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Abstract In this paper, comprehensive analysis has been car-
ried out to seek out the effective features which can reveal the
tool conditions when turning 50# normalized steel. Tool fail-
ure mechanism arising in the cutting processes shows that
flank wear is the most common failure mode which is taken
as the object in this study. Fourteen time-domain features
sensitive to tool wear are picked out by utilizing correlation
analysis. There are two kinds of tool wear condition, coded
as 0 and 1, which is distinguished by the blunt standard.
The predictive v-support vector regression (v-SVR)-based
model is constructed to monitor the tool wear conditions.
Experimental results show that the prediction accuracy of
the v-SVR model reaches up to 96.76%. Besides, the v-SVR
model has better prediction effect and stability than the
GRNN- and BPNN-based models.

Keywords Tool conditionmonitoring . v-SVR . Tool failure
mechanism . Correlation analysis . Blunt standard

1 Introduction

Progressive wear will appear on the tool rake and flank face in
cutting processes. The following situation will happen when
tool wear reaches a certain degree, such as significant increase
of cutting forces, sharp increment of cutting temperature,
chip color changing, and even the occurrence of vibration.

Furthermore, severe wear will affect greatly on surface quality
of the product, such as machining precision and surface
roughness. Worse still, it will lead to the degradation of ma-
chining stability. Cutting tools need to be replaced or reground
when the tool wear is serious enough to affect the machining
efficiency, product quality, and production costs. Therefore,
real-time monitoring of the tool wear state is an urgent issue in
intelligent manufacturing, which leads to the progress of on-
line tool condition monitoring system, especially in the highly
automated production lines.

There are many methods proposed for online tool wear
monitoring in the past few decades. However, they are rarely
commercialized due to the complexity of the cutting process-
es, such as nonlinearity and time variation. According to the
adopted sensors, these monitoring methods can be divided
into direct and indirect methods [1]. The advantage of direct
methods, such as machine vision and optical, radioactive, and
electrical resistance, is that the actual geometric changes aris-
ing from the wear region of the tool can be directly captured.
However, direct measurement is very difficult to carry out
real-timely owing to the continuous engagement between cut-
ter and workpiece and the disturbance of coolant and chips.
These phenomena severely limit the application of direct
methods [2]. Recent studies have been mainly focused on
the development of indirect methods to monitor the tool wear
state. Indirect methods are realized by correlating appropriate
sensor signals to tool wear states with the advantages of less
complicated setup and greater suitability to practical applica-
tion [3], such as cutting forces [4–10], vibration [11–15], tem-
perature [16, 17], acoustic emissions [18–22], and spindle
current [23]. Remarkably, most of the tool wear monitoring
methods were proposed just by utilizing one or two statistic
features of a certain domain extracted from force signals,
which correlate well with flank wear. And this may not be
suitable for other cutting processes owing to the complexity
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and nonuniversality. Besides, many literatures aimed at inves-
tigating the effects of a few of discrete tool flank wear values,
which could not describe a complete tool wear process [5–7,
12, 15, 19, 20, 23].

Lin et al. [5, 6] measured cutting forces under various cut-
ting parameters in face milling when the flank wear values
were set as 0.1, 0.5, and 0.9 mm and established two kinds
of tool wear prediction model based on neural network and
regression analysis. Axinte et al. [7] attempted to correlate five
kinds of specific condition of broaching tools to multiple sen-
sory signals. Chelladurai et al. [12] applied artificial flank
wear by EDM to simulate the actual flank wear and developed
artificial neural network model based on vibration and strain
signals for classification of tool wear. Ku et al. [15] investi-
gated the relationship between three wear states and vibration
signal features extracted via wavelet packet based on BP neu-
ral network. Li et al. [19] proposed fuzzy clustering method
for the recognition of tool wear states using RMS in each
frequency band as features based on acoustic emission (AE)
signals. Chen et al. [20] performed wavelet multi-resolution
analysis on the AE signals during turning free machining mild
steel only with a sharp tool and a worn tool. Li et al. [23] also
established regression models between cutting parameters and
current signals under different tool wear states (0.2, 0.5, and
0.8 mm) and proposed a fuzzy-based classification method to
help make the decision about tool replacement. Qiu et al. [24]
proposed an approach based on the root mean square of wave-
let packet coefficients and hidden Markov model (HMM) for
tool wear monitoring.

Among these signals to monitor tool wear and breakage, the
cutting forces appear to be more sensitive than others [25].
Indeed, the information carried by force signals has not been fully
taken advantage of in most cases. Force signals are highly valid
carriers of information about the cutting processes [4]. Therefore,
it is of great importance for tool wear monitoring to fully extract
the signal features that accurately reflect tool wear degree.

The above literatures show that neural network model is
very popular among the researchers attributed to its advan-
tages such as high adaptability and fault tolerance, noise sup-
pression, and data-driven nature [26]. However, its prediction
accuracy is limited especially with small sample size resulting
from its inherent defects, such as local optimal solution, time-
consuming training, overfitting, and poor generalization.
Recently, more and more scholars have devoted themselves
to the research of support vector machine (SVM). Compared
with neural network, SVM has overcome certain shortcom-
ings and shows huge advantage on generalization perfor-
mance. Shi et al. [8] combined least square support vector
machine (LS-SVM) with principal component analysis
(PCA) technique to predict tool wear in a broaching operation.
Kong et al. [10] presented a new tool wear predictive v-sup-
port vector regression (v-SVR)-based model with kernel prin-
cipal component analysis (KPCA) technique to fuse effective

features extracted from force signals. Qian et al. [27]
established a SVM with genetic algorithm (SVMG)-based
predictive model by learning the relationship between extract-
ed surface texture features and actual tool wear. In addition,
there are some varieties of SVM applied to the machining
process reported in [28–32].

In the present study, the main objective is to introduce a
force-based tool condition monitoring system by utilizing
v-SVR [33] and correlation analysis. The correlation coeffi-
cient method is applied to select out the effective features
while the v-SVR model is trained to identify tool wear states.
The experimental results from turning 50# normalized steel
show that the v-SVR model has a higher predicted accuracy
and a better stability in comparison with generalized regres-
sion neural network (GRNN)- [34] and back propagation neu-
ral network (BPNN)-based models [6]. The structure of the
work is arranged as follows: “Section 2” is a detailed theoret-
ical description about v-SVR. In “Section 3,” experimental
scheme and tool failure modes are summarized. “Section 4”
describes the tool failure mechanism, feature extraction, and
construction and validation of v-SVR in detail. In “Section 5,”
the conclusions are drawn.

2 v-Support vector regression

SVMs are made up of a series of new statistical learning al-
gorithms and especially suitable for the classification and pre-
diction under the condition of small samples. In recent years,
the support vector regression (SVR) has been developed to
approximate nonlinear functions by arbitrary accuracy with a
global minimum and a fast convergence speed. In the ε-SVR
algorithm, the argument ε will contribute to achieving the
desired approximation accuracywhich is specified in advance.
In order to make the parameter selection more easy, an im-
proved version ν-SVR was put forward by Schölkopf [33].
The number of boundary support vectors and support vectors
can be controlled by selecting a suitable parameter ν. The
principle of ν-SVR algorithm is presented as below.

Given a training set xi; yif gNi¼1, xi∈R
n, yi∈R, the regres-

sion problem needs to solve a mapping function f :Rn→R,
from the input space to the output space, which makes f(x) = y.
While the objective of ν-SVR algorithm is to seek to estimate
functions,

y ¼ f xð Þ ¼ w⋅xð Þ þ b ð1Þ

where w ,x∈Rn ,b∈R. At every point xi, an error of ε is per-
mitted. The one beyond this error is compromised by slack

variables ξi and ξ
*
i and punished through a regularization con-

stant C in the objective function. The value of ε is weighed
against the complexity of the model and slack variables
through a constant v≥0. According to the statistical learning
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theory, ν-SVR algorithm is designed based on structural risk
minimization to obtain the regression function for the linear
problem, namely solving the minimum value of the following
cost function:

τ w; ξ; ξ*; ε
� � ¼ 1

2
wk k2 þ C⋅ νεþ 1

N

XN
i¼1

ξi þ ξ*i
� � !

ð2Þ

subject to:

w⋅xið Þ þ bð Þ−yi≤εþ ξi ð3Þ
yi− w⋅xið Þ þ bð Þ≤εþ ξ*i ð4Þ
ε≥0; ξi≥0; ξ

*
i ≥0 ð5Þ

where ‖w‖2 stands for the complexity of the model, ε denotes
insensitive training errors, C is a constant which determines
the weight value between the complexity of the model and the
training errors, and v is a new introduced parameter.

To solve this optimization problem, Lagrange multiplier
techniques are used to construct the Lagrange function as

L w; b;α;α*;β; ξ; ξ*; ε; η; η*
� �

¼ τ w; ξ; ξ*; ε
� �

−βε−
XN
i¼1

ηiξi þ η*i ξ
*
i

� �
−
XN
i¼1

αi ξi þ yi− w⋅xið Þ−bþ εð Þ

−
XN
i¼1

α*
i ξ*i þ w⋅xið Þ þ b−yi þ ε
� �

ð6Þ

where αi;α*
i ; ηi; η

*
i ;β≥0 are Lagrange multipliers. The solu-

tion of Eq. (6) can be obtained by finding the saddle point of L.
Setting the partial derivatives of function L with respect to the

primal variables w; b; ξi; ξ
*
i ; ε to zero yields the following

equations:

w ¼
X

i

α*
i −αi

� �
xi

XN
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αi−α*
i

� � ¼ 0
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−αi−ηi ¼ 0
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−α*
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8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð7Þ

Finally, the resulting regression estimate can be obtained as
follows after solving the above equations:

f xð Þ ¼
XN
i¼1

α*
i −αi

� �
xi; xð Þ þ b ð8Þ

The above regression estimate is linear, not suitable for the
nonlinear cutting process, especially for tool condition moni-
toring. However, this algorithm can be extended to a nonlinear

one by adopting the kernel function method, namely, replac-
ing the dot product with a kernel function K which does the
dot product in feature space related to input space through a
nonlinear mapping Φ. In this research, RBF kernel is selected
as the kernel function as the following:

K xi; x j
� � ¼ Φ xið Þ⋅Φ x j

� �� � ¼ exp − xi−x j
�� ��2. 2σ2

� �� �
ð9Þ

Then, the regression estimate for nonlinear problem can be
expressed as

f xð Þ ¼
XN
i¼1

α*
i −αi

� �
K xi; xð Þ þ b ð10Þ

In the Eq. (10), only the nonzero α*
i and αi will precisely

meet the constraints of Eq. (3) or (4). The corresponding pat-
terns are referred to as support vectors which completely de-
termine the regression function f(x).

3 Experimental setup

Before the v-SVR-based predictive model is constructed, the
relationship between signal features and tool wear degree
needs to be confirmed. The effective features are extracted
from force signals collected from cutting tests.

3.1 Experimental components

The workpieces utilized in this study are round bars with the
dimension of 200-mm diameter and 500-mm length, which
were made of 50# normalized steel (HB160~197). The cutting
tests are performed on a DMTG-CW6163E turning lathe. The
experimental components are listed in Table 1. The diagram of
experimental platform for cutting force acquisition and tool
wear measurement is illustrated in Fig. 1. The dynamometer is
mounted under the tool rest with eight bolts. The image mea-
suring system VMS-1510G is used to observe the tool flank
wear.

Table 1 Experimental components

Components Type

Engine lathe DMTG-CW6163E

Indexable inserts Sandvik CNMG120408-PM

Tool holder Sandvik PCLNR 2525M 12

Dynamometer Kistler 9257A

Charge amplifier Kistler 5070A

Data acquisition system Kistler 5697A

Notebook with DynoWare Kistler 2825A

Video measuring system VMS-1510G (QIM1008)
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3.2 Design of experiments

The objectives of this study are to analyze the cutting force
signals and to extract the effective features that correlate well
with tool wear from the signals obtained during turning of 50#
normalized steel. In order to ensure tool wear as normal as
possible, trial cuts are quite necessary to confirm the range of
cutting parameters so as to reduce chatter or vibration and
verify the feasibility of the selected parameters.

The selected nine sets of cutting parameters are list in
Table 2. Three cutting tests are carried out for each set of cutting
parameters since there are various tool wear types happening
during the tests and the occurrence appears to be highly ran-
dom, even for the same cutting parameters [35]. All these tests
are performed in dry condition to acquire cutting force signal
sampling at 20 kHz. Each insert will undergo the process from
fresh tool to worn-out under each set of cutting parameters as
shown in Table 2. The blunt standard will be introduced in the

next section. Besides, flank wear of the insert is measured by
utilizing VMS-1510G at 2-min intervals or longer so that the
tool wear state in each stage is recorded. The cutting process
will not be terminated until the insert is severely worn.

4 Results and discussions

4.1 Tool failure mechanism

Apart from normal wear like flank wear, crater wear, and
notch wear, there are several other failure modes, such as
built-up edge, chipping, tipping, and hot crack, on the tools
engaged in the machining process as shown in Table 2. It can
be observed that flank wear is the most common failure mode
and appears in the whole life and under all conditions. The
other failure modes could suddenly emerge after the flank
wear increased to a certain extent which means the inserts

Dynamometer

·

Notebook
with Dynoware Charge Amplifier Data Acquisition System

Flank wear

Video Measuring System
QIM1008 linked to VMS

Fig. 1 The diagram of
experimental platform for cutting
force acquisition and tool wear
measurement

Table 2 Experimental cutting
parameters and the corresponding
failure mode

Test no. Cutting speed

Vc (m/min)

Cutting
depth ap (mm)

Feed rate

f (mm/r)

Tool main failure mode

1~3 300 1 0.3 Flank wear, crater wear, tipping

4~6 300 2 0.3 Flank wear, hot crack, chipping

7~9 350 1 0.3 Flank wear, built-up edge, tipping

10~12 300 1 0.2 Flank wear, crater wear

13~15 300 1 0.4 Flank wear, built-up edge, tipping

16~18 300 2 0.4 Flank wear, hot crack, chipping, crater wear

19~21 350 1 0.4 Flank wear, built-up edge, tipping

22~24 300 2 0.2 Flank wear, hot crack, chipping

25~27 350 1 0.2 Flank wear, tipping, crater wear
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t=71s (a) (b) t=2377s

t=2858s(c)

t=3077.7s(d)

t=3169.4s(e)

Fig. 2 Failure modes of the insert (Test no. 25) with the cutting time of: (a) 71s, (b) 2377s, (c) 2858s, (d) 3077.7s and (e) 3169.4s
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are on the verge of broken. It also indicates that hot crack
mainly appears in the case of large cutting depth, caused by
uneven distribution of cutting heat. Surface topography of the
failure modes happened in the inserts is illustrated in Fig. 2
after themachining tests of 50# normalized steel in Test no. 25.
In this figure, VB refers to tool flank wear land width, a var-
iable quantifying flank wear. It can be seen that only flank
wear was clearly observed in the beginning due to attrition
caused by mechanical stress as shown in Fig. 2a. With the
increasing of flank wear as shown in Fig. 2b, notch wear
becomes more obvious mainly due to the constant friction
and impact between cutting edge and hardened layer of the
workpiece surface. In addition, crater wear has not been ob-
served. The cutting edge where notch wear repeated occur-
rence started to chip and a few small gaps were formed as
shown in Fig. 2c. The constant impact of the workpiece sur-
face hardened layer on the cutting edge leads to the appear-
ance of fatigue fracture. Meanwhile, the rudiment of crater
wear on rake face could be discovered, mainly caused by high
temperature, high pressure, and severe friction in the tool-chip
interface. As time went by, built-up edge was detected on the
rake face near the tool major cutting edge as shown in Fig. 2d.
It is likely because cold welding of the chip happens on the
rake face under the conditions of proper temperature and high
pressure. At this moment, flank wear and crater wear have
become worse. Figure 2e indicates that the insert is seriously
worn accompanied by the phenomenon of tipping near the
cutting edge on flank face. The tipping on the flank face leads
to uneven fragile edge, caused by severe vibration. This marks
the end of the tool life. It can be concluded from Fig. 2 that

flank wear plays an important role in the whole tool life, which
tends to be accompanied by other failure modes.

4.2 Tool flank wear

It is well known that the tool needs to be replaced when tool
wear reaches a certain degree, i.e., blunt standard. In general,
flank wear has a more significant effect on surface quality,
cutting force, and cutting temperature than rake wear. It
appears in the whole tool life under all conditions and is
easier to be measured than other types of wear during the
gradual wear process. The blunt standard is laid down based
on the tool flank wear land width. In this work, the wear value
VB at the location of 1/2 ap on the flank face was taken as an
object of study [36].

The flank wear increased with the cutting time went on as
illustrated in Fig. 3. Its trend was consistent with the pattern
reported by other researchers [36, 37]. VB denotes the tool
flank wear land width measured after each cutting process.
The blunt standard is set as 0.3 mm, meaning the tool is worn
out or breakage and should be replaced when VB exceeds this
threshold value. It can be observed that the inserts went
through three stages in its life, namely initial wear, normal
wear, and severe wear. Usually, the blunt standard is used to
distinguish normal wear from severe wear. However, there is
no clear boundary between initial wear and normal wear.
Besides, the initial wear is transient. Therefore, initial wear
is classified as normal wear in this work. The symbolic state
is severe wear, which manifests the tool should be replaced
and has an important significance in the field of mechanical
manufacturing.

4.3 Feature extraction and selection

The number of the selected features should be as large as
possible so that the wear state can be exactly described.
Most of the features extracted from force signals are subject
to the cutting conditions, so they could not be selected to
predict the current state of tool wear under different cutting
conditions [35]. Besides, tool wear has a great relevance with
cutting parameters which are not dependent on the extracted
features and chosen as the features to describe tool wear states
[19]. Therefore, it is hoped that the selected features should
not be too sensitive to cutting conditions and these features
should have a strong correlation with tool wear in any cutting
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Fig. 3 The variation of flank wear VBwith the cutting time (Test no. 23)

Table 3 The average correlation
coefficients (CCs) between VB
and extracted features

Features Mean_Fx Mean_Fy Mean_Fz Max_Fx Max_Fy Max_Fz Resultant force
CCs 0.93 0.93 0.88 0.89 0.83 0.71 0.92

Features Rms_Fx Rms_Fy Rms_Fz Fx/Fz Fy/Fz Power Moment of Fx
CCs 0.93 0.92 0.88 0.92 0.90 0.88 0.91
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conditions. Thus, this tool wear monitoring system can be
suitable for various cutting conditions.

In order to remove the redundant features which have little
relevance to tool wear, correlation analysis is introduced as a
feature filter to weigh up this relevance criterion for feature
selection. Correlation analysis is always utilized to describe
the linear correlation between two signals. The correlation
coefficient is expressed as

ρxy ¼
X n

i¼1
xi−x
� �

yi−y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX n

i¼1
xi−x
� �2

yi−y
� �2r ð11Þ

where xi stands for the preliminary extracted feature, while yi
stands for the corresponding tool wear value. x and y are the
mean values, respectively. Correlation coefficient changes be-
tween −1 and 1. The more the absolute value |ρxy| is close to 1,
the better the linear correlation between the feature and tool
wear is conformed. It means this feature is sensitive to tool
wear and can be used to describe the characteristic of tool wear.

When the absolute values of correlation coefficient be-
tween extracted features and tool wear are greater than or
equal to 0.6 in all cutting conditions, the features are selected.
The discriminant features are extracted from force signals by
time-domain statistical analysis. And the calculation of corre-
lation coefficient between these features and VB is also car-
ried out. The selected effective features after taking the

average of the correlation coefficients are presented in
Table 3. These 14 features are utilized to describe the current
tool wear states real-timely.

Resultant force and moment of Fx versus average flank
wear (VB) under different cutting parameters are illustrated
in Figs. 4 and 5, respectively. A good correlation can be ob-
served between the features and VB which indicates these
features can be used to predict tool wear.

While most of the other features may have a consistent
correlation with VB in certain cutting conditions such as crest
factors, they appear to fluctuate once the condition is changed,
showing weaker associations with flank wear. Figure 6 illus-
trates the relationship between the crest factors (Cre_Fx,
Cre_Fy) and flank wear under different cutting conditions. It
can be found that the crest factors have a good correlation with
VB in Fig. 6a, while they are irregular in Fig. 6b. Therefore,
these features should not be selected.

Before constructing the v-SVR model, all the selected fea-
tures should be normalized through zero-mean normalization
method with the formula as following,

x
0 ¼ x−μ

σ
ð12Þ

where μ and σ stand for mean and standard deviation, respec-
tively. The 14 normalized features as shown in Table 3 and
three cutting parameters will be taken as the input of the v-
SVR model as presented in “Section 2.”
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Fig. 4 Resultant force vs. VB for
(a) Test No. 8 and (b) Test No. 17
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Fig. 5 Moment of Fx vs. VB for
(a) Test No. 8 and (b) Test No. 17
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4.4 Experimental results and discussion

Before building the ν-SVR model, normalization processing
for the above features is helpful for argument selection and
improvement of training speed. There are two important
arguments: gamma −gð Þ and cost −cð Þ needed to be
determined during the training process. In general, the grid-
search and the cross-validation methods are utilized together
to achieve the best g and the best c during which a good
accuracy is obtained. In this way, the ν-SVR model is con-
structed. The tool wear state can be classified into two types in
this paper, namely normal wear and severe wear [19]. Two
wear states based on the flank wear value are listed in Table 4.

There are a total of 463 cutting processes during the 27
groups of cutting tests. One signal containing cutting forces
in three dimensions (X, Y, and Z) is obtained from each cutting
process. Two sets of the selected features are randomly ex-
tracted from each signal, one for training and the other for
testing. Testing samples will not appear in the training sam-
ples. The corresponding label for each set of features is created
according to the classification in Table 4. Then, the model
based on ν-SVR for tool wear prediction will be trained by
using training samples and the corresponding labels.
Combining grid-search with cross-validation method, the best
arguments g and c are obtained as 0.0313 and 512, respective-
ly. The parameters b,α*

i , andαi in “Section 2” are also worked
out, and the tool wear model is well constructed. Testing data
are utilized to verify the prediction accuracy of this ν-SVR-
based tool wear model. The predicted results and the actual
tool states are presented in Fig. 7. The results show that the
average accuracy of this model reaches up to 96.76%. Once
the predicted label is “1,” it represents the tool is severely
worn and should be replaced in time.

At the same time, the tool wear models based on GRNN
and BPNN are also trained and tested by the same data sets,
respectively. The classification results are presented in Figs. 8
and 9, respectively. The scattered points in these two figures
indicate that the prediction accuracy is not satisfactory,
especially in the BPNN model. The results predicted by
GRNN and BPNN models have a great uncertainty because
of the initial weights and thresholds randomly generated in the
training process.

Classification rate of v-SVR, GRNN, and BPNN for the 27
groups of cutting tests under nine sets of cutting parameters is
listed in Table 5. Each set of cutting parameters is repeated
three times. Classification results reveal that the accuracy and
stability of v-SVR are superior to GRNN and BPNN. Besides,
the robustness and reproducibility of v-SVR make it more
reliable for tool wear monitoring in industrial environments.

4.5 Superiority of v-SVR in small samples

In order to investigate the generalization ability of the models,
different sizes of samples are applied to train these three
models. Taking one set of cutting parameters as an example,
comparison of the predicted accuracy by three models under
the same testing samples is carried out as shown in Fig. 10.
The numbers 1/3, 1/2, and 1/1 in the figure represent the ratios
of size between testing samples and training samples.
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Fig. 6 Crest factors vs. VB for
(a) Test No. 6 and (b) Test No. 20

Table 4 Tool wear state classification

Tool states Tool flank wear land width Labels

Normal wear 0 <VB< 0.3 mm 0

Severe wear VB> 0.3 mm 1
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Fig. 7 The predicted results of ν-SVR model and the actual tool states
(Test no. 10)
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Contents in brackets stand for the training sample size. The
predicted accuracy of the v-SVR model is almost the same
with the sharp reduction of training sample size. The accuracy
of the GRNN model has a certain decrease as training sample
size decreases and is lower than that of v-SVR model.
However, the accuracy of the BPNN model shows a sharp
decline with the decrease of training sample size. The above
analysis reveals that v-SVR model has better generalization
ability even under the condition of small sample. The compar-
ison result also shows that the tool wear model based on
ν-SVR can keep a high success rate to predict tool wear even
when the training sample size is sharply reduced. Besides, the
average time of training and testing for v-SVR, GRNN, and
BPNN is 1.096, 80.686, and 2.25 s, respectively. Therefore, v-
SVR shows great superiority over GRNN and BPNN in the
aspect of small sample size and training speed.

5 Conclusions

It is well known that one of the most critical issues for mon-
itoring tool wear is to select the features extracted from the
original signals which can accurately describe the tool wear
state. In this work, a new method based on v-SVR is

introduced to monitor the tool condition in turning operations.
The 14 selected features derived from time-domain statistical
analysis show a good correlation with tool flank wear. This
paper provides a more reliable solution for tool wear state
estimation under industrial circumstance.

This study concludes as following:

1. There are several tool failure modes engaged in the ma-
chining process, including flank wear, crater wear and
notch wear, built-up edge, chipping, tipping, and hot
crack. Thereinto, flank wear is the most common failure
mode and appears in the whole tool life.

2. Correlation analysis reveals that not all the features
are suitable for tool wear monitoring. Only the features
that correlate well with tool wear in different cutting
conditions are considered to be effective. The selected
features have higher average correlation coefficient
which is more than 0.6.

3. The inserts go through three stages in its life, namely
initial wear, normal wear, and severe wear. In this work,
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Fig. 8 The predicted results of GRNN and the actual tool states (Test no.
10)
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Fig. 9 The predicted results of BPNN and the actual tool states (Test no.
10)

Table 5 Classification rate of v-SVR, GRNN, and BPNN (%)

Test no. Vc (m/min) ap (mm) f (mm/r) v-SVR GRNN BPNN

1 300 1 0.3 93.75 75 81.25

2 300 1 0.3 95.24 61.9 61.9

3 300 1 0.3 95.24 66.67 90.48

4 300 2 0.3 93.33 93.33 60

5 300 2 0.3 100 100 75

6 300 2 0.3 100 100 81.82

7 350 1 0.3 84.62 61.54 61.54

8 350 1 0.3 94.12 64.71 82.35

9 350 1 0.3 92.31 76.92 76.92

10 300 1 0.2 100 90.32 70.97

11 300 1 0.2 96.77 90.32 87.1

12 300 1 0.2 100 93.33 93.33

13 300 1 0.4 100 100 92.86

14 300 1 0.4 100 80.95 95.24

15 300 1 0.4 93.33 86.67 100

16 300 2 0.4 100 70 40

17 300 2 0.4 94.74 73.68 52.63

18 300 2 0.4 100 100 70

19 350 1 0.4 88.89 33.33 44.44

20 350 1 0.4 100 52.94 64.71

21 350 1 0.4 84.62 76.92 84.62

22 300 2 0.2 100 96 84

23 300 2 0.2 100 92 76

24 300 2 0.2 100 100 60

25 350 1 0.2 100 100 95.83

26 350 1 0.2 100 92.86 92.86

27 350 1 0.2 92.31 84.62 84.62

Average 96.76 83.15 77.97
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initial wear is classified as normal wear. The blunt stan-
dard set at 0.3 mm is utilized to distinguish normal wear
and severe wear.

4. The v-SVR-based method is successfully incorporated in-
to monitoring of tool wear state. Compared with GRNN
and BPNN models, the v-SVR model has a higher pre-
dicted accuracy reaching up to 96.76%. Besides, the
v-SVR model shows great superiority over GRNN and
BPNN models in stability, robustness, repeatability,
small sample size, and training speed.
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