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Abstract In this paper, we present a new multi-commodity
network flow-based formulation for the multi-period cell
formation problem. The objective of the model is to mini-
mize the total costs of acquisition, disposal, and relocation
of machines, manufacturing, and inter-cell/intra-cell mate-
rial handling. The main contribution of this paper comes
from the fact that we structure the underlying problem as a
multi-period multi-commodity network flow problem with
general integer variables for machine acquisition, disposal,
and relocation connecting one period to the next. This for-
mulation is more efficient than the formulations we have
encountered in the literature. Another contribution of this
paper is that the flow variables representing the flow of parts
through the system is path based; as a result, this approach
makes it very easy to model alternate process routings. This
paper illustrates the formulation by the use of two examples
taken from the literature and presents computational results
for other representative problems.
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1 Introduction and literature review

The cell formation problem (CFP) is an important problem
in facilities planning and design since it is the foundational
step in designing cellular manufacturing systems (CMS).
While there are many models in the literature to solve the
the CFP, we have not come across one where the under-
lying multi-commodity flow structure is recognized and
exploited. While we are specifically interested in the multi-
period version of the cell formation problem (MPCFP), the
terms MPCFP and CFP are often used interchangeably.

The inputs to the MPCFP problem are multi-period
demand, acquisition, relocation, and disposal costs of
machines, manufacturing cost, and the cost of inter and
intra-cell material handling. The output is a multi-period
cell design minimizing the total cost over a multi-period
time horizon. During the last three decades, a number of
researchers have studied and addressed the cell formation
problem in cellular manufacturing design. Several mathe-
matical models and solution algorithms have been devel-
oped for the CFP. There are different methods for solving
the CFP such as matrix arrangement, similarity coefficients,
graph theory, mathematical programming, heuristics, and
meta-heuristics such as simulated annealing (SA), genetic
algorithm (GA), and TABU search (TS). Papaioannou and
Wilson [24] presented a number of solution methods that
have been used for CFP focusing on formulations proposed
in the last decade.

Matrix arrangement methods deal with arrangement of
rows and columns of a part-machine matrix to form the
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block diagonal matrix. The part families and machine
groups can be formed from the blocks, each block repre-
senting a manufacturing cell [9, 19]. Similarity coefficient
methods classify part families and machine groups based
on the similarities between parts or machines. Similarities
are based on machines, tools, and fixtures required by parts.
Different measures of similarities have been developed to
form part families and machine groups [28]. Yin and Yasuda
[35] presented a taxonomy and review of similarity coef-
ficient methods published in the literature. In their paper,
a three-step procedure attributed to [27] is used in these
methods:

1. Form the machine-part incidence matrix.
2. Construct a similarity matrix.
3. Use a clustering algorithm to process the similarity

matrix to obtain a dendogram from which groups are
obtained.

Another paper by Yin and Yasuda [34] presented a com-
parative investigation to evaluate the performance of various
similarity coefficients methods applied to CFP. The authors
classified the similarity coefficients into two categories:
more efficient (using three similarity coefficients) and inef-
ficient (using four similarity coefficients) for solving the
CFP. They also found that there were three discriminable
similarity coefficients and that the Jaccard similarity coef-
ficient is the most stable similarity coefficient. In their
definition, discriminability is the number of problems in
which a similarity coefficient best performance value for a
performance measure (such as number of exceptional ele-
ments or grouping efficiency—the paper defines nine such
in total). Stability is the number of problems in which a sim-
ilarity coefficient gives a value of a performance measure
that is least the average value or better.

In graph theoretical methods, the machine-part matrix
is represented by a graph. The aim of this method is to
obtain sub-graphs from the machine-part graph to identify
part families and machine groups. For example, Ribeiro
[26] computed the dissimilarities between parts and orga-
nizes the production system in part-families and group-
machines. A graph is generated and a coloring algorithm is
used in order to obtain the desired number of cells.

Mathematical programming may also be used to solve
the CFP. In these methods, part families and machine groups
can be formed simultaneously based on the solution to a
MIP. The simplest formulation of the problem is based on
clustering, in which cells are formed from the machine-
part incidence matrix in order to minimize the number
of exceptional elements [8, 13]. Wang [32] proposed two
linear assignment models to solve the machine-cell and
part-family formation for the design of CMS.

Beyond the standard clustering or assignment approach,
designing cells requires making a trade-off between dupli-
cating machines (in one or more cells) and increasing
material movement (between cells). The texbook by Askin
and Standridge [4] presented one such model. Askin et al.
[5] proposed an interactive cell formation method that can
be used to design flexible cells. The authors illustrated
routing flexibility (i.e., the ability for the cellular system to
process parts within multiple cells) and demand flexibility
(i.e., the ability of the cellular system to respond quickly
to changes in part demand and part mix). A mathematical
model for assigning operation types to machine types was
presented. Selim et al. [29] introduced a mathematical
formulation that includes two additional dimensions of the
CFP. The first dimension is grouping workers and the sec-
ond dimension deals with tooling.

The dynamic or multi-period cell formation problem
(MPCFP) was described in [6]. The authors suggested a
framework in which the cellular configuration is periodi-
cally changed when the cost-benefit analysis favours such
a move. In this way, the cellular layout is better suited to
the demand in each period and thus more efficient and agile
during the planning horizon. Balakrishnan and Cheng [7]
conducted a literature review to categorize research that
has been done to address cell reconfiguration and uncer-
tainty issues in CMS. They described a deterministic model
for CMS reconfiguration due to planned product changes
and presented a mathematical programming formulation
for multi-period planning with cell reconfiguration. The
dynamic CFP and worker assignment problem are consid-
ered simultaneously in [2]. Ghotboddini et al. [15] used a
decomposition algorithm in order to solve the MPCFP and
looked at part family/cell formation (PF/CF) and worker
assignment simultaneously over a multiple period planning
horizon. Defersha and Chen [11] presented a formulation
for the cell formulation. The problem considered in this
paper is more detailed than the basic MPCFP and was
solved using an MILP formulation. Once cells are formed,
the layout needs to be developed, as was done by Altuntas
et al. [1] using solution approaches based on fuzzy weighted
association rules for the facility layout of cellular manufac-
turing systems.

Heuristic methods use rules that guide the search pro-
cess. Under this classification, there are heuristics and
meta-heuristics such as SA, GA, and TS. Heuristics rep-
resent decision procedures and rules of thumb that expert
users use to solve a problem. Heragu and Gupta [16] devel-
oped a heuristic for forming part families and machine
groups. Kochikar and Narendran [20] developed a heuristic
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for solving the flexible manufacturing system (FMS) CFP.
They introduced a heuristic which uses a grouping criterion
that reflects the multi-faceted nature of flexibility: a com-
posite of routing, machine, and part transfer flexibility. The
evaluation shows that the heuristic has a tendency to create
a large number of small cells. Liu et al. [21] proposed a
mathematical model to deal with the CFP which incorpo-
rates production factors such as production volume, batch
size, alternative process routing, cell size, unit cost of inter
and intra-cell movements, and path coefficient of material
flow. A three-stage heuristic has been developed to solve
the NP-hard problem.

Among the papers in the literature that use metaheuris-
tics to solve the CFP is the one by Filho and Tiberti
[14]. This paper presented a group GA for the cell layout
design problem with several new features such as chromo-
some codification scheme, correction mechanism and the
crossover and mutation operators that work directly with
the group of machines as opposed to individual machines.
Moghaddam et al. [23] presented traditional meta-heuristic
methods to solve the MPCFP. In this paper, a nonlinear inte-
ger model of the MPCFP was provided and then solved by
GA, SA, and TS. Hu and Yasuda [17] presented a formu-
lation for the MPCFP and used a specialized GA algorithm
to solve small, medium, and large scale instances. Mahdavi
et al. [22] proposed a mathematical model for the CFP based
on the cell utilization concept. The aim of the model is to
simultaneously minimize the number of voids and excep-
tional elements in cells, to achieve higher cell utilization.
The authors presented an algorithm based on GA to solve
the mathematical model. Tunnukij and Hicks [31] presented
an enhanced grouping GA to solve the CFP without prede-
termining the number of manufacturing cells or the number
of machines and parts within each cell. The enhanced group-
ing GA employs a rank-based roulette-elitist strategy as a
new mechanism for creating successive generations. Deljoo
et al. [12] extended previous MPCFP models presented in
the literature and uses GA as the solution methodology.
Very recently, Deep and Singh [10] benchmarked classic
MPCFP problem solutions. The authors also presented their
own MILP formulation for the problem, though this was not
solved other than by using GA.

One of the examples in this paper used to illustrate our
approach is taken from [33], who considered the dynamics
of the production environment by incorporating a multi-
perod forecast of product mix and demand. The authors
presented a mixed-integer nonlinear program with quadratic
and cubic terms for the design of CMS under fluctuations
in the demand for products and product mix. The objec-
tive function in their formulation is to minimize the total

cost of material handling and machine relocation over a
forecast period. One extreme solution for the cellular manu-
facturing design problem is to purchase as few machines as
possible, resulting in a high cost of material handling. The
other extreme solution is to duplicate machines indiscrim-
inately to reduce inter-cell traffic. However, this strategy
results in higher acquisition costs. Finding an optimal solu-
tion to the cell design problem using the formulation in [33]
is difficult and GA is proposed as the preferred solution
mechanism for the problem. The model suffers from the
following limitations:

– The model is difficult to solve because it has nonlinear
and integer variables.

– The model assumes that each part has only one
machine-type sequence. This is very restrictive. With
the choice of technologies in modern manufacturing,
it may be possible to use a 5-axis CNC milling cen-
tre to machine a part as one possible sequence. On
the other hand, the part may also be machined using a
routing through conventional machines such as lathes,
drilling machines, and milling machines. It is impor-
tant to be able to model the inherent trade-offs between
the cost purchasing high-technology equipment result-
ing in simpler routings versus lower technology with
lower costs, which result in longer routings and higher
material handling costs.

– The model implicitly assumes growth in demand. With
negative scenarios involving reduced demand, it should
be possible to discard machines.

Another model used for detailed comparison is taken
from [18], who presented a case study of a valve manufac-
turer. The objective of the model is to minimize the sum
of machine purchase costs, the operating cost, inter-cell,
and intra-cell material handling costs for the given periods.
Although the [18] model tries to balance these costs, the
original objective function is a nonlinear integer equation
with absolute value terms (that take on binary values 0 or
1) in the third and fourth terms of the objective function to
represent whether cell transfer has occurred between two
successive operations. The authors converted the nonlinear
absolute value function into a linear function by transform-
ing the absolute terms into their corresponding linear terms
(with the introduction of non-negative difference variables)
to solve the problem. This type of formulation is computa-
tionally inefficient because it creates many branches in the
branch-and-bound search tree if strong cuts are not used.

This paper makes two contributions to the literature.
First, we structure the underlying problem as a multi-period
multi-commodity network flow problem [30] with side con-
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straints involving general integer variables for machine
acquisition, disposal, and relocation connecting the periods.
Second, because the flow variables represent start to end
arc-paths, alternative machine sequences may be modeled
very generally. The remainder of the problem is structured
as follows: In Section 2, we present a new multi-commodity
network flow-based formulation for the multi-period cell
design problem. The solution toolkit is outlined briefly in
Section 3, the examples and computation results are pre-
sented in Section 4, and conclusions and directions for
future research are presented in Section 4.

2 A multi-commodity network flow based
formulation for the MPCFP

The following notation is used to develop the mathemati-
cal model using the well-known multi-commodity network
flow (MCNF) problem in operational research. In doing so,
the formulation is structured using the arc-path formulation
instead of the node-arc formulation [30]:

2.1 Indices and sets

i = Parts
j = Machine types
k = Cells
t = Time periods
p = Start-to-finish sequence for part i.

{Si} = Set of all possible sequences for part i.
{Pi} = Set of start-to-finish sequences for product i based

on {Si}.

2.2 Parameters

cj = Cost of purchasing one unit of machine type j .
c′
j = Cost of discarding one unit of machine type j .

Rj = Cost of relocating machine type j between cells.
fj = Fixed cost of one unit of machine type j per

period.
Dit = Demand of part i in period t .
h1p = Number of inter-cell transfers in sequence p.

h2p = Number of intra-cell transfers in sequence p.
H 1

i = Cost of inter-cell material handling for one unit of
part i.

H 2
i = Cost of intra-cell material handling for one unit of

part i.
mipj = Unit manufacturing cost for part i on machine

type j and sequence p.
qipjk = Unit processing time part i on machine type j in

cell k and sequence p.
Cj = Time availability of one unit of machine type j

per time period.

LM = Minimum number of machines per cell (Lower
limit).

UM = Maximum number of machines per cell (Upper
limit).

2.3 Decision Variables

xipt = No. of parts of type i routed through sequence p in
period t .

njkt = No. of machines of type j available in cell k in
period t .

ujkt = No. of machines of type j moved into cell k at the
start of period t .

vjkt = No. of machines of type j moved out of cell k at
the start of period t .

ajkt = No. of machines of type j purchased in cell k at
the start of period t .

bjkt = No. of machines of type j discarded from cell k at
the start of period t .

2.4 Illustration of multi-period multi-commodity
network flow model

The objective in the MPCFP is to minimize the total costs
of machine acquisition, relocation and disposal, production,
and inter and intra-cell handling. It is important to underline
that the inter- and intra-cell material handling costs for as
well as production costs are path (routing) dependent. They
can be estimated in a pre-processing step where all combi-
nations of alternate routings and cell visits are enumerated.
The only questions for the model then are to decide on how
much to produce in a sequence and how many machines
of each type to maintain going from period to period by
purchasing, discarding, or relocating machines.

It is useful to think of the MPCFP problem using the
time layered multi-commodity flow networks shown in
Fig. 1, where the commodities are the parts. In each time
period, the nodes (a combination of machine type j , cell
type k, and time-period t) represent the machine types in
each cell. The arcs represent the flow between machines
(based on routing sequence). Node capacities depend on the
(njkt ) decision variable. The number of machines njkt may
be varied by installing new machines, discarding existing
machines, or relocating existing machines between cells.
It is assumed that machines are purchased (and installed),
relocated or retired at the time instant that occurs at the end
of period t and the beginning of period t + 1. The flows and
the number of machines available, on the other hand, are
during a period.

Figure 1 shows a product with two alternative machine-
type routing sequences (1,2) and (2,1). There are two cells:
cell one is represented in blue and cell two in yellow. Let
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Fig. 1 Multi-period multi-commodity network flow model

Mjk denote machine type j in cell k. It is easy to see that are
eight different processing sequences (paths) for the prod-
uct. In any time period, a valid start-end (S, E) path for the
product could be any one of the following:

S → M11 → M21 → E

S → M11 → M22 → E

S → M12 → M22 → E

S → M12 → M21 → E

S → M21 → M11 → E

S → M21 → M12 → E

S → M22 → M11 → E

S → M22 → M12 → E

The dashed red lines in Fig. 1 are for machine transitions,
not part flows. They relate the number of machines of type
M1 in period t (in both cell 1 and cell 2) to period t+1. Sim-
ilarly, the dashed black lines relate the number of machines
of type M2 from period to period.

The set Pi is used in the model to represent all feasible
start-to-finish paths for product i, such as the ones enumer-
ated above. Pi may be generated beforehand depending on
processing sequences. The size of this set is T × ∑

r Cnr ,
where nr is the number of steps in each alternative routing
r , C is the number of cells, and T is the number of periods

in the problem. The enumeration is exponential and could
limit model implementation if the number is very large (e.g.,
if the order of magnitude of path variables is 106). However,
partial enumeration is also possible if the problem size gets
very big or the designer wishes to include constraints such
as:

– Production for a product can occur only in one cell.
– Production for a product can occur in up to two cells.
– Production for a product can occur in up to two cells,

but no more than one process can occur in the second
cell.

This construct is quite general. If a new machine type is
expected to be available at a later time period, it can still be
represented from time period 1, but with capacity equal to
zero. Similarly, if a new part is expected to be produced at
a later period, or an existing part discontinued, the demands
for these can be adjusted accordingly.

The mathematical formulations including objective func-
tion and system constraints are now written as follows:

Minimize:

Z =
∑

j

∑

k

∑

t

(
cj ajkt + c′

j bjkt + Rj ujkt + fj nj kt
)

+
∑

i

∑

p∈Pi

∑

j

∑

t

(
H 1

i h1p + H 2
i h2p + mipj

)
xipt (1)
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Subject to:

njkt = ajkt ∀j, ∀k, t = 1 (2)

njkt =njk(t−1)+ ajkt − bjkt + ujkt − vjkt ∀j, ∀k, ∀t > 1 (3)
∑

k

ujkt =
∑

k

vjkt ∀j, ∀t > 1 (4)

LM ≤
∑

j

njkt ≤ UM ∀k, ∀t (5)

∑

i

∑

p∈Pi

qipjk xipt ≤ Cj njkt ∀j, ∀k, ∀t (6)

∑

p∈Pi

xipt = Dit ∀i, ∀t (7)

xipt >= 0 ∀i, ∀t (8)

njkt , ujkt , vjkt , ajkt , bjkt ∈ Z ∀j, ∀k, ∀t (9)

The overall objective of the MPCFP problem is to min-
imize the total system cost. The total system cost in the
objective function consists of two terms:

1. The first sum in the objective function (1) minimizes
the sum of purchasing, disposal, relocation, and fixed
costs of machines in of each type across cells and time
periods. The purchase (cj ) and disposal (c′

j ) costs are
per machine unit. The fixed costs fj are per machine
unit per time period. These fixed costs are in addi-
tion to purchase costs and may represent the cost of
space, maintenance, tied-up capital, etc., not related to
machine operation. To account for the relocation cost,
it is assumed that every machine time is moved into a
cell, a unit cost of Rj is incurred. By definition, a move
into a cell involves another move out of a cell; in order
to avoid double counting, we multiply the ujkt variables
by the unit cost of relocation, Rj . Therefore, the total
cost of purchasing, discarding, and relocating machines

is
∑

j

∑

k

∑

t

(
cj ajkt + c′

j bjkt + Rj ujkt

)
.

2. The second sum in the objective function (1) min-
imizes the sum of total inter and intra-cell material
handling and manufacturing costs. These are summed
overall parts (i) and part routings (p) in each multi-
commodity flow network for each time period. H 1

i is
the unit handling cost per inter-cell transfer of part
i, while H 2

i is the unit handling cost per intra-cell
transfer of part i. The total number of inter and intra-
cell transfers in path p ∈ Pi may be pre-computed
based on the sequence of cells visited by the part in
the path. Similarly, the manufacturing cost per unit
mipj on path p may be calculated by summing the
production costs on each of the machine types vis-
ited by the routings. Since xipt is the flow of part i

using path p in time period t , the total cost of inter
and intra-cell material handling and manufacturing is
∑

i

∑

p∈Pi

∑

j

∑

t

(
H 1

i h1p + H 2
i h2p + mipj

)
xipt .

The constraints in the model are as follows:

– Constraint sets (2–4) together are machine balance
constraints. Constraint (2) ensures that the number of
machines in a cell during the first time period t=1 is
equal to the number of machines purchased (ajkt ) and
installed in cell k at the beginning of period t .

– Constraint (3) ensures that the number of machines
in a cell during any time period t > 1 is equal to
the number of machines in time period t − 1 plus the
number of machines purchased (ajkt ) minus the num-
ber of machines discarded (bjkt ) plus the number of
machines relocated (ujkt ) into the cell minus the num-
ber of machines relocated out of the cell (vjkt ) in that
time period.

– Constraint set (4) ensures that the total number of
machines of type j moved into all cells during time
period t > 1 must be equal to the number of machines
of types j moved out of all cells in period t . This is
a flow conservation equation that makes sure that all
machines (in a time period) moved in to cells have to
come from other cells. An aggregate constraint across
all cells is sufficient because the objective function
penalizes cell movement (with positive cost coefficients
Rj for both an ”out” move and an ”in” move). There-
fore, it would never be optimal to move a machine to
another cell and moved it right back because this would
increase the objective function cost. In other words, for
a particular (j, k, t) combination, if ujkt is positive, vjkt

will be zero in the optimal solution and vice versa. This
is similar to how the absolute value function is lin-
earized in linear programming. It may also be noted that
if there are two machine moves, say from cell 1 to cell 2
and another from cell 3 to 4, the net movement in cells
1 and cell 3 is -1 while in cells 2 and 4 it is +1. Another
possibility with the same net movement is to move the
machine from cell 1 to cell 4 and another from cell
3 to cell 2. The model does not differentiate between
these two moves, but it does capture the relocation costs
correctly.

– Constraint set (5) limits the number of machines in each
cell k during each time period t based on lower and
upper bounds.

– Constraint set (6) is the capacity constraint in the model.
Here, capacity is written in terms of processing time.
However, it may be extended to include the availability
of tools, labor, and other inputs such as machine setup
time. The total processing time on machine type j in
cell k during time period t over all part routings p ∈ Pi

is
∑

i

∑

p∈Pi

qipjk xipt . This has to be less than or equal to

the time availability of machine type j in cell k during
time period t , i.e., Cj njkt . It is to be noted that the the
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arc-path formulation of the multi-commodity network
flow problem [30] is the basis for modeling capacity in
our formulation. The flow on an arc-path or processing
sequence (xipt ) cannot be such that the capacity of any
node, i.e., machine (njkt ) is exceeded.

– Constraint set (7) ensures that the the sum of production∑

p∈Pi

xipt of part i routed through path p during period t

should be equal to the demand for that part (Dit ).
– Constraint set (8) defines the domain of xipt as contin-

uous and positive.
– Constraint (9) states that the variables

njkt , ujkt , vjkt , ajkt , and bjkt are non-negative
integers.

Naturally, there is an interaction between the constraints.
The number of machines njkt is governed through con-
straint sets (2) and (3) for purchasing and installing, relo-
cation, and disposal through the ajkt , bjkt , ujkt , and vjkt

variables. Constraint set ensures valid relocations (each
movement in is due to a movement out from somewhere
else). These machines are make available the capacity
requirements, depending on the flows xipt , in constraint set
(6).

The second summation in the objective function and con-
straints 6 (for capacity) and 7 (for demand) represent a
node-arc formulation of the time-phased multicommodity
flow problem [30], with no flows from one period to another
(as shown in Fig. 1). The nodes of the time-phased multi-
commodity network in each period are the machines in the
various cells (j, k combinations), the commodities are the
products (i). The xipt variables (feasible routing sequences)
may be thought of as the start-to-finish arc-paths for each
time period t . The cost of an arc-path xipt in the second sum
of the objective function is the sum of the costs of inter-
cell and intra-cell material handling and the manufacturing

cost at each machine in the arc-path. The MPCFP prob-
lem is thus a time phased multi-commodity flow network
problem with side constraints (2-4) for machine balance and
constraint set (5) to limit cell size.

The MPCFP can be used to model real-life cell formation
problems in the group technology or cellular manufactur-
ing context in discrete manufacturing with medium part
variety and volume. Examples can be seen in an example
from the valve manufacturing industry [18], which we will
look at in more detail later on, and the gear manufacturing
industry [25].

This model does not explicitly consider worker assign-
ment to cells or machines and implicitly assumes that a
worker can either move between cells from period to period.
Sometimes, a worker may be trained for a particular set of
machines and when only one of the machines is moved, the
worker assignment may need to change or retraining costs
may be involved. Askin [3] presented a very general for-
mulation for manufacturing cell design that includes tool
sharing and setup compatibility, floor space requirements,
subcontracting, alternate process plans, assignment of work-
ers to cells and specific tasks, potential training of workers
for new skills. Thus, the assignment of workers to machines
and/or cells can be included in the model, but the trade-off
would be that an optimal solution may take longer to obtain.

A toolkit for developing optimization-based analytical
decision support applications was developed. The MPCFP
formulation was coded using IBM CPLEX Optimization
Studio (version 12.5). Python 2.7 was used to generate
{Pi} using complete enumeration. It is the set of start-to-
finish paths for product i based on the alternative process
plans in {Si}. As it generates the sequences, the Python
code also pre-computes the inter- and intra-cell material
handling and total production costs associated with the
paths. The Python output ({Pi}) is then entered in CPLEX
Optimization Studio.

Table 1 The [33] solution to
the example problem Period Cell Machine type in the cell Part families

number (number of machines)

1 A(1), C(1), D(1), F(1), I(1), J(1) K(1) Parts (1, 8, 9, 10, 13, 16, 20, 23)

1 2 A(1), F(1), G(1), J(1) Parts (14, 17, 18)

3 B(1), E(1), G(1), H(1), I(1) Parts (2, 5, 6, 12, 21)

1 A(1), C(1), D(1), E(1), F(2), Parts (1, 4, 6, 7, 8, 9, 10, 13, 16

I(1), J(1) K(1) 17, 18, 19, 20, 23)

2 2 A(1), B(1), F(1), G(1), J(1), K(1) Parts (3, 14, 22)

3 B(1), E(1), G(1), H(1), I(1) Parts (2, 5, 12, 21)

1 A(1), C(1), D(1), E(1), F(2), Parts (1, 4, 7, 8, 9, 10, 11, 13, 15,

I(1), J(1) K(1) 16, 17, 18, 19, 20, 22, 23)

3 2 A(1), B(1), F(1), G(1), J(1), K(1) Parts (3, 24, 25)

3 B(1), E(1), G(1), H(1), I(1) Parts (2, 5, 12, 21)
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Table 2 Summary of the
Solution obtained by MPCFP
Model

Period Cell Machine type in the cell Part families

number (number of machines)

1 E(1), F(1) Part (17)

K(1) None

1 2 F(1), J(2), K(1) Part (9)

3 A(1), B(1), C(1), D(1), E(1), F(1), Parts (1, 2, 5, 6, 8, 10, 12,

G(1), H(1), I(1), J(1), K(1) 13, 14, 16, 18, 20, 21, 23)

1 E(1), F(1) Part (17)

K(1) None

2 2 F(1), J(2), K(1) Part (9)

3 A(1), B(1), C(1), D(1), E(1), F(1), Parts (1, 2, 3, 4, 5, 6, 7, 8, 10, 12,

G(1), H(1), I(1), J(1), K(1) 13, 14, 16, 18, 19, 20, 21, 22, 23)

1 E(1), F(1) Part (17)

K(1) None

3 2 F(1), J(2), K(1) Part (9)

3 A(1), B(1), C(1), D(1), E(1), F(1), Parts (1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13,

G(1), H(1), I(1), J(1), K(1) 15, 16, 18, 19, 20, 21, 22, 23, 24, 25)

3 Comparative experiments

Two problems are selected from the literature to present
detailed results from the proposed model for the MPCFP.
These examples are representative of what is available in the
literature and provide a general perspective on the applica-
bility of the proposed model for solving the MPCFP. The
first illustrative example is adopted from the frequently cited
paper by Wicks and Reasor [33], while the second case
study is adopted from [18]. While the former paper is older,
it has often been cited in the literature. The latter is a rela-
tively new paper that roughly summarizes the state of the art
in MPCFP formulation and solution.

It may be noted that the design decisions made by the
MPCFP model include part routings and quantities; cell
configurations; and machine acquisition, disposal, and relo-
cation decisions. The costs of inter-cell/intra-cell material
handling along with production and machine acquisition,
disposal, and relocation are a function of the design deci-
sions.

3.1 First illustrative example

The illustrative example in [33] consists of three time peri-
ods (index t in the model), 11 machine types (index j in the
model), and 25 parts for production (index i in the model.
In this example, the intra-cell material handling cost is zero
and the fixed cost of machines is also zero. The disposal
cost for all machines is assumed to be high since disposal
is not considered in the example (a value of $100,000 was
used). The operation sequences, processing times, machine
capacities, and acquisition and relocation costs are assumed

to be the same over the three time periods. The following
cell capacity constraints were placed on the design of the
CMS to be consistent with the example in the paper:

– Three machine cells to be formed.
– The machine lower limit is three per cell, while the

upper limit of machines in each cell is open-ended.
– Each part has only one operation sequence, which

implies that the manufacturing sequences is pre-defined
(this is a restrictive assumption in [33] illustrative exam-
ple).

The authors in [33] use GA to solve the problem and their
solution may be seen in Table 1.

Table 3 Comparison between [33] and MPCFP solution

Wicks & Reasor ($) Our solution ($)

Machine acquisition cost

Period 1 94,000 90,000

Period 2 18,000 0

Period 3 0 0

Sub-total 112,000 90,000

Material handling cost

Period 1 8000 0

Period 2 3500 0

Period 3 1000 0

Sub-total 12,500 0

Machine relocation cost

All periods 0 0

Total system cost 124,500 90,000



Int J Adv Manuf Technol (2017) 91:175–187 183

Table 4 [18] case solution
Period Cell Machine type in the cell Part families

number (number of machines)

1 M3(2), M6(1), M7(1), M8(1) P1, P7, P10

1 2 M1(2), M2(1), M4(1), M7(1) P2, P4, P12

3 M2(1), M4(2), M5(1), M6(1) P5, P8, P9

1 M3(1), M7(1), M8(1) P1, P10

2 2 M1(2), M4(1) P4, P12

3 M2(1), M4(1), M5(1), M6(1) P3, P6, P9

1 M2(1), M3(1), M6(1), M7(1) P5, P10

3 2 M4(2), M7(1) P4

3 M2(1), M4(1), M5(1), M6(1), M7(1) P2, P6, P7, P8, P11

The data presented in the illustrative example was used
to test the MPCFP model. As mentioned earlier, each part in
[33] illustrative example has only one operation sequence,
implying that the manufacturing sequences are pre-defined.
The path generation code in Python was used to gener-
ate all possible sequences for each part routing through
machines and cells. This resulted in hundreds of sequences
for which the inter- and intra-cell material handling costs
were determined.

Finally, the sequences were entered as input to the opti-
mization model in IBM CPLEX Studio 12.5 with the [33]
data, to run on a 64-bit machine with an Intel i5 chipset
at 3.20 Ghz clock speed. The optimal solution was reached
in 5.76 s. The output of the MPCFP model is shown in
Table 2.

Even though part demands are different in each period,
the machine composition of the three cells is the same
across periods. Also, cell 1 should has a redundant machine
of type K in each period. This is a result of the machine
limit constraint in [33] illustrative example which states
that the machine lower limit in each cell must be three
machines. The MPCFP model adjusts to this constraint by
acquisition and use of the cheapest machine—the resulting
solution is still cheaper than the one in [33]. When LM is
set to zero, this machine is dropped in the solution to the
MPCFP and there are only two machines in each of the
three periods in cell 1.

Table 3 compares the two solutions. The material han-
dling cost in [33] for the three periods are $8000 for period
one, $3500 for period two, and $1000 for period three, with
a total cost of $12,500 for all periods. The cost of machines
purchasing machines in [33] in period one is $94,000; in
period two, two machines (E and F ) are added to cell 1
with an extra purchasing cost of $8000 and two machines
(B and K) are added to cell 2 with an extra purchasing
cost of $10,000. Therefore, the total purchasing cost in [33]
is $ 112,000. In contrast, there is no cost associated with
material handling in the MPCFP solution since each part

is manufactured within one cell in every time period. The
machine acquisition cost in theMPCFP solution is $ 90,000;
all machines are purchased in period one and are retained for
the subsequent periods, since the disposal cost is $100,000.
Even when the disposal cost was reduced to $100,000, there
was no change in the solution. This is because the fixed cost
of machines per time period is zero and there is no incentive
to discard machines.

It is to be noted that the xipt variables in our model are
declared continuous for two reasons:

1. The time periods are fairly long and fractional produc-
tion on paths can be rounded up or down without much
practical significance in the MPCFP. In fact, flows in
MCNF problems are often modelled as linear variables
for this very reason.

2. Even without integer restrictions on the xipt variables
in the [33] case, all flow variables turned out to be inte-
ger. With the integer restriction on xipt , we get the same
optimal solution (value and decision variables). in 6.74
s, as opposed to 5.76 s. Therefore, using continuous
variables is very practical. Note that the other variables
(njkt , ajkt , bjkt , ujkt , andvjkt ) must always be integer.

Table 5 MPCFP Solution to [18]

Period Cell Machine type in the cell

number (number of machines)

1 M6(1), M7(1), M8(1)

1 2 M2(1), M3(1), M4(1), M5(1), M6(1)

3 M1(1), M4(1), M6(1), M7(1)

1 M7(1), M8(1)

2 2 M2(1), M3(1), M4(1), M5(1), M6(1)

3 M1(1), M4(1), M6(1), M7(1)

1 M7(1)

3 2 M2(1), M3(1), M4(1), M5(1), M6(1)

3 M1(1), M4(1), M6(1), M7(1)
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Table 6 Comparison between
[18] and MPCFP solutions [18] solution ($) MPCFP solution ($)

Machine acquisition and fixed cost 56,400 49,700

Machine disposal cost 0 700

Machine relocation cost 4525 0

Material handling cost 20,114.29 26,434.54

Production cost 118,356 118,877.04.4

Total system cost 199,395.29 195,711.58

3.2 Second illustrative example

The [18] case study has eight different type of machines
to manufacture 12 part types. The operating cost, machine
capacities, and acquisition and relocation cost are the same
over the three time periods. The inter- and intra- cell move-
ment costs they use are $40 and $6, respectively. The case
study has the following characteristics:

– The machines are grouped into three cells.
– The upper limit on the number of machines in a cell

is five machines. However, there is no lower limit
of machines. The authors state that smaller cells are
preferable, but provide no lower bound.

– This example has alternate processing sequences. Each
part type has three operations. Each operation can be
performed on one of two alternative machine types. It
is to be noted that the MPCFP model is much more
general and can accept sequences of varying lengths or
allow for several different alternatives at each step.

– The paper is ambiguous on what the disposal costs are,
but seems to suggest that the disposal costs are half of
what the relocation costs are.

Jayakumar and Raju [18] report the best integer feasible
solution found after 8 h of solution time using the Branch
and Bound method in the Lingo 11.0 optimal software pack-
age. The cell configuration for this case is shown in Table 4.
The MPCFP solution for this case is summarized in Table 5.
Table 6 compares the solutions obtained by [18] and the
MPCFP.

It may be noted that:

– The machine acquisition and fixed costs in [18] are
$56,400. There are relocation costs of $4525 but no
disposal costs. The material handling costs (includ-
ing inter-cell and intra-cell) for the three periods are
$20,114.29. The production cost in [18] is reported
as $118,356. However, there are some inconsistencies
in the solution. For example, the routings in period
1 of parts 7, 8, 9, and 10 are inconsistent with the
routing data. For example, the part routing data for part
7 is (1,4), (1,6), (2,6). Which is to say that the first oper-
ation is on either machine 1 or 4, the second on machine

1 or 6, and the third is on machine 2 or 6. Now, part
7 is assigned to cell 1 in period 1 and it is clear that
since both machines 1 and 4 are absent in cell 1, the first
operation of this part cannot be performed. This type of
inconsistency is observed in the results of period 2 for
parts 3, 9, and 10 and in period 3 for part 10.

– The machine acquisition cost in the MPCFP solution is
$49,700. There are no relocation costs in this model,
but there is a $700 disposal cost. The material han-
dling cost, including inter-cell and intra-cell costs, is
$26,434.94, which is significantly higher than in the
Jayakumar and Raju [18] solution. The solution does
have an inter-cell cost of $2181.06, which is about
8.25% of the total material handling cost.

– The production cost in the solution is $118,877.04.
– The MPCFP solution is optimal and superior to the

solution in the best obtained solution in [18].

In order to illustrate that the MPCFP model can relo-
cate machines depending on parameters, the [18] case was
solved with the following modifications: all fj variable val-
uess were set to zero, all H 2

i ’s were multiplied by 100, and
all Rj ’s were set to zero. This is not to claim that the param-
eters are realistic, but rather to show that cell relocations do
take place when the relocation costs are lowered and inter-
cell handling costs increased. The resulting solution may

Table 7 MPCFP Solution to modified [18] case showing machine
relocations

Period Cell Machine type in the cell

number (number of machines)

1 M6(1), M7(1), M8(1)

1 2 M2(1), M4(1), M5(1), M6(1)

3 M1(1), M4(2), M6(1), M7(1)

1 M1(1), M4(1), M6(1), M7(1)

2 2 M2(1), M3(1), M4(1), M5(1), M6(1)

3 M4(1), M6(1), M7(1), M8(1)

1 M4(1), M6(1), M7(1)

3 2 M1(1), M4(1), M6(1), M7(1), M8(1)

3 M2(1), M3(1), M4(1), M5(1), M6(1)



Int J Adv Manuf Technol (2017) 91:175–187 185

Table 8 List of problems
solved Problem Source Parts Machine Cells Maximum route Periods Path enumeration

number types length time(s)

1 [33] 25 11 3 3 3 0.045

2 [18] 12 8 3 3 3 0.012

3 [11] 25 10 3 9 2 0.077

4 [17] (Medium 1) 20 12 3 6 1 0.17

5 [17] (Medium 2) 20 14 3 6 1 0.271

6 [17] (Medium 3) 30 18 3 5 1 0.109

be seen in Table 7. In this solution, machines 1, 4, and 8
are swapped between cells 1 and 3 from period 1 to period
2. Similarly, machines 1, 2, 3, 5, 7, and 8 are exchanged
between cells 1, 2, and 3 from period 2 to period 3. The
relocations in the solution (ujkt and vjkt variables) were
consistent with the cell configuration variables (njkt vari-
ables). All machine acquisitions in this solution are in period
1 and there are no disposals since fj ’s are zero.

3.3 Computational performance

In order to benchmark the computational performance of
our model, other representative examples are taken from
the literature. The problem sources with sizes are shown in
Table 8. This table also shows the CPU time for route gener-
ation in Python 2.7. It is to be noted that all problems were
run on a 64-bit machine running the Windows 7 ™ operat-
ing system with 4 GB RAM using an Intel i5 ™ chipset
running at 3.20 Ghz. The IBM CPLEX Studio 12.5 ™ opti-
mization environment was used throughout.

For each of these problems, the number of variables and
constraints in the MPCFP model is shown in Table 9. It is
worth mentioning that the problem in [11]∗ is an expanded
version of the MPCFP with many other side constraints
arising from tooling, workload balancing, machine adja-
cency, etc. It can be seen that the number of constraints in
our model is relatively small because once the paths are

enumerated, the constraints are only on machine balance,
machine capacity, and job demand. Moreover, though this
case has disposal costs (c′

j ), it does not have any fixed costs
(fj ). Hence, there is no incentive to dispose of machines
once purchased.

Finally, Table 10 provides the computational time for
each of the problems. With our model, these representa-
tive problems (among the largest solved in the literature
with the exception of the large problem in [17]) are solved
within 1000 s of CPU time, which is better than the time
it took for the GAs in the original papers in all cases, with
the exception of [18] in [10]. Please note that the time
reported in [18] was the best integer solution found after
the time limit of 8 h of CPU time had elapsed. It must
be noted that in the [11] and the [17] cases, we do not
solve the actual problem presented in the case. Rather, we
solve an MPCFP problem of representative size using the
data provided. In the [11] case, this is because the stated
problem is an expanded version of the MPCFP will several
other features. In the [17] cases, this is because purchasing,
relocation, disposal, and fixed costs of machines are not pro-
vided. The only trade-off in the paper is between inter-cell
and intra-cell handling. Since our interest was mainly to test
CPU time, we randomly chose cj , c′

j , and R to be uniformly
distributed within the intervals (5000, 10,000), (500, 1000),
and (1000, 5000), respectively. The value of fj was set to
zero.

Table 9 Number of variables
and constraints in MPCFP Problem Source Variables Constraints Variables Constraints

number (Original paper) (Original paper) (Our model) (Our model)

1 [33] – – 2185 304

2 [18] 6725 2151 8163 279

3 [11] 16, 930∗ 24, 030∗ 7983 268

4 [17] (Medium 1) – – 4881 133

5 [17] (Medium 2) – – 10,791 151

6 [17] (Medium 3) – – 5376 197
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Table 10 Computational Time

Problem
number

Source CPU time in seconds
(optimal in original
paper)

CPU time in seconds
(GA, original Paper)

CPU time in seconds
(GA, [10])

CPU time in seconds
(optimal using our
model)

1 [33] – – 222.295 5.76

2 [18] 28, 800+ – 557.326 786.35

3 [11] – – 409.468 13.68

4 [17] (Medium 1) – 218.825 – 65.8

5 [17] (Medium 2) – 266.123 – 75.99

6 [17] (Medium 3) – 363.312 – 23.21

4 Summary, conclusions, and further study

In this paper, a mathematical model based on the arc-
path formulation of multi-commodity network problem was
developed to solve the multi-period cell formation prob-
lem (MPCFP). Since both the inter- and intra-cell flows are
known from the output of the model in this paper, spatial
designs for the cells could be subsequently designed using a
layout optimization model. Since the scale of the problems
would be large, a metaheuristic approach might have to be
used in practical instances.

The two main contributions of this paper are as follows:

1. With this formulation, there is no need to use GA for
problems of the size typically solved in the literature
with the exception of the large scale problem in [17].
While, GA or other metaheuristics are still useful tools
for larger problems, the solutions were obtained with
a standard commercial and academic MIP software
package.

2. The model can handle alternate machine routings
because the flow variables representing the flow of parts
through system path based (start to end arc-paths).

Some areas for future research are:

– As discussed, some rules were discussed to reduce
the number of path variables. A column generation
approach can be developed to enumerate routings and
understand the loss in optimality incurred by limiting
the number of paths.

– A computational study could be undertaken to com-
pare this model with other models in the literature.
Also, the MPCFP is likely to be run repeatedly for dif-
ferent demand scenarios, for example, in a stochastic
programming setting. For such problems, the basic and
alternative routings can be enumerated once and for all.
The repeated runs then are only for different demands,
the rest of the problem data remains the same.

– Since the multicommodity flow part of the prob-
lem can be solved using state-of-the-art LP solvers,
a GA or any other metaheuristic approach can be
easily designed to search for solutions over the njkt

space, with the multicommodity network flow LP as
the fitness evaluation function. In other words, the
njkt variables can be fixed by appropriately choos-
ing ajkt , bjkt , ujkt , andvjkt through a structured neigh-
bourhood search procedure. Thus, the fitness function
for a given time period would decompose into a MCNF
problem.

– It would be interesting to develop a robust version of
the MPCFP model in this paper to look at the optimal
design under different demand scenarios.

– The model also has a lot of utility for further research
in the domain. For example, it can be used to design
different types of cellular manufacturing systems. It can
be used to tailor cell formation in order for production
researchers to study the trade-offs between flexibility
and efficiency in cellular manufacturing systems. We
are currently pursuing this line of research.

– This paper looked at the MPCFP which is a strate-
gic cell formation problem. There are some industries
where machines may be relocated without incurring
very high costs. In such cases, since the planning
periods are shorter and the tactical cell formation
problem with inventory and subcontracting variables
could be formulated to avoid costly future purchases of
machines.

– Finally, a machine could be moved out of one cell at the
beginning of period t , stored for one or more periods,
and then relocated to another cell. This would allow for
a practical alternative that would avoid the need to buy a
costly, new machine. To model this problem, we believe
that our formulation can be revised so that the linking
constraints between periods is made more general than
from one period to the next only.
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