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Abstract Mg-Al-Sn magnesium alloys have bright future in
application because of good properties without rare earth ele-
ments. To study the effects of rotation rate on microstructures
and mechanical properties of Mg-5Al-1Sn alloy after friction
stir welding (FSW), extruded plates were butt welded by FSW
with various rotation rates at constant other parameters. The
results showed that after FSW, Mg17Al12 phase with poor
thermal stability was dissolved, while Mg2Sn phase remained
due to high dissolution point and good thermal stability. The
hole-type defects were observed at 600 rpm, and theweld joint
was with no defects at 800~1100 rpm. The weld joint at
800 rpm gave a maximum ultimate tensile strength (UTS),
which was 91% of the base material (BM). After FSW, both
UTS and elongation of weld joints decreased compared with
the BM, caused by the soften region between nugget zone
(NZ) and thermo-mechanically affected zone (TMAZ), the
dissolution of Mg17Al12 phases, the residual stress and dislo-
cation content in the TMAZ, and the textural variation. With
increasing rotation rate from 600 to 1100 rpm, the UTS of
weld joints first increased and then decreased, while the elon-
gation kept mostly unchangeable due to the common action of
multifactors.

Keywords Friction stir welding .Mg-5Al-1Snmagnesium
alloy .Mechanical properties . Rotation rate . Microstructure
characteristics

1 Introduction

For magnesium alloys, large-scale commercial application has
been driven by a reliable welding process. However, conven-
tional fusion welding has some problems such as porosity, hot
cracking, oxidation, and high residual stress, which obstruct
the application of magnesium alloys [1]. Friction stir welding
(FSW) is a green solid-state welding technology, and it is
considered a promising joining method for aluminum alloys
[2, 3], magnesium alloys [4–6], and others [7]. Nowadays,
FSW of various magnesium alloys was investigated such as
AZ31 [8, 9], AZ91 [4], and AM20 [6]. Effects of welding
speed, rotational speed, and probe length on the quality of
friction stir-welded joints of AZ31 magnesium alloy were re-
ported by Cao and Jahazi [10, 11]. However, mechanical
properties of conventional Mg-Al-Zn series alloys are not ide-
al, which limits their application. Magnesium alloys contain-
ing rare earth element (REE) such as AE42 [12], ZEK100
[13], and ZE41A [14] were proven to have better perfor-
mances compared with the alloy without REE, and the weld
joints by FSW were with no defects and good properties.
Although the addiction of REE is an effective method in im-
proving properties of magnesium alloys, the REE is
expensive.

In recent years, Mg-Al-Sn series alloys have come to the
foreground because of high mechanical properties without
any rare earth components [15, 16]. The researches have been
concentrated on the solidification microstructure and mechan-
ical properties [17], compositional optimization [18], and the
effect of strain-induced precipitation on dynamic
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recrystallization [19] for Mg-Al-Sn alloys. However, there are
limited reports on the welding of Mg-Al-Sn alloys. In the
previous studies [16, 20], we reported that Mg-Al-Sn alloys
were successfully welded by FSW, and the influence of FSW
on microstructure and mechanical properties of magnesium
alloy Mg-5Al-3Sn was also studied. While the effect of rota-
tion rate on microstructure and mechanical properties of fric-
tion stir-welded Mg-Al-Sn alloys was seldom reported. We all
know that a reliable welding process is vitally important to the
commercial application of Mg-Al-Sn alloys. So, the hot-
extruded Mg-5Al-1Sn alloy plates were welded by FSW with
various rotation rates in this study, and the objective of the
study was to clarify the influence of rotation rate on micro-
structure and mechanical properties of Mg-5Al-1Sn alloy
joints after FSW.

1.1 Experimental details

The hot-extruded plates of Mg-5Al-1Sn magnesium alloy, with
dimensions of 150 mm (length) × 50 mm (width) × 3 mm
(thickness) and chemical composition of 4.5~5.5% Al,
0.7~1.3% Sn, and 0.2~0.4%Mn and balance Mg in weight per-
cent, were butt welded by FSW in the direction parallel to the
extruding direction. Before friction stir butt welding, surface ox-
ides were removed by manual power brush followed by surface
cleaning with ethanol. A simple FSW tool made fromH13 steel
withaconcaveshoulder10mmindiameter,acylindrical threaded
pin4mmindiameter and2.8mmin length, anda tool tilt angleof
2.5° was used in the study. In the previous experiments, a large
number of tests showed that thewelding speedwas optimized by
150mmmin−1 with various rotation rates for friction stir-welded
Mg-5Al-xSn (x = 1.3) alloy to achieve better mechanical proper-
ties, and it has been verified in the previous study [16]. So in the
present research, the constantwelding speedwas 150mmmin−1.
Rotation rates were varied from 600 to 1100 rpm, i.e., 600, 800,
1000, and 1100 rpm. And, the weld joints of Mg-5Al-1Sn alloy
after FSW were, respectively, denoted as the 600-, 800-, 1000-,
and 1100-rpmwelds in this study.

The weld joints were nondestructive evaluation tested by
CDZ-320ZD-A X-ray radiography. Samples for microstructural
characterization were cut perpendicular to the welding direction
(i.e., perpendicular to the extruding direction). The sampleswere
then ground without polishing and etched for 15 s in the reagent
madeof5gpicricacid,5mlaceticacid,100mlethanol, and10ml
distilled water to reveal the microstructure of the joints. The mi-
crostructures were observed by a LEICA DMI 5000-M optical
microscope and a JEOL 7800F scanning electron microscope
(SEM) at 20 kV equipped with an INCA Energy 350 energy-
dispersiveX-rayspectroscopy(EDS)analysis system.Afterbeen
groundedbySiCpapers,XRDanalysis of the sampleswas tested
by Rigaku D/max 2500 PC X-ray diffractometer at 60 kV and
30 mAwith a sample tilt angle ranging from 10 to 90°. Thermal
properties of the sampleswere examined bydifferential scanning

calorimetry (DSC) at a heating rate of 10 °C/min and an argon
flowrateof 50ml/min.Hardness at transversedirectionwasmea-
suredwith a 100 g load for a 10 s. Transverse tensile test samples
were cut perpendicularly to thewelding direction from the joints.
The configuration and size of the transverse tensile specimens
were prepared according to ASTM standard E8M-15a, with the
50-mm gauge length. Tensile tests were carried out on a Sansi
CMT-5105 mechanical tester using a crosshead speed of
0.5 mm min−1 at room temperature. To ensure high accuracy
and reliability, all the weld joints were tested and recorded three
times and were taken average. The fracture surface of transverse
tensile specimens was observed by a VEGA3 SEM. Figure 1
shows the schematic illustration of the FSW process. In Fig. 1,
NZ,TMAZ,HAZ,andBMintheweldcross sectionrepresent the
nugget zone, thermo-mechanically affected zone, heat-affected
zone, and base material, respectively. And, the advancing side is
marked as AS and the retreating side as RS.

2 Results

2.1 Weld appearance

Figure 2 shows the surface appearance of Mg-5Al-1Sn weld
joints after FSW at various rotation rates under a constant
welding speed of 150 mm min−1. It is seen that the welds
are without macrodefects such as excessive flash, galling,
void, and lack of fill on the surface of welds. X-ray radiogra-
phy images of the weld joints after FSW were also shown in
Fig. 2. There is no evidence defect in the welds and on the
surface of welds. It is observed that the extruded Mg-5Al-1Sn
alloy has good formability and weldability by FSW.

The weld joints were further evaluated by cross-section
check because tiny flaws were difficult to be detected by X-
ray radiography. Figure 3a–d shows the cross-sectional mac-
rostructures of friction stir welds at various rotation rates. It is
shown that all the weld joints were defect free expect at rota-
tion rate of 600 rpm. When the rotation rate was at 600 rpm,
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some hole-type defects were observed in the cross-sectional
weld joints. So, there was no defect in the weld joint when the
rotation rate was between 800 and 1100 rpm, while there were
hole-type defects at lower rotation rate of 600 rpm.

2.2 Mechanical properties

Figure 4 shows the mechanical properties of the BM and weld
joints with various rotation rates tested at room temperature.
The ultimate tensile strength (UTS) and elongation of the BM
were tested to be about 285 MPa and 18.7%, respectively. It is
seen from Fig. 4 that both UTS and elongation of the weld
joints decreased compared with that of the BM regardless of
rotation rate, especially the elongation sharply decreased. The
maximum value of UTS for weld joints was 258 MPa at the
rotation rate of 800 rpm, which was 91% of the BM strength.
While the minimum value of UTS was 223 MPa, which was

just 78% of the BM strength, at the rotation rate of 600 rpm.
For the rotation rate of 800~1100 rpm, the UTS of weld joints
was between 87 and 91%. It is also found that the UTS of weld
joints first increased and then decreased with increasing rota-
tion rate from 600 to 1100 rpm at a constant welding speed of
150 mmmin−1, while the elongation had no obvious changes.
Figure 5 shows the fracture morphologies of the tensile spec-
imens for weld joints. All of the tensile specimens failed at the
boundary between the NZ and TMAZ at the ASwith basically
45° shear fracture. Figure 6 shows the typical SEM micro-
graphs of tensile fracture surfaces for the BM and the 800-
rpm weld after FSW. As shown in Fig. 6a, the BM displayed
the fracture features of dimples together with some tear ridges.
While the tensile fracture of the weld joint was mixture of
cleavage-like and dimple-like, as illustrated in Fig. 6b.

Figure 7 shows the typical hardness profile across the weld
center measured along the mid-thickness (indicated by dotted
lines in Fig. 1). The pin and shoulder diameters were also
shown in this figure. Roughly speaking, the pin diameter in-
dicated the NZ of weld joint, whereas the shoulder diameter
delineated the regions most affected by heat. From this figure,
the hardness value of the BM fluctuated between 68 and
73 Hv. It is seen that the hardness value in the NZ was slightly
higher than that of the BM, and the lowest hardness located in
the region between NZ and TMAZ at AS but not at RS, irre-
spective of rotation rate. Under a constant rotation rate of
150 mm min−1, with increasing rotation rate from 600 to
1100 rpm, the hardness in the NZ of weld joints had no obvi-
ous changes.

2.3 Microstructure characteristics

The microstructures in the transverse cross section of weld
joints at different zones are shown in Fig. 8. According with
other alloys, there were four zones in the friction stir weld
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joints of Mg-5Al-1Sn alloy, which were the NZ, TMAZ,
HAZ, and BM. The as-received BM showed a typical defor-
mationmicrostructure with equiaxed grains withα-Mgmatrix
and precipitated phases, which was formed in the hot extru-
sion process (Fig. 8a). The average grain size of the BM was
about 10 μm. At the rotation rate of 800 rpm and welding
speed of 150 mm min−1, the average grain size of the HAZ
in the weld joints was about 10.8 μm, which was slightly
larger than that of the BM, as shown in Fig. 8b. Some grains
were refined and others were elongated in the TMAZ of the
friction stir weld (Fig. 8c), with average grain size of about
11.3 μm. The average grain size of the NZ in the weld joint
was about 8.3 μm, as shown in Fig. 8e.

The microstructures in the NZ at various rotation rates are
shown in Fig. 8d–g. It is clearly evident from these figures that
the grains in the NZ were equiaxed microstructures, which
were smaller than that of the BM, irrespective of rotation rate.
When the rotation rate was at 600 rpm, there were several
hole-type defects in the NZ.With increasing rotation rate from
800 to 1100 rpm, no obvious defects were observed and av-
erage grain size of the NZ increased. The average grain size of
the NZ in the 800- and 1100-rpm welds were 5.6 and 8.8 μm,

respectively. Figure 9 shows the SEM microstructures in the
BM and NZ of friction stir welds at various rotation rates.
Figure 10 shows the XRD analysis results of the BM and weld
joints at various rotation rates at a constant welding speed of
150 mm min−1. It can be seen that Mg17Al12 and Mg2Sn
phases were observed in the BM, while Mg17Al12 phase dis-
solved into α-Mg matrix and Mg2Sn phase remained after
FSW. It is also found that Mg2Sn phase particles was refined
and distributed uniformly. No obvious variation was observed
for the second phase (Mg2Sn) particles with increasing rota-
tion rate from 800 to 1100 rpm. Figure 11 shows the thermo-
dynamic data of the BM and NZ in the 800-rpm weld found
by DSC scans. Three peaks were observed in the BM corre-
sponding with the α-Mg matrix melting, Mg2Sn phase, and
Mg17Al12 phase transformations. While there was not a peak
of Mg17Al12 phase in the NZ of weld joints after FSW. It is
seen that the Mg17Al12 phase was dissolved and Mg2Sn phase
still remained, which conformed to the XRD and SEM anal-
ysis results.

3 Discussions

3.1 Microstructure evolution

The BM (Fig. 8a) is composed of equiaxed grains with α-Mg
matrix and precipitated phases, which is consistent with the
typical deformationmicrostructure formed in the hot extrusion
process [21]. The Mg17Al12 phase and Mg2Sn phase are ob-
served in the BM (Fig. 9a), which conforms to the recent
studies [21]. The microstructure of Mg-Al-Sn alloys consists
of α-Mg phase, Mg17Al12 phase, and Mg2Sn phase, and the
amount of Mg17Al12 phase and Mg2Sn phase increase with
increasing the content of Al and Sn, as reported by Luo et al.
[17]. After FSW, the HAZ (Fig. 8b) of weld joints is heated
sufficiently without plastic deformation of grains during FSW,
so the grains in the HAZ are with slightly bigger than that of
the BM [22]. Microstructures of the TMAZ (Fig. 8c) are com-
posed of fine equiaxed grains and stretched grains. The
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TMAZ is under sufficient heating, softened and high process
forces during FSW, so the grains in the TMAZ are with plastic
deformation of the original grain structure, as it conforms to
the previous study [21]. While there is lower heating temper-
ature and weaker mechanical stirring in the TMAZ than that of
the NZ. The NZ (Fig. 8d–g) of weld joints is composed of an
equiaxed microstructure, and the grains in the NZ are much
smaller than that of the BM because of dynamic recrystalliza-
tion induced by sufficient heating and intense plastic deforma-
tion, as reported by the previous researchers [5, 23, 24]. It is
widely accepted that the temperature in the NZ during FSW is
lower than the melting point of the BM but higher than the
recrystallization temperature [23, 25]. The temperature in the
NZ of magnesium alloys during FSW can reach 400~500 °C
[26–29]. Comparing with the BM,Mg17Al12 phase disappears
and there are α-Mg phase and Mg2Sn phase in the NZ of Mg-
5Al-1Sn alloy weld joints (Fig. 9b–d) after FSW. Previous
studies have shown that the eutectic Mg17Al12 phase with
poor thermal stability can dissolve into α-Mg matrix during
FSW [30]. While Mg2Sn phase with the melting point of

772 °C has better thermal stability than Mg17Al12 phase, so
Mg2Sn phase can remain in the NZ after FSW.

In principle, the formation of weld joints during FSW is by
means of heat produced by friction and plastic work, using a
rotation tool to locally soften a workpiece [22]. The rotation rate
and welding speed are two the most important process parame-
ters.Therelationshipbetweenthenugget temperatureandprocess
parametersduringFSWforaluminumandmagnesiumalloyswas
deducedbyComminet al. [9].When the rotation ratedecreases at
a constantwelding speed, bothnugget temperature andheat input
decrease accordingly. If the rotation rate is too slow (such as
600rpmforthemagnesiumalloyMg-5Al-1Sn)whenthewelding
speed is constant, it is unable to generate sufficient heat and ade-
quate metal transportation during FSW, so that the hole-type de-
fects appear in theweld joints (Fig.8d).Thedefects canmarkedly
influence the tensile properties of weld joints.

For the magnesium alloy Mg-5Al-1Sn, no defect is ob-
served in the weld joints after FSW (Fig. 8e–g) because of
enough heat and sufficient metal transportation. With increas-
ing rotation rate from 800 to 1100 rpm, the grain size of the
NZ in weld joints increases because of different heat input at
various rotation rates during FSW.When the welding speed is
constant, the nugget temperature and heat input will increase
with increasing rotation rate during FSW, which will cause
coarsening grains in the NZ after FSW. Chowdhury et al. [5]
have reported that average grain size of the NZ in the friction
stir-welded AZ31 magnesium alloy increased with increasing
rotation rate from 1000 to 2000 rpm at a constant welding
speed of 20 mm/s. When the rotation rate increased from
500 to 1250 rpm at a constant welding speed of 200 mm/
min, the grain size in the NZ could increase gradually for
noncombustive Mg-9Al-Zn-Ca magnesium alloy after FSW,
as observed by Zhou et al. [21]. No obvious variation is ob-
served for Mg2Sn phases with increasing rotation rate from
800 to 1100 rpm at a constant welding speed (Fig. 9b–d),
which is because the intermetallic phases can be wholly bro-
ken into fine particles with tool rotation and friction heat when
the rotation rate is between 800 and 1100 rpm.

)b()a(Fig. 6 Typical SEMmicrographs
of tensile fracture surfaces for a
the BM and b the 800-rpm weld
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3.2 Hardness distribution

The hardness value of the BM (Fig. 7) fluctuates between 68
and 73 Hv because of the inhomogeneous microstructure of
as-extruded plates. After FSW, it is seen that the hardness
value in the NZ is slightly higher than that of the BM. That
is largely because of the uniform recrystallization refinement
of α-Mg matrix and dispersed distribution of Mg2Sn phase
after FSW, although the dissolution ofMg17Al12 phase intoα-
Mg matrix will lower hardness in weld joints. The hardness is
greatly influenced by the average grain size according to the
Hall-Petch relation [31]. Average grain size of the NZ in fric-
tion stir welds decreases compared with the BM, so the hard-
ness value in the NZ is higher than that of the BM.

It is also observed that the lowest hardness locates in the
region between NZ and TMAZ at the AS but not at RS, with-
out regard to rotation rate. The softness may result from the
elongated and deformed grains. As known to all, there is an
unsteadymaterial flow around the pin during FSW. At the AS,
the temperature is higher than that at RS and the transmutation
grains have a greater strain [10]. Dong et al. [32] have reported
that the temperature is different at the AS and RS during FSW,
and there was lower hardness in the TMAZ at AS.

When the rotation rate increased from 600 to 1100 rpm at a
constant welding speed of 150 mm min−1, the hardness pro-
files have remained more or less unchanged. Perhaps that is
because the hardness is relative insensitivity to the change of
grain size in certain range. Yang et al. [33] have confirmed that
the hardness profiles had little change for the AZ31 magne-
sium alloy after FSW when the rotation rate increased from
800 to 3500 rpm.

3.3 Tensile properties

All the weld joints after FSW fail with basically 45° shear
fracture (Fig. 5), which can be due to the formation of texture
by the shear deformation resulting from the rotation of the pin
and tool shoulder in that region [34]. It is also seen that the
weld joints fail at the boundary between the NZ and TMAZ at
AS (Fig. 5). There are three possible reasons for the fracture at
the location. The first would be that the texture forms in that
location due to strong shear deformation when the pin and tool
shoulder rotate during the FSW [34]. Another reason may be
that there is the maximum accumulation of basal slip plane
(0001) in that region, which can be lead to the minimum
Schmid’s factor [35]. Thirdly, the fracture location is at the
boundary between the NZ and TMAZ at the AS because of the
minimum hardness in the region. All the friction stir welds
have an uneven distribution of hardness, and the fracture

Fig. 8 OpticalmicroscopyimagesofaBM,bHAZat1000rpm,cTMAZat1000rpm,dNZat600rpm,eNZat800rpm, fNZat1000rpm,andgNZat1100rpm

Fig. 9 SEM micrographs of a BM, b NZ at 800 rpm, c NZ at 1000 rpm,
and d NZ at 1100 rpm
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location is in the minimum hardness region, which has been
confirmed by Ren et al. [36] and Liu et al. [37].

Both the strength and elongation of weld joints decrease
compared with the BM (Fig. 4), in which most main reason
has four aspects. Firstly, as stated earlier, the alloys with larger
grain size have lower hardness on the basis of the Hall-Petch
relationship. There is a softened region between NZ and
TMAZ of weld joints. The strength is generally proportional
to the hardness for magnesium alloy [18], and therefore, the
strength of weld joints is lower than that of the BM. Secondly,
the lose strength of weld joints may be caused by the dissolu-
tion of Mg17Al12 intermetallic phases. Moshwan et al. [38]
have reported that the dissolution of Mg2Al3 intermetallic
phases could exhibit significant influence on the decrease of
strength for friction stir-welded AA 5052-O aluminum alloy.
And, the dissolution of Mg17Al12 intermetallic phases had an

effect on the strength decrease after FSW for magnesium alloy
Mg-5Al-3Sn, as reported by Pan et al. [16]. Thirdly, the resid-
ual stress and dislocation density in the TMAZ may influence
on the tensile properties of weld joints after FSW, as
established by Commin et al. [39, 40]. Fourthly, after FSW,
the basal plane could dramatically change, which has a notice-
able effect on the tensile properties of weld joints. New crys-
tallographic texture in friction stir-welded magnesium alloys
due to the hexagonal close-packed crystal structure can result
in the decrease of the strength and elongation of weld joints
after FSW, as reported by Park et al. [41]. Pan et al. [16] have
reported that the textural variation could lead to a precipitous
decline of elongation for friction stir-weldedmagnesium alloy.
Therefore, how to improve the tensile properties of welded
joints for Mg-5Al-1Sn alloy after FSW, especially the elonga-
tion, will become a study emphasis in further research.

After FSW, the UTS of weld joints first increases and then
decreases when the rotation rate increases from 600 to
1100 rpm at a constant welding speed of 150 mm min−1

(Fig. 4). As previously mentioned, at the lower rotation rate
of 600 rpm, some hole-type defects are observed in the weld
joints induced by insufficient heat and inadequate metal trans-
portation. It is generally known that the tensile strength of
weld joints will obviously decrease due to the welding defects.
So, the UTS of weld joints at rotation rate of 600 rpm is just
78% of the BM strength, while the UTS of weld joints without
obvious defects can reach 87~91% of the BM strength when
the rotation rate is between 800 and 1100 rpm.

With increasing rotation rate from 800 to 1100 rpm at a
constant welding speed of 150 mm min−1, the UTS of weld
joints without welding defects decreases gradually (Fig. 4).
This is attributed to different heat generated during FSW.
Emam and Domiaty [42] have reported that the total energy
per unit length of weld joints varies directly as the rotation rate
under a constant of other process parameters. The total energy
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per unit length increases with increasing rotation rate, which
causes bigger grain size of weld joints. The metal with larger
grain size has fewer grain boundaries. Grain boundaries are
the major obstacle to dislocation movement. Therefore, there
are fewer obstacles to dislocation slip and lower resistance to
localized plastic deformation at higher rotation rate during
FSW, which will lead to lower tensile strength. Under the
common action of multifactors such as crystallographic tex-
ture and residual stress, the elongation of weld joints is likely
to remain unchanged with increasing rotation rate at a constant
welding speed.

4 Conclusions

In the present work, the effects of rotation rate on microstruc-
ture and mechanical properties of friction stir-welded Mg-
5Al-1Sn magnesium alloy were investigated. The main con-
clusions are as follows:

(1) At a constant welding speed of 150 mm min−1, Mg-
5Al-1Sn magnesium alloy was jointed without defects at ro-
tation rate from 800 to 1100 rpm, while there are hole-type
defects at 600 rpm. The weld joint at 800 rpm gave a maxi-
mum UTS of 258 MPa, which was 91% of the BM.

(2) After FSW, for Mg-5Al-1Sn magnesium alloy,
Mg17Al12 phases were with poor thermal stability dissolved
into the α-Mg matrix, while Mg2Sn phases remained in the
NZ because of high-dissolution point and good thermal
stability.

(3) After FSW, both UTS and elongation of weld joints
decreased compared with the BM, which may be caused by
the softened region between NZ and TMAZ due to grain
growth, the dissolution ofMg17Al12 phases, the residual stress
and dislocation content in the TMAZ, and the textural
variation.

(4) With increasing rotation rate from 600 to 1100 rpm at a
constant welding speed of 150 mm min−1, the elongation of
weld joints is likely to remain unchanged due to the common
action of multifactors, while the UTS first increased and then
decreased. Hole-type defects resulted in lower UTS of weld
joint at 600 rpm. The UTS of weld joints improved obviously
without defects at 800~1100 rpm. When the rotation rate in-
creased from 800 to 1100 rpm, the UTS of weld joints de-
creased gradually, induced by higher heat generated.
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