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Abstract When a multistage manufacturing process is
monitored statistically, the cascade property results in a
more complicated condition compared to the case when a
single-stage process is controlled. The cascade property
usually exists in different stages of a multistage process,
where the quality of a stage influences the performance
of the next stage. Moreover, sometimes the quality of a
product/process is best characterized by a functional re-
lationship. This relationship is referred to as a profile. In
this paper, phase I monitoring of simple linear profile is
addressed for a multistage process involving the cascade
property. To aim this, the capabilities of the methods that
may be used to monitor a profile in a multistage process
are first assessed. Then, a statistic, named the U statistic,
is introduced to provide the opportunity of removing the
cascade property. This statistics provides quality engi-
neers a way to reduce the complicated condition of

monitoring a multistage process. The new approach also
helps quality engineers to diagnose effectively the stage
responsible for the out-of-control condition. To evaluate
the effectiveness of the proposed approach, different simulated
cases are analyzed numerically. In addition, a case study is pro-
vided to illustrate the applicability of the proposed method in
real-world manufacturing environments.

Keywords Profile monitoring .Multistage process . Cascade
property . Test power

1 Introduction

A regression model can describe the quality of a product or
process in many practical applications well. This approach
helps quality engineers to monitor the quality of the product
or the process by constructing a curve which is referred to as a
profile. Profile monitoring attracted the attention of a large
group of researchers recently. In general, profile monitoring
may be classified into two main branches of (1) profile mon-
itoring of single-stage processes and (2) profile monitoring of
multistage processes. Several researchers such as Zou et al.
[1], Moguerza et al. [2], Williams et al. [3], Saghaei et al. [4],
Noorossana et al. [5], Kazemzadeh et al. [6], Jensen et al. [7],
Kazemzadeh et al. [8], Saghaei et al. [9], Zhang et al. [10],
Soleimani et al. [11], Zhang and Albin [12], Chicken et al.
[13], Shiau et al. [14], Zhu and Lin [15], Noorossana et al. [16,
17], Chang and Yamada [18], Noorossana et al. [19], Amiri
et al. [20], Chuang et al. [21], Narvand et al. [22], Soleimani
and Noorossana [23], Wang and Tamirat [24], and Atashgar
et al. [25] have contributed to the monitoring problem of the
profile in a single-stage process. However, many manufactur-
ing processes involve production in several consecutive
stages.
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The dependence between stages of a multistage process
is an important property that must be considered in pro-
cess monitoring. In other words, the quality of each stage
of the process affects directly the performance of the next
stage. This property of a multistage process is referred to
as the cascade property. The cascade property, in fact,
provides a complex condition in comparison to a single
process. Literature addresses few works that focused on
monitoring the profile in multistage processes. Esmaeeli
and Sadegheih [26] developed two methods for monitor-
ing a two-stage process in phase II using the profile ap-
proach. Eghbali et al. [27] proposed a phase II monitoring
method for a simple linear profile of a process with two
stages considering the cascade property. Imani and Amiri
[28] addressed the phase II monitoring problem of logis-
tics profiles in a multistage process.

In this paper, phase I profile monitoring of a multistage
process involving the cascade property is focused on. The
purpose of the statistical control in phase I is to ensure the
stability of a process and estimate the parameters of the
process. In phase II monitoring, however, one aims to de-
tect the shifts or trends manifested by a special cause in the
process. This paper provides a comparative evaluation of
three different methods of controlling the parameters of a
profile considering the cascade property. While these
methods are not capable of removing the impact of the
cascade property, a transformation method is proposed in
this paper to remove (or minimize) the impact of the cas-
cade property. Through comparative investigations, we
will show that monitoring a multistage process based on
the proposed transformation is more effective compared to
the case where the cascade property is not removed. The
proposed approach also allows quality engineers to identi-
fy the stage responsible for the out-of-control condition in
order to perform an effective root cause analysis.

The rest of the paper is organized as follows. In the next
section, a multistage process is formulated by a regression
model. The performance of three methods of phase I monitor-
ing is evaluated in Section 3. The proposed transformation
method is discussed in Section 4. Section 5 is allocated for
evaluating the performance of the proposed approach, numer-
ically. To illustrate the applicability of the proposed model,
Section 6 is supported by a real case study. Finally, the last
section is devoted to concluding remarks.

2 Multistage process modeling

In a multistage process, the output quality of each stage de-
pends on two main factors. The first factor is the quality of the
activities at this stage, and the second is the performance of the
previous stage(s). This correlated performance, which is re-
ferred to as the cascade property, is of great importancewhen a

multistage process is monitored. A multistage process can be
expressed as the following regression equations:

yik1 ¼ A0 þ A1xi þ εik1; i ¼ 1; 2;…; n; k ¼ 1; 2;…;m ð1Þ

yiks ¼ ∅yik s−1ð Þ þ α1s þ α2sxi þ εiks; s ¼ 2; 3;…; S ð2Þ

where for the kth sample, (xi,yik1) and (xi,yiks) are the i
th observed

outputs for the first and the sth stages, respectively. Moreover, A0
and A1denote the intercept and the slope of the simple linear
profile in Eq. 1, respectively. The special effects of stage s on
the intercept and the slope are denoted by α1s and
α2s,respectively. Furthermore, εik1 and εiks are randomerror terms
that followN∼ 0;σ2

1

� �
andN∼ 0;σ2

s

� �
, respectively, and∅ is the

auto-correlation coefficient (stage correlation). For the sake of
simplicity, the variance of the error term in all stages is assumed
to remain constant, i.e., σ2

1 ¼ σ2
2 ¼ … ¼ σ2

s ¼ σ2. Besides, it
is possible to rewrite Eq. 2 as Eq. 3.

yiks ¼ ∅s−1yik1 þ
Xs

r¼2

∅s−r α1r þ α2rxi þ εikrð Þ: s ¼ 2; 3;…; S ð3Þ

In addition, similar to Mahmoud and Woodall [29], it is as-
sumed that the independent variable xi takes the values 0, 0.2,
0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, and 1.8 in both Eqs. 1 and 2.

As phase I monitoring is involved in this paper, it is necessary
to estimate the process parameters. Knowing the first stage is
independent of the next stages, A0 and A1 are estimated using
the least squares method for sample k as follows:

ak ¼ yk−bkxk ð4Þ

bk ¼
SXY kð Þ
SXX kð Þ

; ð5Þ

where

xk ¼ 1

n

X n

i¼1
xik yk ¼

1

n

X n

i¼1
yik ð6Þ

SXX kð Þ ¼
X n

i¼1
xik−xk

� �2
SXY kð Þ ¼

X n

i¼1
xik−xk

� �
yik : ð7Þ

In this phase, ∅ is estimated as follows:

∅̂k;s ¼ Y 0
; Yk;s−1; −;Y

0
k;s−1;X ; X 0

X
� �−1

;X 0
;Y k;s−1

h i−1

Y 0
k;sY k;s−1−Y

0
k;sX X 0

X
� �−1 X 0

Yk;s−1

h i

s ¼ 2; 3;…; S; ð8Þ
that results in

∅̂ ¼
X S

S¼2

X m

k¼1
∅̂k;s

S−1ð Þm : ð9Þ
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3 Performance evaluation of profile monitoring
methods

Literature introduces several methods for phase I moni-
toring of a simple linear profile in a single-stage process.

In this section, the performances of three well-known
methods including T2 of Stover and Brille [30], T2 of
Kang and Albin [31], and T2 of Williams et al. [3] in
profile monitoring of a multistage process in phase I are
evaluated.

Table 1 T2 statistics of Kang and Albin [31], Stover and Brille [30], and Williams [3]

T2 of Kang & Albin T2 of Stover & Brille T2 of Williams
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Table 2 Test powers of the three methods per change of the intercept in A0 to A0 þ λ σffiffi
n

p

λ

T2 Kang & Albin 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Ø = 0 0.1729 0.1738 0.1747 0.1765 0.1773 0.1790 0.1810 0.1815 0.1856 0.1890

Ø = 0.1 0.1792 0.1815 0.1775 0.1895 0.2000 0.2212 0.2284 0.2501 0.2684 0.3096

Ø = 0.3 0.1863 0.2107 0.2533 0.3659 0.4924 0.6553 0.8009 0.9094 0.9681 0.9911

Ø = 0.5 0.1965 0.2656 0.4434 0.6901 0.8925 0.9769 0.9975 1 1 1

Ø = 0.7 0.2115 0.3639 0.6528 0.9014 0.9889 0.9998 1 1 1 1

Ø = 0.9 0.2157 0.4431 0.7960 0.9767 0.9989 1 1 1 1 1

T2 Stover & Brill 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Ø = 0 0.1805 0.1809 0.1830 0.1850 0.1852 0.1856 0.1861 0.1949 0.1971 0.2008

Ø = 0.1 0.1806 0.1807 0.1809 0.1817 0.1856 0.1929 0.2012 0.2045 0.2093 0.2262

Ø = 0.3 0.1921 0.1993 0.2062 0.2298 0.2832 0.3405 0.4193 0.4934 0.5756 0.6485

Ø = 0.5 0.1988 0.2104 0.2657 0.3562 0.4829 0.5975 0.7132 0.7964 0.8654 0.9261

Ø = 0.7 0.1955 0.2380 0.3446 0.4877 0.6490 0.7650 0.8662 0.9336 0.9676 0.9871

Ø = 0.9 0.2057 0.2722 0.4159 0.5921 0.7508 0.8639 0.9392 0.9766 0.9926 0.9980

T2 Williams 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Ø = 0 0.2512 0.2593 0.2659 0.2663 0.2665 0.2669 0.2688 0.2693 0.2800 0.2900

Ø = 0.1 0.2612 0.2642 0.2651 0.2838 0.2936 0.3101 0.3275 0.3492 0.3662 0.4015

Ø =0.3 0.2690 0.3099 0.3669 0.4625 0.5837 0.7170 0.8243 0.8973 0.9493 0.9771

Ø = 0.5 0.2954 0.3938 0.5911 0.7810 0.9152 0.9769 0.9966 0.9992 0.9997 1

Ø = 0.7 0.3244 0.5486 0.8191 0.9611 0.9955 0.9997 1 1 1 1

Ø = 0.9 0.3684 0.7052 0.9437 0.9968 1 1 1 1 1 1

Table 3 Test powers of the three methods per change of the slope in A1 to A1 þ β σffiffiffiffiffi
Sxx

p

β

T2 Kang & Albin 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Ø = 0 0.1717 0.1726 0.1741 0.1750 0.1751 0.1753 0.1804 0.1841 0.1890 0.2000

Ø = 0.1 0.1798 0.1818 0.1891 0.1913 0.2053 0.2261 0.2395 0.2642 0.2851 0.3329

Ø = 0.3 0.1868 0.2161 0.2725 0.4038 0.5489 0.7141 0.8597 0.9464 0.9849 0.9963

Ø = 0.5 0.1978 0.2906 0.4894 0.7580 0.9274 0.9916 0.9992 1 1 1

Ø = 0.7 0.2182 0.3914 0.7179 0.9395 0.9969 0.9998 1 1 1 1

Ø = 0.9 0.2250 0.4925 0.8538 0.9899 0.9999 1 1 1 1 1

T2 Stover & Brill 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Ø = 0 0.1833 0.1848 0.1853 0.1857 0.1936 0.1940 0.1947 0.1950 0.1956 0.1962

Ø = 0.1 0.1957 0.1959 0.1976 0.1980 0.1982 0.1986 0.2019 0.2080 0.2124 0.2246

Ø = 0.3 0.1981 0.1970 0.2113 0.2463 0.3092 0.371 0.4505 0.5375 0.6218 0.6904

Ø = 0.5 0.1982 0.2130 0.2783 0.3918 0.5116 0.6441 0.7493 0.8386 0.8973 0.9465

Ø = 0.7 0.1955 0.2550 0.3720 0.5271 0.6899 0.8104 0.8981 0.9537 0.9823 0.9945

Ø = 0.9 0.2025 0.2829 0.4465 0.6421 0.7982 0.9007 0.9590 0.9885 0.9960 0.9997

T2 Williams 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Ø = 0 0.2553 0.2558 0.2560 0.2562 0.2565 0.2596 0.2626 0.2626 0.2635 0.2650

Ø = 0.1 0.2459 0.2570 0.2607 0.2751 0.2791 0.2969 0.3230 0.3550 0.3805 0.4089

Ø = 0.3 0.1947 0.2270 0.3069 0.4115 0.5383 0.6831 0.8023 0.8966 0.9431 0.9750

Ø = 0.5 0.1218 0.2112 0.4124 0.6541 0.8383 0.9429 0.9867 0.9982 0.9998 1

Ø = 0.7 0.0648 0.2235 0.5341 0.8076 0.9485 0.9901 0.9992 0.9998 1 1

Ø = 0.9 0.0395 0.2312 0.5970 0.8631 0.9679 0.9952 0.9996 1 1 1
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Suppose the following regression models define the first
and the second stages of a two-stage process with the cascade
property, respectively.

Y ik1 ¼ 3þ 2xi þ εik1 ð10Þ
yik2 ¼ 3∅þ α1ð Þ þ 2∅þ α2ð Þxi þ∅εik1 þ εik2; ð11Þ
where (3∅ +α1) =2 and (2∅ +α2) = 1. Let εik1 and εik2 fol-
low the standard normal distribution (mean zero and variance
1). Here, we evaluate the performances of the three methods
where the process is modeled by Eq. 11 and experiences dif-
ferent shifts. Table 1 shows the defined statistics of each meth-
od along with their upper control limits.

Tables 2 and 3 show the detection probability of out-of-
control conditions for intercept and slope, respectively. These
tables show a comparative report of the capabilities of the
three studied methods. These data are produced by simulation.
The simulation is iterated 10,000 times for each step-shift size.
In other words, the experiments shown in Tables 2 and 3 lead
into the changes that may be experienced by the slope and the
intercept of a multistage process. In this evaluation, the inter-
cept A0 and the slope A1 are shifted as A0 þ λ σffiffi

n
p and

A1 þ β σffiffiffiffiffi
Sxx

p , respectively, assuming α=0.01. As shown in

Tables 2 and 3, the analysis is reported for λ = 0.5, 1.0, 1.5,
2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 and β = 0.5, 1.0, 1.5, 2.0,
2.5, 3.0, 3.5, 4.0, 4.5, and 5.0.

Figures 1, 2, and 3 depict the capability of the three studied
methods in terms of the test power. In this analysis, a scheme
signals in the second stage of a two-stage process when the
intercept of the process is shifted in the first stage. The capa-
bilities of the methods are shown graphically in Figs. 4, 5, and
6, when the slope is shifted in the first stage. In both cases, it is
assumed α=0.01.

The curves shown in the above six figures address clearly
that the test power term has an increasing trend. In other
words, as the shift size increases, the power of detecting an
out-of-control condition for all levels of ∅ increases as well.
Meanwhile, when the value of ∅ (the cascade property) is
increased, the test power, i.e., the detection probability of
out-of-control signal increases as expected.

The above analysis indicates that the T2 of Kang and Albin
[31] is superior compared to the other two methods in terms of
the test power. The figures also indicate that more increase in
the shift size leads into more increase in the value of the test
power for the superior method. This change occurs faster for
bigger∅ values. In other words, for the case that the values of
the shift size and ∅ are high, the method signals an out-of-
control faster compared to other cases.

In the above analysis, the cascade property has not been
removed by the methods under investigation. In other words,
these methods are not capable of removing the cascade prop-
erty involved in a multistage process. In addition, the above
methods are not capable of performing diagnostic analysis
either. In the next section, a novel approach is proposed to
not only remove the cascade property but also to perform a
diagnostic analysis in order to determine the stage responsible
for an out-of-control signal.

4 The proposed method

As discussed above, the cascade property of a multistage pro-
cess is an important factor that affects the test power of a
scheme. If a method addresses the capability of removing
the impact of the cascade property, it may increase the signal-
ing power. Furthermore, this remove of the cascade property
provides the opportunity of conducting diagnostic analysis
that leads into the identification of the stage(s) responsible
for the process change. However, the methods investigated
in Section 3 are only capable of signaling an out-of-control
condition, and not able to diagnose the fault. In other words,
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eliminating the cascade property at any stage of a multistage
process provides the opportunity to test each stage indepen-
dently. In this case, the test power term shows the change of a
stage without having the impact of the previous stage(s). This
opportunity provides the capability of identifying the fault at a
stage where the fault manifested itself to the multistage pro-
cess. In this paper, the U-transformation (firstly introduced by
Hauck et al. [32]) is tailor made for phase I profile monitoring
of a multistage process as follows.

Without loss of generality, consider a two-stage process. In
the case that the specifications of the process are characterized
effectively by linear profiles, the U-transformation can be de-
fined for the first and the second stages as shown in Eqs. 12
and 13, respectively.

U j1 ¼ A1 ð12Þ
Ujs ¼ As−Σs s−1ð ÞΣ−1

s−1ð Þ s−1ð ÞAs−1; ð13Þ

where As − 1 is a vector estimator of the intercept and the slope
in stage S−1, As is a vector estimator of the intercept and the
slope of the output of the stage S, ∑S(S − 1) is a covariance
matrix of the estimator of the intercept and the slope between
stage S and stage S−1, and finally, ∑(S − 1)(S − 1) is covariance
matrix of the slope and the intercept estimators at stage S−1.

The mean vector and the covariance matrix for the U-
transformation in the first stage are obtained by the following
equations, respectively.

μU j1
¼ μA1

ð14Þ
ΣU j1 ¼ ΣA1 ¼ Σ11: ð15Þ

For the stage S, the mean vector and the covariance matrix
are obtained, respectively, as follows.

μUjs
¼ μAs

−Σs s−1ð ÞΣ−1
s−1ð Þ s−1ð ÞμAs−1

ð16Þ

ΣUjs ¼ Σss−Σs s−1ð ÞΣ−1
s−1ð Þ s−1ð Þ: ð17Þ

As discussed in Section 3, the comparative analysis of the
three studied methods indicates that the T2 of Kang and Albin
[31] is the superior approach compared to the other two
methods. In order to employ the U-transformation method in
phase I monitoring of simple linear profiles in a multistage
process with the cascade property, the transformation is
employed based on the T2 of Kang and Albin [31]. In other
word, for the jth sample observed from the process in each
stage, the following U statistics is used.

T2
Ujs

¼ Ujs−μUs

� �
Σ−1

Us
Ujs−μUs

� �T
: ð18Þ

Then, the stage is diagnosed out-of-control if this statistics
falls above the upper control limit of the chart that is χ2

α;2.

5 Performance evaluation of the proposed method

In this section, we evaluate the performance of the proposed
approach in phase I monitoring of linear profiles used in mul-
tistage processes. The proposed method is evaluated in terms
of the test power when the process under investigation expe-
riences several shifts as follows:

a) Different shift sizes for the intercept of the profile in the
first stage of the process.

b) Different shift sizes for the slope of the profile in the first
stage of the process.

c) Different combination shifts for the intercepts correspond-
ing to the first and the second stages of the process,
simultaneously.

d) Different combination shifts for the slopes corresponding
to the first and the second stages of the process,
simultaneously.
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Table 4 contains the probability of receiving an out-of-
control signal for the two cases of shift sizes. The first case
corresponds to different shifts of the intercept of the first

stage profile when the value of A0 changes to A0 þ λ σffiffi
n

p .

The second case focuses on different shifts of the slope of
the first stage profile when the value A1 changes to

Fig. 7 Test powers of the
proposed method under different
shifts in the intercept

Table 4 Test powers of the proposed method under different shifts in the intercept and slope of the profile

λ 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Shifts in intercept Ø = 0 0.1370 0.1397 0.1360 0.1385 0.1357 0.1471 0.1387 0.1399 0.1449 0.1428

Ø = 0.1 0.1432 0.1380 0.1381 0.1373 0.1402 0.1441 0.1372 0.1465 0.1445 0.1393

Ø = 0.3 0.1401 0.1380 0.1408 0.1458 0.1412 0.1365 0.1369 0.1428 0.1458 0.1411

Ø = 0.5 0.1370 0.1366 0.1302 0.1357 0.1373 0.1381 0.1446 0.1362 0.1379 0.1400

Ø = 0.7 0.1410 0.1375 0.1365 0.1460 0.1425 0.1360 0.1394 0.1431 0.1423 0.1441

Ø = 0.9 0.1425 0.1411 0.1417 0.1364 0.1323 0.1422 0.1452 0.1412 0.1453 0.1420

β 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Shifts in slope Ø = 0 0.1370 0.1487 0.1360 0.1385 0.1357 0.1471 0.1387 0.1399 0.1449 0.1428

Ø = 0.1 0.1441 0.1453 0.1392 0.1400 0.1401 0.1402 0.1424 0.1412 0.1354 0.1409

Ø = 0.3 0.1385 0.1451 0.1448 0.1364 0.1323 0.1392 0.1349 0.1413 0.1408 0.1380

Ø = 0.5 0.1443 0.1389 0.1412 0.1422 0.1393 0.1458 0.1459 0.1336 0.1433 0.1340

Ø = 0.7 0.1395 0.1426 0.1413 0.1380 0.1379 0.1323 0.1369 0.1380 0.1432 0.1373

Ø = 0.9 0.1383 0.1406 0.1451 0.1424 0.1394 0.1417 0.1353 0.1383 0.1362 0.1386
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A1 þ β σffiffiffiffiffi
Sxx

p . The average test power shown in Table 4 are

obtained using 10,000 replications for λ = 0.5, 1.0, 1.5,
2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 and assuming α= 0.01.
In addition, Figs. 7 and 8 are the plots of the test power in
the second stage based on the data shown in Table 4. In
other words, the two figures show the monitoring capabil-
ity of the second stage profile using the proposed U-
statistic when different shifts are manifested into the pa-
rameters of the first stage; however, the second stage works
normally.

Both Figs. 7 and 8 indicate that the test power is dis-
tributed randomly for different ∅ values. It means that the
monitoring routine is not influenced by the values of ∅
which is referred to as the cascade property. As shown in
Figs. 7 and 8, the results are distributed around the line of
zero value for ∅. The analysis denotes that the perfor-
mance of the proposed approach for different ∅ values
is the same as the case where there is no cascade property,
i.e., ∅=0. This case refers to monitoring a multistage pro-
cess using several single-stage monitoring schemes.
However, when the multistage process is monitored by

the proposed approach, both figures address the shift
size insensitivity of the model. In addition, Figs. 7
and 8 show that the values of the test power are be-
tween 0.13 and 0.15 when different shift sizes are in-
duced to the process. This somehow indicates the robust
property of the proposed approach for monitoring the
profile of a multistage process.

Now, the performance of the proposed U-statistics is
analyzed in the case where the parameters of the profiles
in both stages are influenced by different shift sizes, si-
multaneously. In this analysis, it is assumed that the out-
put of the first stage is produced under an out-of-control
condition. It means that the first stage provides input of
the second stage when a change takes place in the first
stage. Furthermore, the evaluation is allowed to consider
an influenced change of the second stage of the process.
In this case, both stages work under out-of-control condi-
tions simultaneously.

Table 5 shows the probabilities of identifying an out-of-
control condition when the intercept A0 changes to A0 þ λ1

σffiffi
n

p per λ1 = 0.5,1, 1.5, 2, 2.5, 3, 3.5, and 4 for the first stage and

Fig. 8 Test powers of the
proposed method under different
shifts in the slope
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to A0 þ λ2
σffiffi
n

p per λ2 = 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5

for the second stage, assuming α=0.01. The test powers
have been obtained using 10,000 simulation replications.
Moreover, Fig. 9 is a plot of the results in Table 5 for the
case where the shift value of the first stage is equal to 0.5.
The other plots corresponding to the other values, i.e.,

1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0, indicate the same
pattern.

Figure 9 indicates that the proposed approach is capa-
ble of removing (or minimizing) the impact of the cascade
property successfully. Note that Fig. 7 shows the test
power values for the case that a fault affects the first

Table 5 Test powers of the proposed method under shifts in the intercept of the first stage from A0 to A0 þ λ1
σffiffi
n

p and the second stage from A0 to
A0 þ λ2

σffiffi
n

p

λ2 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

λ1 = 0.5 ∅= 0.1 0.8258 0.8249 0.8221 0.82 0.8282 0.8255 0.8313 0.8228 0.8213 0.8195

∅ = 0.3 0.8215 0.8198 0.8293 0.8166 0.8231 0.8234 0.8222 0.8171 0.8221 0.8169

∅ = 0.5 0.8247 0.8210 0.8268 0.8205 0.8247 0.822 0.8213 0.8252 0.8247 0.8235

∅= 0.7 0.8235 0.8238 0.8259 0.8206 0.8193 0.8224 0.8281 0.8194 0.8105 0.8218

∅= 0.9 0.8183 0.8173 0.8264 0.8212 0.8207 0.8171 0.8307 0.8253 0.8350 0.8303

λ1 = 1 ∅= 0.1 0.8294 0.8258 0.8235 0.8186 0.8291 0.8262 0.8246 0.8222 0.8207 0.8214

∅= 0.3 0.8224 0.8191 0.8205 0.8232 0.8240 0.8225 0.8203 0.8227 0.8210 0.8249

∅= 0.5 0.8259 0.8233 0.8190 0.8201 0.8247 0.8160 0.8235 0.8222 0.8237 0.8103

∅= 0.7 0.8243 0.8129 0.8210 0.8239 0.8257 0.8185 0.8152 0.8243 0.8200 0.8229

∅= 0.9 0.8255 0.8287 0.8269 0.8264 0.8215 0.8308 0.8211 0.8315 0.8188 0.8229

λ1 = 1.5 ∅= 0.1 0.8218 0.8172 0.8267 0.8270 0.8173 0.8177 0.8243 0.8170 0.8238 0.8264

∅= 0.3 0.8221 0.8229 0.8142 0.8247 0.8238 0.8237 0.8202 0.8291 0.8246 0.8237

∅= 0.5 0.8270 0.8228 0.8210 0.8197 0.8298 0.8233 0.8223 0.8307 0.8209 0.8203

∅= 0.7 0.8228 0.8193 0.8288 0.8231 0.8240 0.8235 0.8188 0.8226 0.8281 0.8202

∅= 0.9 0.8190 0.8228 0.8241 0.8248 0.8274 0.8263 0.8155 0.8209 0.8205 0.8242

λ1 = 2 ∅= 0.1 0.8170 0.8170 0.8193 0.8171 0.8229 0.8225 0.8201 0.8151 0.8192 0.8199

∅= 0.3 0.8161 0.8230 0.8270 0.8219 0.8207 0.8171 0.8212 0.8205 0.8294 0.8263

∅= 0.5 0.8220 0.8236 0.8235 0.8282 0.8259 0.8247 0.8246 0.8242 0.8208 0.8293

∅= 0.7 0.8222 0.8241 0.8261 0.8243 0.8224 0.8137 0.8197 0.8209 0.8262 0.8296

∅= 0.9 0.8256 0.8217 0.8206 0.8253 0.8219 0.8278 0.8202 0.8234 0.8236 0.8266

λ1 = 2.5 ∅= 0.1 0.8168 0.8239 0.8232 0.8220 0.8196 0.8163 0.8240 0.8281 0.8274 0.8234

∅= 0.3 0.8170 0.8260 0.8270 0.8288 0.8247 0.8223 0.8200 0.8188 0.8267 0.8286

∅= 0.5 0.8213 0.8263 0.8224 0.8268 0.8263 0.8165 0.8274 0.8193 0.8203 0.8221

∅= 0.7 0.8280 0.8211 0.8259 0.8184 0.8205 0.8227 0.8221 0.8237 0.8201 0.8275

∅= 0.9 0.8251 0.8189 0.8254 0.8228 0.8243 0.8300 0.8264 0.8219 0.8214 0.8224

λ1 = 3 ∅= 0.1 0.8249 0.8253 0.8248 0.8203 0.8200 0.8128 0.8150 0.8231 0.8255 0.8257

∅= 0.3 0.8159 0.826 0.8198 0.8217 0.8175 0.8220 0.8262 0.8211 0.8168 0.8219

∅= 0.5 0.8242 0.8208 0.8227 0.8214 0.8244 0.8184 0.8295 0.8187 0.8226 0.8143

∅= 0.7 0.8228 0.8227 0.8240 0.8278 0.8229 0.8147 0.8228 0.8232 0.8225 0.8257

∅= 0.9 0.8232 0.8255 0.8146 0.8249 0.8222 0.8251 0.8154 0.8225 0.8191 0.8260

λ1 = 3.5 ∅= 0.1 0.8232 0.8241 0.8255 0.8287 0.8133 0.8204 0.8179 0.8131 0.8179 0.8262

∅= 0.3 0.8235 0.8208 0.8246 0.8221 0.8275 0.8207 0.8247 0.8187 0.8238 0.8189

∅= 0.5 0.8176 0.8221 0.8199 0.8195 0.8244 0.8276 0.8178 0.8195 0.8170 0.8226

∅= 0.7 0.8230 0.8221 0.8220 0.8204 0.8223 0.8230 0.8187 0.8183 0.8260 0.8131

∅= 0.9 0.8284 0.8201 0.8240 0.8218 0.8220 0.8231 0.8170 0.8216 0.8269 0.8230

λ1 = 4 ∅= 0.1 0.8272 0.8254 0.8215 0.8232 0.8225 0.8209 0.8188 0.8244 0.8269 0.8245

∅= 0.3 0.8188 0.8242 0.8169 0.8225 0.8242 0.8274 0.8168 0.8192 0.8242 0.8244

∅= 0.5 0.8202 0.8229 0.8184 0.8205 0.8221 0.8179 0.8139 0.8237 0.8246 0.8243

∅= 0.7 0.8239 0.8209 0.8184 0.8257 0.8228 0.8185 0.8271 0.8231 0.8252 0.8239

∅= 0.9 0.8246 0.8196 0.8196 0.8268 0.8281 0.8203 0.8216 0.8271 0.8205 0.8248
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stage; however, the process is monitored in the second
stage. A comparison of the patterns in Figs. 7 and 9
addresses an increase in the value of the test power.
In addition, the comparative analysis shows that the
proposed method is capable of reducing the impact of
the first stage performance on the performance of the
profile in the second stage.

Table 6 contains the test powers of the proposed approach
when the slopes of the profiles in both stages are shifted (as-
suming α=0.01). The values shown in this table are the prob-
abilities of identifying an out-of-control condition in the mul-

tistage process where the slope A1 changes to A1 þ β1
σffiffiffiffiffi
Sxx

p per

β1 = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0 for the first stage,

and toA1 þ β2
σffiffiffiffiffi
Sxx

p per β2 = 0.25, 0.5, 0.75, 1, 2, 3, 4, and 5 for

the second stage. Again, the results are obtained using 10,000
independent replications. Besides, Fig. 10 is a plot of the
values in Table 6 for the case the shift value of the first stage
is equal to 0.5. The other plots corresponding to the other
values of the shift indicate the same pattern.

Once again, Fig. 10 and Table 6 both indicate that the pro-
posed approach is capable of removing (or minimizing) the

impact of the cascade property, effectively. As discussed above,
Fig. 8 shows the test power of the proposed approach in the case
that a special cause affects the first stage; however, the profile of
the process ismonitored in the second stage. A comparison of the
patterns in Figs. 8 and 10 indicate that the value of the test power
increases in the case both stages are shifted. In other words, the
proposed method is capable of reducing the impact of the cas-
cade property on the performance of the profilemonitoringmeth-
od in the second stage, significantly.

6 A real case study

In this section, a piston manufacturing line, firstly consid-
ered by Fong and Lawless [33], is used to illustrate the
capability of the proposed methodology in real-world
manufacturing environments. In this practical case, a piston
is produced in a four-stage machining process, where in
each stage, the diameters of a piston are inspected in a mi-
cron precision at heights 4, 10, 36.7, and 58.7 mm from the
bottom of the part. In this case, the functional relationship
between the diameter and the height of each piston allows

Fig. 9 Test powers of the
proposed method under shifts in
the intercept of stage 1 from A0 to
A0 þ λ1

σffiffi
n

p and stage 2 from A0 to
A0 þ λ2

σffiffi
n

p
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one to provide a profile model to monitor each stage of the
process. In this study, 25 profiles with 4 replications in each
of the four heights are considered. Without loss of general-
ity and for the sake of simplicity, let investigate the first two
stages of this process.

The estimated parameters of the simple regression profiles in
each stage along with the upper control limits of the monitoring
schemes derived based on the proposed methodology are shown

in Table 7 when α=0.01. In this table, the statistic T 2
U is calcu-

lated for each profile of each stage.
The results of employing the proposed approach are plotted

on corresponding control charts for stage 1 and stage 2, as shown
in Figs. 11 and 12, respectively.

Table 6 Test powers of the proposed method under shifts in the slope
of stage 1 from A1 to A1 þ β1

σffiffiffiffi
sxx

p and stage 2 from A1 to A1 þ β2
σffiffiffiffi
sxx

p

β2 0.25 0.5 0.75 1 2 3 4

β1 = 0.5 ∅= 0.1 0.3566 0.8812 0.9994 1 1 1 1

∅= 0.3 0.3527 0.8718 0.9988 1 1 1 1

∅= 0.5 0.355 0.8726 0.9992 1 1 1 1

∅= 0.7 0.3673 0.8786 0.9993 1 1 1 1

∅= 0.9 0.3607 0.874 0.9997 1 1 1 1

β1 = 1 ∅= 0.1 0.3506 0.8751 0.9990 1 1 1 1

∅= 0.3 0.3597 0.8744 0.9985 1 1 1 1

∅= 0.5 0.3629 0.8705 0.9993 1 1 1 1

∅= 0.7 0.3447 0.8725 0.9992 1 1 1 1

∅= 0.9 0.3559 0.8709 0.9991 1 1 1 1

β1 = 1.5 ∅= 0.1 0.3518 0.8735 0.9990 1 1 1 1

∅= 0.3 0.3616 0.8757 0.9993 1 1 1 1

∅= 0.5 0.3606 0.8741 0.9994 1 1 1 1

∅= 0.7 0.3478 0.877 0.9994 1 1 1 1

∅= 0.9 0.3476 0.8744 0.9992 1 1 1 1

β1 = 2 ∅= 0.1 0.3527 0.8701 0.9994 1 1 1 1

∅= 0.3 0.3577 0.8701 0.9984 1 1 1 1

∅= 0.5 0.3503 0.8774 0.9991 1 1 1 1

∅= 0.7 0.3506 0.8700 0.9991 1 1 1 1

∅= 0.9 0.3533 0.8750 0.9990 1 1 1 1

β1 = 2.5 ∅= 0.1 0.3566 0.8812 0.9994 1 1 1 1

∅= 0.3 0.3527 0.8718 0.9988 1 1 1 1

∅= 0.5 0.3550 0.8726 0.9992 1 1 1 1

∅= 0.7 0.3673 0.8786 0.9993 1 1 1 1

∅= 0.9 0.3607 0.874 0.9997 1 1 1 1

β1 = 3 ∅= 0.1 0.3483 0.8715 0.9992 1 1 1 1

∅= 0.3 0.3508 0.8764 0.9991 1 1 1 1

∅= 0.5 0.3568 0.8762 0.9995 1 1 1 1

∅= 0.7 0.3608 0.8730 0.9989 1 1 1 1

∅= 0.9 0.3572 0.8783 0.9989 1 1 1 1

β1 = 3.5 ∅= 0.1 0.3486 0.8739 0.9993 1 1 1 1

∅= 0.3 0.3506 0.8730 0.9994 1 1 1 1

∅= 0.5 0.3573 0.8762 0.9991 1 1 1 1

∅= 0.7 0.3601 0.8673 0.9993 1 1 1 1

∅= 0.9 0.3565 0.8699 0.9995 1 1 1 1

β1 = 4 ∅= 0.1 0.3593 0.8701 0.9991 1 1 1 1

∅= 0.3 0.3592 0.8737 0.9996 1 1 1 1

∅= 0.5 0.3547 0.8701 0.9993 1 1 1 1

∅= 0.7 0.358 0.8718 0.9993 1 1 1 1

∅= 0.9 0.3424 0.8820 0.999 1 1 1 1

Fig. 10 Test powers of the proposed method under shifts in the slope of
stage 1 from A1 to A1 þ β1

σffiffiffiffi
sxx

p and stage 2 from A1 to A1 þ β2
σffiffiffiffi
sxx

p

Table 7 Estimated
profile parameters and
the UCL of the two-stage
piston manufacturing
process

Parameter Value

Stage 1:

A0 89.11867

A1 –0.01322

UCLT
2
,1 10.11

Stage 2:

A0 89.12032

A1 –0.01328

UCLT
2
,2 9.21

Fig. 11 The proposed T2 control chart employed in the first stage of the
piston manufacturing process
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The results indicate that although all T 2
U values for the first

stage are within the control limit, the T2
U statistic for the fourth

profile in the second stage exceeds the control limit.
Consequently, it can be stated that the first stage of the multi-
stage machining process works statistically in-control condi-
tion, whereas an assignable cause can be observed in the sec-
ond stage of the process to diagnose an out-of-control
condition.

7 Conclusions

The cascade property of multistage processes leads into a
more complex monitoring procedure compared to the case
of a single-stage process. In this paper, an approach using
the U-transformation was proposed for phase I profile moni-
toring of a multistage process that decisively reduce the com-
plexity involved based on the cascade property. An extensive
numerical simulation based on several cases indicated that the
proposed method is capable of detecting an out-of-control
condition effectively by removing (or minimizing) the cascade
property. An analysis of the profile monitoring indicated that
the proposed method not only is capable of identifying an out-
of-control condition when a fault manifests itself to each stage
of the process but also the method simultaneously is capable
of diagnosing the stage(s) contributing to the out-of-control
condition.
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