiffiffi
αi

p ¼ 0

ð24Þ

After solving for the natural frequencies, the mode shape
corresponding to each natural frequency can be determined as
follows:

If B0i≠0

Y i ξð Þ ¼ C1isin riξð Þ−C1iB1i=B0icos riξð Þ
þ C1iB2i=B0isinh riξð Þ−C1iB3i=B0icosh riξð Þ

ð25Þ

where

B0i ¼ ri αi
2 þ k1k3

� �
b12− 2 k3αib13 þ ri ri4−k1k3

� �
b14

B1i ¼ ri αi
2 þ k1k3

� �
b11 þ 2 k1αi

2 b14 þ ri ri4−k1k3
� �

b13
B2i ¼ ri αi

2 þ k1k3
� �

b14 þ 2 k3αib11 þ ri ri4−k1k3
� �

b12
B3i ¼ ri αi

2 þ k1k3
� �

b13− 2 k1αi
2 b12 þ ri ri4−k1k3

� �
b11

b11 ¼ k2ricos rið Þ − ri2 sin rið Þ b12¼−k2risin rið Þ − ri2 cos rið Þ
b13 ¼ k2ricosh rið Þ þ ri2sinh rið Þ b14 ¼ k2risinh rið Þ þ ri2cosh rið Þ

If B0i=0

Y i ξð Þ ¼ −C2i B5i=B4ið Þsin riξð Þ þ C2icos riξð Þ−C2i B6i=B4ið Þsinh riξð Þ
þ C2i B7i=B4ið Þcosh riξð Þ

ð26Þ

where

B4i ¼ ri αi
2 þ k1k3

� �
b41 þ 2 k1αi

2 b44 þ ri ri4−k1k3
� �

b43
B5i ¼ ri αi

2 þ k1k3
� �

b42−2 k3αib43 þ ri ri4−k1k3
� �

b44
B6i ¼ ri αi

2 þ k1k3
� �

b44 þ 2 k3αib41 þ ri ri4−k1k3
� �

b42
B7i ¼ ri αi

2 þ k1k3
� �

b43− 2 k1αi
2 b42 þ ri ri4−k1k3

� �
b41

b41 ¼ k4sin rið Þ þ ri3cos rið Þ b42 ¼ k4cos rið Þ−ri3 sin rið Þ
b43 ¼ k4sinh rið Þ−r3i cosh rið Þ b44 ¼ k4cosh rið Þ−r3i sinh rið Þ
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