
ORIGINAL ARTICLE

Optimum fixture locating layout for sheet metal part
by integrating kriging with cuckoo search algorithm

Bo Yang1 & Zhongqi Wang1 & Yuan Yang1 & Yonggang Kang1 & Xining Li1

Received: 27 May 2016 /Accepted: 17 October 2016 /Published online: 19 November 2016
# Springer-Verlag London 2016

Abstract Fixture locating layout has a direct and influential
impact on the sheet metal mechanical behavior and dimensional
quality during the manufacturing process. The N-2-1 locating
principle is adopted to design the fixture locating layout for the
sheet metal part to determine the spatial location and restrain the
excessive deformation. However, efficient optimal design of
fixture layout is not an easy-to-implement and trivial task.
The state-of-the-art evolutionary optimization of fixture layout
aiming for workpiece deformation control often involves hun-
dreds or even thousands of calls of finite element analysis and
therefore is faced with uncomfortable and challenging compu-
tation cost and burden. In order to reduce the computational
cost and improve the optimization efficiency, a new approach
for optimum sheet metal fixture locating layout based on the
N-2-1 principle is proposed in this paper. The training and test
data sets are generated by running only a few times of finite
element analysis on the design sites standing for different fix-
ture locating layouts selected through Latin hypercube sam-
pling. The kriging surrogate model is built based on the training
sample set to approximate the implicit function relationship
between the fixture locating layout and the concerned sheet
metal deformation and meanwhile is compared with back prop-
agation neural network in terms of prediction accuracy by the
test sample set. The cuckoo search algorithm is applied to the
kriging model to find the optimal fixture locating layout. Flat
and curved sheet metal cases based on the “4-2-1” locating

scheme are conducted, and the results indicate that the proposed
approach is effective and efficient in the design and optimiza-
tion of the sheet metal fixture locating layout.

Keywords Fixture layout . Sheet metal . Kriging surrogate
model . Cuckoo search algorithm . Back propagation neural
network

1 Introduction

Sheet metal is extensively put into use in aerospace, automo-
bile, and shipbuilding industries while it tends to deform out
of tolerance throughout the whole manufacturing process [1,
2]. In order to not only determine the spatial location but also
constrain the excessive deformation of the sheet metal part,
Cai et al. [3] presented the “N-2-1” (N ≥ 3) locating principle
for deformable workpieces by extending the “3-2-1” principle
[4] for rigid parts. Hence, one of the key problems as to de-
signing the fixture layout based on either the N-2-1 or the 3-2-
1 locating principle is how to find the optimal layout of the
fixture locators to minimize the workpiece deformation.

However, it is a non-trivial task to effectively and efficiently
obtain the optimum fixture layout to control the general work-
piece deformation and ensure its dimensional quality consider-
ing that there not always exists the analytical or form-closed
expression between the fixture layout and the concerned work-
piece deformation subject to manufacturing loading. To that
end, a lot of work about fixture layout analysis and modeling
for the deformable workpiece has been conducted by many
researchers for the past few years. In order to analyze and
evaluate the performances of different fixture layouts, finite
element analysis (FEA) was introduced and verified to model
the workpiece–fixture system and calculate the concerned
workpiece deformation to aid the fixture layout design and
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optimization [5–7] in the beginning. Afterwards, FEA, as a
recognized and reliable modeling tool to assess the fixture lay-
out capability in the optimal fixture configuration design, has
gained more and more popularity in the research community.

Krishnakumar and Melkote [8] used the genetic algo-
rithm (GA) and FEA to find the optimum fixture layout to
minimize the deformation of the machined surface due to
clamping and machining forces over the entire tool path.
Li and Shiu [9] achieved the optimal fixture configuration
design by combining GA and FEA to improve the degree
of the metal fit-up for sheet metal assembly with laser
welding. By means of FEA, Kulankara et al. [10] applied
GA for iterative milling fixture layout and clamping force
optimization to minimize the elastic deformation for a
compliant workpiece. Liao [11] proposed an optimization
method based on GA coupled with FEA to select auto-
matically the optimal numbers and positions of locators
and clamps in sheet metal assembly fixture under the
gravity effect to improve the dimensional and form accu-
racy of the workpiece. Kaya [12] carried out fixture locat-
ing and clamping position optimization through GA inte-
grated with FEA to reduce the error caused by elastic
deformation of the workpiece in machining. Likewise,
Padmanaban et al. [13] applied ant colony algorithm
(ACA)-based discrete and continuous optimization
methods by virtue of FEA to optimize the milling fixture
layout so that the workpiece elastic deformation was min-
imized due to the machining and clamping force. Through
FEA calculating the workpiece deformation considering
its dynamic response for a given fixture layout, Dou
et al. [14] developed both an improved particle swarm
optimization (IPSO)-based method and an improved GA
(IGA)-based method for the fixture layout optimization to
minimize the workpiece elastic deformation during the
high-speed slot milling. Li et al. [15] invented a
reconfigurable swarm intelligent fixture system for flexi-
ble aerospace parts and put forward a GA coupled with an
FEA-based optimization procedure to determine the opti-
mal fixture layout for the machining of large deformable
sheet metal parts to improve the dimensional quality.
Kumar and Paulraj [16] used an integrated optimization
tool of GA and an FEA solver to find the optimum fixture
layout to minimize the deformation of the workpiece un-
der dynamic machining condition with chip removal ef-
fect. Xing et al. [17] proposed a method to bi-objective
optimization of fixture layout for auto-body compliant
parts satisfying the requirements of assembly tolerance
and gravity deformation by a non-domination sorting so-
cial radiation algorithm (NSSRA) combined with FEA.

In conclusion, it can be seen that the evolutionary al-
gorithm integrated with FEA has become the accepted and
popular approach for optimization of the fixture layout for
the deformable workpiece. However, the state-of-the-art

evolutionary optimization of the fixture layout often in-
volves lots of time-consuming FEA and therefore is faced
with uncomfortable and challenging computation cost and
burden. Thus, in order to reduce the computational cost
and improve the optimization efficiency, approximation or
surrogate models [18], such as response surface method-
ology (RSM) and back propagation neural network
(BPNN), have been introduced and applied to computa-
tionally expensive fixture layout optimization for control-
ling the undesirable deformation of the flexible or deform-
able workpiece and improving the manufacturing accura-
cy in recent years.

Li et al. [19] developed a two-stage RSM based on lim-
ited use of FEA to obtain a robust fixture configuration to
ensure the quality of metal fit-up for sheet metal assembly
with laser welding. Hamedi [20] built BPNN with only a
few times of FEA to realize the pattern between the
clamping forces and state of contact in the workpiece–
fixture system and the workpiece maximum elastic defor-
mation and applied GA to determine the optimal clamping
forces to reduce the excessive deformation/stress in the
machined component. Li et al. [21] presented the three
quality design models of a non-linear programming mod-
el, a polynomial RSM, and a BPNN-enhanced RSM to
achieve the robust fixture planning of a sheet metal as-
sembly with resistance spot weld design. Vasundara et al.
[22] constructed BPNN to approximate the function rela-
tionship between fixture elements and the maximum elas-
tic deformation of the workpiece determined by FEA and
used BPNN and RSM to predict the machining fixture
layout to minimize the maximum elastic deformation of
the workpiece in the milling. Selvakumar et al. [23] used
BPNN to describe the mapping relationship between the
fixture layout and the maximum workpiece deformation
and combined BPNN and design of experiments (DOEs)
to find the optimum machining fixture configuration.
Sundararaman et al. [24] developed a sequential optimi-
zation approximation method integrated with RSM to de-
sign the optimal machining fixture layout to minimize the
workpiece deformation during the end-milling operation.
Similarly, Lu and Zhao [25] established a BPNN model to
predict the sheet metal deformation under different fixture
layouts and applied GA to the BPNN model to search the
optimal position of the fourth locator based on the “4-2-1”
locating scheme. With a BPNN model built to predict the
deformation of the workpiece–fixture system, Rex and
Ravindran [26] proposed an integrated approach for the
optimal fixture layout design to control the maximum
elastic deformation of the workpiece during the entire
machining process. Qin et al. [27] constructed a BPNN
model depicting the function relationship between the
fixturing parameters and the workpiece deformation and
developed a unified approach by combining BPNN with
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GA to accomplish the machining multifixturing layout
planning for the thin-walled workpiece to control the
clamping deformation. Sundararaman et al. [28] made
use of RSM to model the relationship between position
of locators and clamps and maximum deformation of the
workpiece during end-milling and optimized the
established RSM model by GA and PSO to find the ap-
propriate position of fixture elements to minimize the ma-
chining dimensional errors.

In this paper, a new approach by integrating kriging with the
cuckoo search (CS) algorithm is presented to obtain the optimal
fixture locating layout design to minimize the overall deforma-
tion for sheetmetal part under the gravity effect.With this section
included, this paper is made up of eight sections. The remainder
of the paper is organized as follows: in Sect. 2, the optimization
model of the sheet metal fixture layout is constructed. In Sect. 3,
the bases of the prediction models of BPNN and kriging are
introduced respectively. In Sect. 4, the fundamentals of the CS
algorithm are presented. Section 5 depicts the flowchart of the
proposed method. In Sect. 6, two thin sheet metal case studies
are presented to verify the effectiveness and efficiency of the
method in Sect. 6 and Sect. 7 respectively. The results of

the case studies are analyzed and discussed. Finally, this paper
is concluded in Sect. 8.

2 Problem formulation

2.1 N-2-1 locating principle

Due to the characteristics of the thin wall, large size, and low
rigidity, sheet metal always tends to deform which causes
dimensional errors and affects manufacturing accuracy.
Hence, the sheet metal part is often placed and clamped under
an over-constraint condition based on the N-2-1 locating prin-
ciple during the manufacturing process. As far as this locating
principle is concerned, there should be “N” (N ≥ 3) locators on
the primary/first datum plane and “2” and “1” on the second
and third datum planes of the sheet metal part, respectively. In
other words, the 3-2-1 locating scheme is used to determinate-
ly position the part in the spatial location, while (N-3) addi-
tional locators are needed to prevent the excessive deforma-
tion and supply more supports on the primary datum plane of
the sheet metal part. Figure 1 depicts a typical 4-2-1 locating
principle, where four locators are required to support sheet
metal on the primary datum plane to avoid the excessive de-
flection of the workpiece. It is obviously concluded that the
key activity of the fixture layout design based on the N-2-1
principle is to find the optimum positions of the N locators to
minimize the sheet metal part deformation.

2.2 Optimization model

Based on the N-2-1 locating principle, the normal excessive
deformation of the sheet metal part under self-weight can be
reduced, and then its dimensional quality in turn can be im-
proved. In order to quantify the deformation of the sheet metal
part and assess the performances of different fixture locating
layouts, the evaluation function is defined as

f Xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK
i¼1

εi
2 Xð Þ

K

vuuuut
ð1Þ

where K is the total number of the mesh nodes of the finite
element model of the sheet metal part, εi is the normal deflec-
tion of the i-th mesh node, and X is called the design variable
vector standing for different fixture locating schemes.

In this work, FEA is used to model the fixture–workpiece
system and calculate the evaluation function values to form
the training data set to construct the BPNN and kriging pre-
diction models. The optimization model for the optimal sheet
metal fixture locating layout design can be expressed as

Z

Y
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The locator on "N" The locator on "2" The locator on "1"

Fig. 1 “N-2-1” locating principle for the sheet metal part
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Find : X ¼ x1; x2;⋯; xi;⋯; x j;⋯; xN
� �

Min : f Xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK
i¼1

εi
2 Xð Þ

K

vuuuut
s:t:

xi; x j∈Ω
xi≠x j

�

8>>>>>>>><
>>>>>>>>:

ð2Þ

whereΩ stands for the set of all the nodes of the finite element
mesh model of the sheet metal part and xi and xj are the
position coordinate vectors of the i-th and j-th locators, respec-
tively, where i , j=1 , ⋯ ,N. Besides, the design variable X
must be within the pre-determined set Ω, and in each fixture
locating layout scheme, any two locators cannot coincide.

3 Prediction model

3.1 BPNN

BPNN, the most widely used type of artificial neural net-
work (ANN), is a feed-forward neural network with three
or more layers, including the input layer, hidden layer,
and output layer [29]. It has D input nodes, H hidden
nodes, and Q output nodes. It is also proved theoretically
that any multivariable function can be approximated to
any desired degree of accuracy with a three-layer
BPNN. The three-layer BPNN is the most commonly used
form of ANN. Figure 2 shows the network structure of a
typical three-layer BPNN.

Table 1 Pseudo code of CS

Cuckoo search algorithm

Objective function f(X), X ¼ x1; x2;⋯; xd½ �.
Initialize a population of n host nests Xi(i= 1, 2, ⋯ , n).
while (t < Maximum number of iterations)
Get a cuckoo (say i) randomly by Lévy flights.
Evaluate its quality/fitness f(Xi).
Choose a nest among n (say j) randomly.
if (f(Xi) < f(Xj))
Replace j by the new solution i.
end if
Abandon a fraction (pa) of worse nests.
Keep the best solutions or nests with quality solutions.
Rank the solutions and find the current best.
end while
Postprocess results and visualization.

End

Define objective function and design variables

Set maximum iteration number (T),

population size,

the discovery rate (Pa)

Output the optimal fixture layout
and the corresponding deformation

Yes

No

Generate the initial population and t=1

Verify the output results by FEA

Start

Construct initial kriging
prediction model

Train and test kriging model

Satisfy prediction
accuracy?

Build the final kriging
prediction model
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If t < T?

Choose a nest among n (say j) randomly

If f(xi) < f(xj) ?

Replace j by the new solution i

Abandon a fraction (Pa) of worse nests and

build new ones;

Keep the best solutions;

Rank the solutions and find the current best

t=t+1

No Yes

Prediction model

Main routine

Fig. 3 The flowchart of
optimization of the sheet metal
fixture locating layout by CS
integrated with kriging
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3.2 Kriging

Kriging first appeared in geo-statistics while the use of kriging
models for approximating a deterministic computer model
was popularized by Sacks et al. [30]. Kriging models the out-
put of a deterministic computer model as a realization of a
stochastic process. The basic theory of kriging is described
as follows [31].

Given a set of m design sites S = [s1, ⋯ , sm]
T with

si ∈ Rd (i = 1⋯m) and responses Y = [y1, ⋯ , ym]
T with

yi∈Rq (i=1⋯m), a model y that expresses the deterministic
response y(X) ∈Rq is adopted, for a d-dimensional input
X∈Rd, as a realization of a regression model F and a random
function Z. As shown in Equation (3), F(β,X) is a simple
linear regression of β, which models the drift of the process

mean over the domain. z(X) models the systematic lack of fit
or deviations from the linear model, which “pulls” the re-
sponse surface through the data by weighting the correlation
of nearby points.

y Xð Þ ¼ F β;Xð Þ þ z Xð Þ ð3Þ

Fig. 4 The initial “4-2-1” fixture locating layout for the sheet metal case

Table 2 The physical
properties of material Material properties Value

Mass density 2.8 × 103 kg/m3

Young’s modulus 7.12 × 1010 Pa

Poisson ratio 0.33

Table 3 Experimental results of Kriging

Size of
training
sample set

RRMSE θ β σ2

20 12.53% (0.3536 1.1892) 0.0733 0.3429

25 16.94% (2.0000 1.6818) 0.0162 0.4181

30 13.72% (1.6818 2.1810) 0.1386 0.3087

35 4.10% (2.4395 0.5128) 0.1534 0.3325

Table 4 Experimental results of BPNN

The node number
of hidden layer

RRMSE The node number
of hidden layer

RRMSE

1 28.07% 6 19.94%

2 11.61% 7 16.39%

3 12.39% 8 12.97%

4 17.36% 9 16.35%

5 9.34% 10 15.42%

Table 5 Training parameters in BPNN

Control parameters of artificial neural network

The number of neurons in the input layer 2

The number of neurons in the output layer 1

The number of hidden layers 1

The number of neurons in each hidden layer 5

Learning rate 0.001

Learning goal 0.00001

Maximum no. of epochs 5000

Activation functions for hidden layers Tansig

Activation functions for output layers Purelin

Training algorithm Levenberg–Marquardt

Table 6 Training data set

Number Coordinate F(X) (mm)

1 (161.9772, 81.1932) 1.0158
2 (145.0505, 223.0571) 0.8351
3 (395.4016, 29.2258) 0.9437
4 (309.8945, 362.1514) 0.0759
5 (174.8505, 170.7964) 0.8490
6 (65.8072, 231.3852) 0.9252
7 (322.7448, 249.9206) 0.1294
8 (293.8180, 293.0752) 0.0725
9 (53.9721, 144.0472) 0.9994
10 (79.9302, 35.5940) 1.0217
11 (384.2890, 205.4715) 0.3541
12 (235.0065, 13.2105) 0.8609
13 (7.9509, 316.7078) 0.7693
14 (30.9616, 8.5675) 1.0268
15 (88.6570, 382.9899) 1.0175
16 (343.5808, 323.0967) 0.0539
17 (195.8835, 374.8272) 0.3662
18 (246.8888, 214.6711) 0.3550
19 (223.0924, 91.6990) 1.0134
20 (39.2572, 107.5059) 1.0129
21 (360.1186, 350.8068) 0.0651
22 (134.0593, 388.9405) 0.7684
23 (102.9744, 126.9032) 1.0212
24 (260.7580, 340.6854) 0.1194
25 (207.2954, 68.5509) 0.9700
26 (159.6271, 254.7227) 0.5953
27 (304.7776, 150.0831) 0.4439
28 (368.5857, 307.2193) 0.0868
29 (278.3501, 125.2683) 0.7388
30 (123.7801, 50.3063) 1.0074
31 (91.9748, 175.9507) 1.0230
32 (188.0769, 268.3836) 0.3900
33 (19.9838, 79.9142) 1.0217
34 (336.2449, 186.4122) 0.3213
35 (263.8231, 274.9026) 0.1336
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The regression model F(β,X) is a linear combination of p
chosen functions:

F β;Xð Þ ¼ β1 � f 1 Xð Þ þ⋯þ βp � f p Xð Þ ¼ ∑
p

i
βi � f i Xð Þ,

where the coefficients {β} are regression parameters. The ran-
dom process z(X) is assumed to be a Gaussian stationary pro-
cess with mean zero and covariance:

E z Xi� �
; z X j� �� � ¼ σ2R θ;Xi;X j� � ð4Þ

between Xi and Xj, where σ2 is the process variance and
R(θ,Xi,Xj) is the correlation model with parameters θ. The
correlation function is defined as

R θ;Xi;X j� � ¼ exp −
Xd

k¼1

θk Xi
k−X

j
k

�� ��2" #
; i; j ¼ 1;⋯;mð Þð5Þ

where d is the dimension number of the design variable and θk
is the k-th parameter corresponding to k-th design variable.
Ordinary kriging, whose regression part equals a constant β,
is the most commonly used form of kriging employed to ap-
proximate expensive computer models.

4 Cuckoo search algorithm

The CS algorithm, developed by Yang and Deb, is a new
meta-heuristic algorithm based on the obligate breeding
parasitic behavior of some cuckoo species combined with
the Lévy flight behavior of some birds and fruit flies [32,
33]. For the past few years, the CS algorithm has been
applied to many areas of optimization with promising

Table 7 Testing data set

Number Coordinate F(X) (mm)

1 (188.7118, 66.7153) 0.9837

2 (200.9617, 164.1008) 0.7972

3 (358.543, 20.0141) 0.8463

4 (386.9502, 295.3885) 0.1283

5 (281.0795, 256.6747) 0.1384

6 (145.3987, 372.0698) 0.6392

7 (267.6340, 118.8267) 0.8901

8 (75.1635, 218.8847) 0.9707

9 (3.3694, 358.7171) 0.8311

10 (114.5809, 126.9143) 1.0101

(1) (2)

Fig. 5 The response surfaces of
kriging and BPNN prediction
models
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efficiency [34], such as engineering design [35],
manufacturing [36], etc. For simplicity, the breeding be-
havior of cuckoos can be idealized as the following three
simple rules:
1. Each cuckoo lays one egg each time in a randomly chosen

nest.
2. The best nests with high quality of eggs (solutions) will

carry over to the next generations.
3. The number of the available host nests is fixed, and a host

can discover an alien egg with a probability pa∈ [0, 1].

On the basis of these three rules above, the basic steps of
the CS can be summarized as the pseudo code described in
Table 1.

For a cuckoo i, the new positions x tþ1ð Þ
i can be calculated

by

x tþ1ð Þ
i ¼ x tð Þ

i þ α⊕L�evy λð Þ ð6Þ

whereα>0 is the step size which should be related to the scale
of the problem of interest, and α=1 is used in most cases. It is
found that n = 15 to 25 and pa = 0.15 to 0.30 are sufficient for
most optimization problems. The symbol⊕means entry-wise
multiplications. Lévy flights essentially provide a random
walk while their random steps are drawn from a Lévy distri-
bution for large steps:

L�evy∼u ¼ t−λ; 1 < λ≤3ð Þ ð7Þ

which has an infinite variance with an infinite mean.

5 Proposed approach

In this paper, a new approach to optimizing the sheet
metal fixture locating layout based on the N-2-1 locating
principle by integrating kriging with the CS algorithm is
proposed. The presented method consists of two main
stages. At the first stage, the kriging prediction model is
built based on the training data set and then compared to
BPNN in terms of prediction accuracy based on the test-
ing dataset. The training and testing data sets are obtained
by Latin hypercube sampling (LHS) [37] and limited
times of FEA. At the second stage, CS is directly applied
to the established kriging model to search the optimal

fixture locating layout to minimize the overall deforma-
tion of the sheet metal part under the gravity effect.

Table 8 The relative
errors of the prediction
models

Prediction model Relative error

BPNN 9.34 %

Kriging 4.10 %

(1) 

(2) 

(3) 

Fig. 7 The convergence of CS for the case study
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During the iterative optimization process, the fitness
values are obtained by calling the kriging surrogate model
instead of FEA to save the computation cost and increase
the optimization efficiency. The flowchart of the optimum
fixture locating layout design for the sheet metal part by
integrating kriging with the CS algorithm is depicted in
Fig. 3.

6 Flat sheet metal

6.1 Modeling

In this section, the presented method by CS integrated
with kriging for sheet metal fixture locating layout opti-
mization under the gravity effect is demonstrated and ver-
ified by an aluminum alloy sheet metal case based on the
4-2-1 locating scheme. As shown in Fig. 4, the dimension
of the sheet metal is 400 × 400 × 1 mm3 and the physical
material properties are all listed in Table 2. The “4” lo-
cating points (LP) on the primary datum plane are LP1,
LP2, LP3, and LP4, and the “2” locating points on the
second datum plane are LP5 and LP6 while the “1” locat-
ing point on the third datum plane is LP7. Set the coor-
dinates of the fixed locating points LP1, LP2, LP3, LP5,
LP6, and LP7 as (100, 100), (100, 300), (300, 100), (133,

Table 9 Optimization results and comparison

The
population
size

Pa The
optimal
layout of
L4

The
minimum
deformation
by CS

The
corresponding
deformation
by FEA

Relative
error

15 0.15 (342.8856,
335.0987)

0.0512 mm 0.0521 mm 1.73 %

0.2 (342.8641,
335.1053)

0.0512 mm 0.0521 mm 1.73 %

0.25 (342.8959,
335.0626)

0.0512 mm 0.0521 mm 1.73 %

0.3 (342.7994,
335.0963)

0.0512 mm 0.0521 mm 1.73 %

20 0.15 (342.8729,
335.0947)

0.0512 mm 0.0521 mm 1.73 %

0.2 (342.866,
335.0991)

0.0512 mm 0.0521 mm 1.73 %

0.25 (342.8845,
335.0807)

0.0512 mm 0.0521 mm 1.73 %

0.3 (342.8978,
335.1042)

0.0512 mm 0.0521 mm 1.73 %

25 0.15 (342.8686,
335.0868)

0.0512 mm 0.0521 mm 1.73 %

0.2 (342.8764,
335.0839)

0.0512 mm 0.0521 mm 1.73 %

0.25 (342.8694,
335.1002)

0.0512 mm 0.0521 mm 1.73 %

0.3 (342.8504,
335.1029)

0.0512 mm 0.0521 mm 1.73 %

(1)

(2)

(3)
Fig. 8 The average fitness values by CS
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0), (267, 0), and (0, 200), respectively. The locating point
to be optimized is LP4, and its coordinate is denoted as
(x, y).

The training and testing data sets are generated by LHS
and FEA. In order to calculate the evaluation function
values of the training and testing data sets, the commercial
finite element software ABAQUS™ [38] is employed to
compute the overall deformation of the sheet metal part
under its deadweight. The element type of the FEA model
of the sheet metal part is S4R while the size of the element
is 1 mm × 1 mm. In our implementation, after several trials
as listed in Tables 3 and 4, the kriging and BPNN surrogate
models are built by learning the same training data set of the
size of 35, tested, and compared by calculating the relative
root mean squared error (RRMSE) on the same testing
data set of the size of 10.

In this case, the kriging model is built via a MATLAB™
kriging toolbox, Design and Analysis of Computer
Experiments (DACE) [31], while the BPNN model is built via
a MATLAB™ neural network toolbox [39]. In kriging, the cor-
relation parameter is initially set as [1,1]; in BPNN, the input
layer has two neurons (D = 2), which respectively represent the x

and y entries of the coordinate of LP4. The output layer has one
neuron (Q = 1), that is, the evaluation function value F(X) for

Fig. 9 The initial “4-2-1” fixture locating layout for the sheet metal case

Table 10 Experimental results of Kriging

Size of
training
sample set

RRMSE θ β σ2

20 28.98% (1.4142, 1.2968) -0.1250 0.4578

25 17.37% (0.7071, 1.8340) 0.0180 0.4841

30 16.75% (1.0000, 4.0000) 0.0730 0.4085

35 11.60% (4.0000, 2.8284) 0.1046 0.3537

40 4.5% (3.0550, 2.5689) 8.4463e-04 0.5047

Table 11 Experimental results of BPNN

The node
number of
hidden layer

RRMSE The node
number of
hidden layer

RRMSE

1 38.47% 6 22.1%

2 31.42% 7 18.08%

3 34.53% 8 36.74%

4 22.71% 9 21.23%

5 25.82% 10 32.91%

Table 12 Training parameters in BPNN

Control parameters of artificial neural network

The number of neurons in the input layer 2

The number of neurons in the output layer 1

The number of hidden layers 1

The number of neurons in each hidden layer 7

Learning rate 0.001

Learning goal 0.00001

Maximum no. of epochs 5000

Activation functions for hidden layers Tansig

Activation functions for output layers Purelin

Training algorithm Levenberg–Marquardt

Table 13 Training data set

Number Coordinate F(X) (mm)

1 (72.2600, 249.3793) 0.1691
2 (47.1657, 218.4460) 0.1215
3 (176.5980, 595.4355) 0.1111
4 (163.1431, 475.6371) 0.1304
5 (89.6089, 266.3623) 0.0867
6 (17.7182, 90.9497) 0.1040
7 (114.7608, 482.0971) 0.0874
8 (31.3087, 444.0416) 0.1964
9 (109.8100, 82.8087) 0.0201
10 (60.2288, 111.5251) 0.1958
11 (51.2881, 577.6557) 0.1966
12 (140.3128, 355.9528) 0.0600
13 (97.4332, 0.1539) 0.0395
14 (153.7955, 57.2449) 0.0168
15 (38.7002, 122.0751) 0.1161
16 (126.2051, 539.5105) 0.0685
17 (0.0333, 310.0206) 0.1699
18 (158.2165, 378.7688) 0.1321
19 (131.2357, 335.3345) 0.0488
20 (189.4498, 72.4614) 0.0169
21 (22.0148, 540.7169) 0.1840
22 (182.8470, 201.8509) 0.0131
23 (91.3464, 176.2288) 0.0455
24 (118.6941, 396.3214) 0.1962
25 (59.5260, 316.2679) 0.1926
26 (12.7452, 226.5661) 0.1286
27 (171.7996, 457.7624) 0.1626
28 (29.3398, 563.3589) 0.1866
29 (67.7359, 430.3237) 0.1934
30 (121.7390, 194.1703) 0.0187
31 (195.8650, 153.6931) 0.0147
32 (103.4596, 283.0208) 0.0650
33 (192.9882, 24.6612) 0.0213
34 (40.5788, 519.0619) 0.1929
35 (76.4971, 406.7172) 0.1960
36 (138.7906, 149.6814) 0.0149
37 (6.2008, 362.3388) 0.1892
38 (148.5454, 40.6789) 0.0172
39 (83.6128, 506.2449) 0.1394
40 (169.9695, 292.6743) 0.0263
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sheet metal deformation. The hidden layer has five neurons
(H = 5). Specific training parameters in BPNN and the training
and testing data sets for BPNN and kriging are shown in
Tables 5, 6, and 7).

6.2 Results and discussion

In this section, the response surface models of kriging and
BPNN approximating the implicit function relationship

between the fixture locating layout and the overall sheet metal
deformation are established as shown in Fig. 5. Besides, the
output curves are depicted in Fig. 6 and the corresponding
relative errors are listed in Table 8.

Compared with the BPNN model trained and tested with
the same sample sets, the kriging-based prediction model is of
higher precision and is more stable. Hence, the kriging model
describing the mapping relationship between the fixture locat-
ing layout scheme and the corresponding sheet metal defor-
mation is used for the subsequent sheet metal fixture locating
layout optimization in this paper. Then, CS is applied on the
established kriging prediction model to search the optimal
design variable X for the minimum f(X) on the platform of
MATLAB™. And the fitness values of each generation during
the iterative optimization procedure are calculated through the
kriging model instead of FEA. Figure 7 shows the conver-
gence of CS.

The optimal layout and the corresponding minimum defor-
mation after 100 iterations by CS are shown in Table 9. For
further comparative analysis, the deformation of the sheet
metal part with the optimal layout of LP4 is also calculated
by FEA. The results are also listed in Table 9. It can be seen
from the table that the result obtained by the proposed ap-
proach shows fine agreements with that by FEA and that the

Table 14 Testing data set

Number Coordinate F(X) (mm)

1 (44.9747, 189.5570) 0.1132

2 (34.8981, 524.7431) 0.1898

3 (169.8809, 431.1429) 0.1914

4 (186.0185, 105.3885) 0.0151

5 (2.1819, 4.2442) 0.1232

6 (80.8142, 339.0010) 0.1740

7 (69.0557, 588.2043) 0.1822

8 (117.2275, 284.9350) 0.0412

9 (137.0141, 383.0373) 0.1192

10 (154.8498, 151.6027) 0.0142

(1) (2)

Fig. 10 The response surfaces of
kriging and BPNN prediction
models
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Fig. 11 The output curves of
kriging and BPNN prediction
models
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final relative error (1.73 %) is within the general engineering
precision requirement (5 %).

The optimization procedure of the average fitness by CS for
the fixture locating layout design is shown in Fig. 8. It can be
seen that the convergence curve is smooth during the whole
search process and the final average fitness value (0.0518 mm)
is very close to the final minimum fitness value (0.0512 mm).
Therefore, the CS algorithm is robust and stable in sheet metal
fixture locating layout optimization.

7 Curved sheet metal

7.1 Modeling

As shown in Fig. 9, the dimension of the sheet metal is
200 × 600 × 1 mm3 and the physical material properties are
all listed in Table 2. The 4 locating points (LP) on the primary
datum plane are LP1, LP2, LP3, and LP4, and the 2 locating
points on the second datum plane are LP5 and LP6 while the 1
locating point on the third datum plane is LP7. Set the coor-
dinates of the fixed locating points LP1, LP2, LP3, LP5, LP6,
and LP7 as (134, 400), (66, 400), (66, 200), (0, 400), (0, 200),
and (100, 600) respectively. The locating point to be opti-
mized is LP4, and its coordinate is denoted as (x, y).

The training and testing data sets are generated by LHS and
FEA. The element type of the FEA model of the sheet metal
part is S4R while the size of the element is 1 mm × 1 mm.
After several trials as listed in Tables 10 and 11, the kriging
and BPNN surrogate models are built by learning the same
training data set of the size of 40, tested, and compared by
calculating the relative root mean squared error (RRMSE) on
the same testing data set of the size of 10.

In kriging, the correlation parameter is initially set as [1,1];
in BPNN, the input layer has two neurons (D = 2), which
respectively represent the x and y entries of the coordinate of
LP4. The output layer has one neuron (Q = 1), that is, the
evaluation function value F(X) for sheet metal deformation.
The hidden layer has five neurons (H = 7). Specific training
parameters in BPNN and the training and testing data sets for
BPNN and kriging are shown in Tables 12, 13 and 14.

7.2 Results and discussion

In this section, the response surface models of kriging and
BPNN approximating the implicit function relationship be-
tween the fixture locating layout and the overall sheet metal

deformation are established as shown in Fig. 10. Besides, the
output curves are depicted in Fig. 11 and the corresponding
relative errors are listed in Table 15.

Table 15 The relative
errors of the prediction
models

Prediction model Relative error

BPNN 18.08 %

Kriging 4.50 %

(2) 

(3) 

(1) 

Fig. 12 The convergence of CS for case study
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Compared with the BPNN model trained and tested with
the same sample sets, the kriging-based prediction model is of
higher precision and is more stable. Hence, the kriging model
describing the mapping relationship between the fixture locat-
ing layout scheme and the corresponding sheet metal defor-
mation is used for the subsequent sheet metal fixture locating
layout optimization in this paper. Then, CS is applied on the
established kriging prediction model to search the optimal
design variable X for the minimum f(X) on the platform of
MATLAB™. And the fitness values of each generation during
the iterative optimization procedure are calculated through the
kriging model instead of FEA. Figure 12 shows the conver-
gence of CS.

The optimal layout and the corresponding minimum defor-
mation after 100 iterations by CS are shown in Table 16. For
further comparative analysis, the deformation of the sheet
metal part with the optimal layout of LP4 is also calculated
by FEA. The results are also listed in Table 14. It can be seen
from the table that the result obtained by the proposed ap-
proach shows fine agreements with that by FEA and that the
final relative error (1.56 %) is within the general engineering
precision requirement (5 %) (Table 16).

The optimization procedure of the average fitness by CS
for the fixture locating layout design is shown in Fig. 13. It can
be seen that the convergence curve is smooth during the whole
search process and the final average fitness value
(0.0171 mm) is very close to the final minimum fitness value

(0.017102 mm). Therefore, the CS algorithm is robust and
stable in sheet metal fixture locating layout optimization.

Table 16 Optimization results and comparison

The
population
size

Pa The
optimal
layout
of L4

The
minimum
deformation
by CS

The
corresponding
deformation
by FEA

Relative
error

15 0.15 (145.6605,
280.6541)

0.017102 mm 0.01684 mm 1.56 %

0.2 (145.6771,
280.6489)

0.017102 mm 0.01684 mm 1.56 %

0.25 (145.6789,
280.5691)

0.017102 mm 0.01684 mm 1.56 %

0.3 (145.713,
280.6364)

0.017102 mm 0.01684 mm 1.56 %

20 0.15 (145.6698,
280.6427)

0.017102 mm 0.01684 mm 1.56 %

0.2 (145.66,
280.6498)

0.017102 mm 0.01684 mm 1.56 %

0.25 (145.6803,
280.5097)

0.017102 mm 0.01684 mm 1.56 %

0.3 (145.6569,
280.5393)

0.017102 mm 0.01684 mm 1.56 %

25 0.15 (145.6719,
280.7397)

0.017102 mm 0.01684 mm 1.56 %

0.2 (145.5721,
280.8061)

0.017102 mm 0.01684 mm 1.56 %

0.25 (145.6665,
280.6348)

0.017102 mm 0.01684 mm 1.56 %

0.3 (145.6582,
280.8737)

0.017102 mm 0.01684 mm 1.56 %

(1)

(2)

(3)

Fig. 13 The average fitness values by CS
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8 Conclusions

In this paper, the prediction models based on kriging and
BPNN are established and compared in terms of predic-
tion accuracy based on the same training and testing data
sets. The optimization method by integrating CS with
kriging for the design and optimization of the sheet metal
fixture locating layout is developed and verified via two
sheet metal cases based on the 4-2-1 locating scheme. The
main conclusions are drawn as follows:

1. The kriging- and BPNN-based prediction models are built
respectively to approximate the implicit function relation-
ship between the fixture locating layout and the overall
sheet metal deformation under its self-weight, and the
comparison results show that the kriging model is of
higher precision and is more stable based on the same
training data set.

2. The approach by combining kriging with CS is proposed
and validated through the aluminum alloy sheet metal
case. The results of the case study indicate that the pre-
sented method is more efficient than those by evolution-
ary algorithm directly coupled with FEA and can save the
computation cost and improve the efficiency in sheet met-
al fixture locating layout optimization under the condition
of ensuring the engineering precision requirements.

3. By virtue of the high precision and robustness of the
kriging surrogate model, and the stability and few param-
eters to be fine-tuned of CS, the proposedmethod has huge
potential and can be further extended and applied to defor-
mation control-oriented fixture layout design and optimi-
zation subject to complex conditions at machining, assem-
bly, and measuring stages during the whole manufacturing
process at the industrial level due to its generality.
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