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Abstract This paper proposes an engineering approach to
determine the probabilistic Kitagawa diagram of defective
A356-T6 aluminum alloy considering the modification in-
troduced by varying the secondary dendrite arming spac-
ing (SDAS). The developed approach is carried out by
coupling of FE analysis, defect stress gradient (DSG) cri-
terion, and Monte Carlo simulation (MCS) method. In this
context, a 3D-finite element analysis (FEA) for different
cases of defect sizes and loading conditions using
ABAQUS commercial software is established. The non-
linear isotropic/kinematic hardening model implemented
in ABAQUS is used to characterize material behavior.
Comparing with experimental results, the developed prob-
abilistic approach presents an efficient numerical tool for
predicting fatigue limit under fully reserved tension and
torsion loadings due to the random distribution of the
SDAS parameter. These probabilistic Kitagawa diagrams
allow the engineer to be engaged in a practical problem to
evaluate the fatigue limit in a more efficient and safe way.
In addition, the sensitivity effects of defect size and
SDAS parameter for predicting fatigue limit of A356-T6
aluminum alloy under alternate tension and torsion load-
ings is discussed using response surface methodology
(RSM).

Keywords Fatigue limit . Finite element analysis . Monte
Carlo simulation . RSM . Probability density function PDF .

SDAS

Nomenclature
A Elongation to failure [mm]
E Modulus of elasticity [MPa]
ϑ Poisson’s ratio
f{X}({Xi}) Joint probability density function
f X i

xið Þ Probability density function of the
element xi

I({x}) Indicator failure function
L Load function
N Number of random sampling in the MCS
MCS Monte Carlo simulation
Pf Failure probability
RSM Response surface methodology
S Strength functionffiffiffiffiffiffiffiffi

J 2;a
p

Amplitude of the second invariant of the
stress tensor [MPa]

Rσ Load ratio
Rm Ultimate tensile stress [MPa]
α and β Material constants in Crossland criterion
Pf Probability of failure
σD Fatigue limit [MPa]
σa Applied load [MPa]
σ−1 Defect-free fatigue limit under fully

reserved tension loading [MPa]
τ−1 Defect-free fatigue limit under fully

reserved torsion loading [MPa]
Rp0.2% Yield stress [MPa]
SDAS Secondary dendrite arming spacing
HCF High cycle fatigue
DSG Defect stress gradient
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R Defect radius
GH Stress gradient
S Deviatoric stress tensorffiffiffiffiffiffiffiffi
area

p
Murakami parameter [um]

REV Representative elementary volume

1 Introduction

Aluminum alloy casting is widely employed in automotive
and aerospace applications due to their high mechanical per-
formances and dimensional stability. In most studies [1–10], it
has been shown that fatigue behavior of A356-T6 is mainly
affected by microstructure characterized by secondary den-
drite arming spacing (SDAS) and casting defects such as
shrinkage cavities, gas pores, notches, and oxide films.
Several studies [1, 2, 9–14] have proved that surface porosity
is the principle site of crack initiation in A356-T6 alloy.

In this context, many experimental investigations [1–6, 10,
13–18] have been made to determine the detrimental factors
on fatigue resistance of A356-T6 alloy. As reported in [2, 10,
18], for porosity-free alloy, fatigue life is governed by SDAS
and, for defective alloy, it is governed by both defect size
(characterized by Murakami parameter

ffiffiffiffiffiffiffiffi
area

p
[19]) and

SDAS. H.R. Ammar et al. [2] showed that, for A356-T6 ma-
terial containing various casting defects, 92 % of the experi-
mental samples were ruptured from surface pores, and they
observed that the endurance limit decreases as the porosity
density increases. Later, based on wide experimental investi-
gations, Iben Houriya and Roy [18, 20, 21] observed that the
SDAS has the main role in the formation of plastic strain and
crack initiation when defect size is under 400 ∓ 100 μm.
Besides, they showed that for coarser microstructure (high
SDAS values), low fatigue limits are obtained and vice versa.

Porosity in cast aluminum material cannot be avoided for
many reasons such as difficulties in controlling processing
conditions, alloy quality, and the cooling rate level.
Therefore, many researches [18, 20–23] have been carried
out to determine the fatigue response of defective aluminum
alloys. Based on experimental observations, Koutiri et al. [22]
have shown that the fatigue life behavior of cast hypo-eutectic
Al-Si alloy under multiaxial fatigue loading could not be pre-
dicted by the Dang Van criterion or any approach which could
be written as a linear combination of the hydrostatic stress and
the second invariant of the stress deviator tensor.

Later, Roy et al. [21] have made a comparative study to
describe fatigue behavior of A356-T6 Using four approaches:
(i) The Murakami relationship [19], (ii) linear elastic fracture
mechanics [24], (iii) the critical distance method (CDM) [25],
and (iiii) defect stress gradient criterion (DSG) [26]. They
concluded that both the CDM and the DSG approaches are
the most close to the experimental results for predicting

fatigue limit under multiaxial load conditions. Recently, Iben
Houriya et al. [18] have modified the DSG criterion by intro-
ducing a parameter that takes into account the microstructure
effect. Comparing with experimental results, they demonstrat-
ed that the improved DSG criterion could describe adequately
the fatigue behavior under multiaxial loading of A356-T6 al-
loy containing artificial and natural defects.

However, it should be noted that the previous HCF
criteria proposed to determine the fatigue response of de-
fective A356-T6 alloy are deterministic. Their applica-
tions use generally experimental endurance limits with
failure probability equal to 50 %. In this case, they did
not take into account the stochastic effects, particularly
material dispersions introduced by varying the secondary
dendrite arming spacing (SDAS).

The aim of this work is to develop a probabilistic ap-
proach to predict the high cycle fatigue (HCF) reliability
of A356-T6 alloy. The proposed approach is released by
coupling finite element analysis (FE) and the Monte Carlo
reliability method. Therefore, a 3D FE analysis model
containing a spherical defect is proposed to represent the
porous material. Numerical simulations are carried out for
different loadings and pore sizes using the nonlinear
isotropic/kinematic hardening model. The random initial
SDAS value distribution into the material produces a scat-
ter of the representative loading point. All the results ob-
tained for fully reserved tension and torsion loadings are
in good agreement with experimental investigations.
Moreover, the surface response method is chosen to char-
acterize the correlation of SDAS and defect size and to
determine the influence of these factors on the fatigue
endurance limit.

2 Theoretical background

2.1 Defect stress gradient criterion (DSG)

In order to characterize the stress distribution around a defect
and to quantify its impact on the fatigue limit under different
loading conditions, Nadot et al. [27] proposed the defect stress
gradient (DSG) criterion. They have found that only the hy-
drostatic part of the stress tensor affects the fatigue behavior.
The proposed criterion is based on Crossland’s formulation
and it is defined as follows:

ffiffiffiffiffiffiffiffi
J 2;a

p þ αP*
max≤β ð1Þ

where

P*
max ¼ Pmax 1−ad

GH

Pmax

� �� �
ð2Þ
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J2 , a may be calculated as follows:

J 2;a ¼ 1

2
ffiffiffi
2

p max
ti∈T

max
ti∈T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S tið Þ−S t j

� �� �
: S tið Þ−S t j

� �� �s( )

ð3Þ

where S is the deviatoric stress tensor and GH is the stress
gradiant defined as

GH ¼ Pmax Að Þ−Pmax
ffiffiffiffiffiffiffiffi
area

p� �� �
=
ffiffiffiffiffiffiffiffi
area

p ð4Þ

A is the most solicited point on the defect;
ffiffiffiffiffiffiffiffi
area

p
is the

Murakami parameter; and ad, α, and β are three coefficients
experimentally identified.

The DSG criterion was improved later by Gadouini et al.
[28] then by Vincent et al. [29] using Eshelby’s method
(Fig. 1) [24]. It is written now as

σeq∇ ¼ σeq;max−a
σeq;max−σeq;∞ffiffiffiffiffiffiffiffi

area
p ≤β ð5Þ

where σeq∇ is the equivalent stress given by the DSG criterion.
σeq , max and σeq ,∞ are the two equivalent stresses given by a
multiaxial fatigue criterion in the most sollitated defect point
and far from the defect, respectively.

Iben Houriya et al. [18] suggested modifying the DSG
criterion with the introduction of the parameter λ2 which de-
signs the SDAS. They used the Crossland criterion to express
the equivalent stress. According to their study, the DSG ap-
proach describing the fatigue behavior of A356-T6 alloy is
given by the two following expressions:

(i) In the case of defect-free alloy, fatigue limit is only influ-
enced by microstructure (SDAS) and it can be expressed
as follows:

σeq∇M ¼ σCr;mMax ¼ β0exp −
λ2

λ0

� �
ð6Þ

(ii) In the case of defective alloy, fatigue limit is influenced
by both SDAS and defect size and it can be expressed as
follows:

σeq∇M ¼ σCr;max−a∇
σCr;max−σCr;∞ffiffiffiffiffiffiffiffi

area
p ð7Þ

Table 1 illustrates the new parameters of the improved
DSG criterion, experimentally identified.

2.2 Monte Carlo simulation method

The Monte Carlo simulation (MCS) method is considered
as an interesting and a very useful mathematical tool for

studying uncertain scenarios and providing statistical and
probabilistic analysis. The MCS method is extensively
used in engineering disciplines [27, 29–31] to evaluate
risk measurements with uncertain parameters, to study
the sensitivity effect of the input factor on the desiring
response for different dispersions levels, and to compute
their reliability.

To compute the reliability, let X be a vector of a random
variable in which xi is an element of this vector, having f X i

xið Þ
as a probability density function (PDF). Consider G(xi), the
performance function separating the unsafe and safe zones.

G xið Þ ¼ S xið Þ−L xið Þ ð8Þ

where L(xi) and S(xi) are the load function and the strength
function [32], respectively. The probability of failure Pf can be
expressed as follows:

Pf ¼
Z

G xi<0ð Þ
f Xf g X if gð ÞdX 1≤ i≤n ¼ Pr L xið Þ > S xið Þð Þ

ð9Þ

where Pr and f{X}({Xi}) represent the probability operator and
the joint PDF of the vector X, respectively. Three cases can be

Fig. 1 Principle of DSG approach [24]

Table 1 Identified
parameters of the
improved DSG criterion
[18]

DSG criterion parameters Value

β0 167 (MPa)

α0 1.8

λ0 60 (μm)

a∇ 470 (μm)
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present: (i) G(xi) > 0, (ii) G(xi) < 0, and (iii) .. The first and
second cases correspond respectively to structural safety and
failure conditions. The last case represents the limit state func-
tion. Generating N random sampling of G({x}), it is assumed
that the failure event (i.e., G({x}) < 0) extends towards the
failure probability Pf when N →+∞ [33].

P f ¼ lim
N→∞

number of failure events G xið Þ < 0ð Þ
N

¼ lim
N→∞

1

N

XN
i¼1

I xf gð Þ
ð10Þ

where I({x}) represents the indicator failure function:

I xf gð Þ ¼ 1 if G xf gð Þ < 0
0 if G xf gð Þ≥0

�
ð11Þ

Finally, the reliability R is computed as follows:

R ¼ 1−P f ð12Þ

2.3 Short review of the response surface method (RSM)

The response surface method (RSM) is an empirical ap-
proach proposed at first by Bucher and Bourgund [34]
and improved later by Rajashekhar and Ellingwood [35].
It consists in establishing simple relationships between
diverse process parameters and their responses with di-
verse chosen criteria. RSM searches the signification of
these parameters on the associated responses [36]. In fact,

RMD is an easy and efficient way to build empirical
models and to optimize various industry products. Since
their first use, many of the improvements have been in-
troduced to RSM [37] but the principle steps of this ap-
proach that are often employed can be summed up as
follows:

(i) Preparing the experimental design
(ii) Generating the obtained design usingMINTAB software
(iii) Plotting the surface response curves
(iv) Determining the analytical model representing the rela-

tionship between the various input factors and their
responses

(v) Performing additional tests to validate the developed
model

This approach gives often a simple relation between the
output responses and their input factors. This relationship
may be represented as

Y ¼ f X 1;X 2;X 3………:Xnð Þ � ε ð13Þ

where Y represents the designed response, f represents the
response surface, Xi ∈ [1, n] represents the independent inputs,
and ε is the error.

In this work, the RSM will be adopted to qualify the inter-
actions between the inputs (SDAS and defect size) and the
output (fatigue limit). Therefore, fatigue limit with the corre-
sponding SDAS and defect size is fulfilled to build the re-
sponse surface.

Fig. 2 Finite element model: load and boundary conditions: a tension
loading, b torsion loading

Fig. 3 Mesh refinement around the defect

Table 2 A356-T6 mechanical properties and cyclic fatigue parameters

Material E (GPa) ν R0 (MPa) Q b C D

A356-T6 72 0.33 200 30 10 58,000 680
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Fatigue limit will be described by a second-order polyno-
mial known as the quadratic model which is expressed by the
following relationship:

f ¼ a0 þ
Xn
i¼1

aiX i þ
Xn
i¼1

aiiX 2
i þ

Xn
i< j

aijX iX j þ ε ð14Þ

where ai ,aii, and aij are the coefficients of the linear effect,
quadratic effect, and the interaction between xi and xj,
respectively.

3 Stress distribution around the defect

A three-dimensional finite element (FE) analysis using
ABAQUS software is implemented to characterize fatigue
response of defective A356-T6 aluminum material.

The three-dimensional REV model employed to de-
scribe the stress distribution around the surface pore is

a cube containing a spherical defect. Owing to the sym-
metry of the problem, only a quarter of the specimen is
modeled. Symmetry and boundary conditions are imple-
mented as illustrated in Fig. 2. The cube is meshed by
mean of four node linear tetrahedral solid elements
C3D4 (Fig. 3). Around the defect, a very fine mesh is
adopted due to the high strain and stress gradients.

Due to FE simulations, the highest stressed regions
near the defect were localized. In the FE analysis, the
Chaboche kinematic hardening model is used to char-
acterize the material response during cyclic loading.
This plasticity model is able to take into account the
mean stress relaxation, Baushinger effect, and cyclic
hardening.

The main mechanical proprieties for this alloy are
Young modulus E = 70 GPa, Poisson’s ratio = 0.3,
yield stress Rp0.2 % = 200 MPa, ultimate tensile strength
Rm = 317 MPa, and elongation to failure A = 16 %.
Table 2 summarizes the cyclic fatigue parameters for the
concerned material [38].

Table 3 Design matrix under fully reserved tension fatigue loading
for

ffiffiffiffiffiffiffiffi
area

p
≤500

Order
ffiffiffiffiffiffiffiffi
area

p
μumð Þ SDAS (μum) σD (MPa)

1 0 39.5 91

2 0 55.75 85

3 0 72 77

4 250 39.5 91

5 250 55.75 85

6 250 72 77

7 500 39.5 91

8 500 55.75 78

9 500 72 67

Table 4 Design matrix under fully reserved tension fatigue loading
for

ffiffiffiffiffiffiffiffi
area

p
≥500

Order
ffiffiffiffiffiffiffiffi
area

p
μumð Þ SDAS (μum) σD (MPa)

1 500 39.5 91

2 500 55.75 78

3 500 72 67

4 700 39.5 74

5 700 55.75 64

6 700 72 59

7 900 39.5 64

8 900 55.75 59.5

9 900 72 56

Table 5 Design matrix under fully reserved torsion fatigue loading
for

ffiffiffiffiffiffiffiffi
area

p
≥500

Order
ffiffiffiffiffiffiffiffi
area

p
μumð Þ SDAS (μum) σD (MPa)

1 0 39.5 88

2 0 55.75 62

3 0 72 50

4 250 39.5 88

5 250 55.75 62

6 250 72 50

7 500 39.5 80

8 500 55.75 60

9 500 72 48

Table 6 Design matrix under fully reserved torsion fatigue loading
for

ffiffiffiffiffiffiffiffi
area

p
≥500

Order
ffiffiffiffiffiffiffiffi
area

p
μumð Þ SDAS (μum) σD (MPa)

1 500 39.5 80

2 500 55.75 60

3 500 72 48

4 700 39.5 57

5 700 55.75 52

6 700 72 44

7 900 39.5 49

8 900 55.75 46

9 900 72 41

Int J Adv Manuf Technol (2017) 90:3275–3288 3279



4 Applications

4.1 Application 1: finite element analysis

In this section, 3D finite element calculations are carried
out for different cases of defect sizes and loadings near the
fatigue limit to determine stress distribution. Experimental
results showed that cracks initiate and occur always in the
shear plane which is the highest loaded plane (HLP)
[39–42]. This HLP is perpendicular to the maximum stress
direction. In the present study, Crossland equivalent stress
(σCreq ) evolution will be studied in the HLP. FE simulations

of σCr
eq for both cases: tension and torsion loading showed

that

– For an arc centered on the defect, σCr
eq is almost constant

with a scattering which does not exceed 2 %.
– In the HIP, σCr

eq distribution depends only of the
r
R ratio, the

applied load, and the SDAS value.

– In the case of alternate tension load, σCr
eq can be interpo-

lated by the following expression:

σCr
eq ¼ τ−1

σ−1
σa

1
r
R

� �4 þ 1

 !
ð15Þ

– In the case of alternate torsion load, σCr
eq can be interpo-

lated by the following expression:

σCr
eq ¼ τ−1

σ−1
σa

1
r
R

� �5 þ 1

 !
ð16Þ

– σ−1 and τ−1 are expressed, for the A356-T6 alloy, as a
function of λ2 as follows [18]:

σ−1 λ2ð Þ ¼
3β0exp −

λ2

λ0

� �

λ0exp −
λ2

λ0

� �
þ ffiffiffi

3
p ð17Þ

Fig. 4 Von Mises equivalent
stress around the defect: a
alternate tension loading σa= 70
MPa,b alternate torsion loading
τa= 70 MPa
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τ−1 λ2ð Þ ¼ β0exp −
λ2

λ0

� �
ð18Þ

where τ−1, σ−1 ,σa ,R , r ,λ0, and λ2 are the defect-free fatigue
limit under fully reserved torsion loading, defect-free fatigue
limit under fully reserved tension loading, the applied load,
the defect radius, the distance from the defect center to the
considered point, parameter experimentally identified, and
the SDAS parameter, respectively.

4.2 Application 2: HCF reliability computation

Fatigue tests in A356-T6 show a large dispersion in
predicting the endurance limit; this dispersion is

mainly attributed to the microstructure (SDAS). In fact,
scattered results are detected on the Kitagawa diagrams
under fully reserved tension and torsion loading
especially for a defect size under 400 ∓ 100 μm [18,
20–23]. In this zone, the HCF behavior of A356-T6 is
mainly affected by the microstructure SDAS which is
the origin of fatigue failure. A significant fatigue data
scattering was observed especially under torsion fatigue
loading [18]. A deterministic Kitagawa diagram seems
to be unable to estimate A356-T6 fatigue response due
to the SDAS dispersion which confirms the need to
study the probabilistic effect of this parameter for
predicting the fatigue limit under both tension/torsion
loading.

In this section, a probabilistic approach for predicting
fatigue limit of A356-T6 is implemented. The main

Fig. 5 Flowchart proposed to
compute reliability

Int J Adv Manuf Technol (2017) 90:3275–3288 3281



procedure for developing the probabilistic model using FE
analysis and Monte Carlo simulation method is summa-
rized as follows:

(i) An elastic-plastic analysis using the nonlinear isotropic/
kinematic hardening model embedded in ABAQUS is
carried out. The distribution of Crossland equivalent
stress (σCr

eq ) in the HLP is determined in the case of fully

reserved tension and torsion loading. It is verified that σCr
eq

can be interpolated, bymathematical expressions depend-
ing on the applied load, SDAS, and (rR ) ratio as men-
tioned in application 1.

(ii) The new expressions Eq. 15 and Eq. 16 are inserted in
the DSG criterion instead of the analytical expressions of
σCr
eq to predict fatigue limits for each case of loading

where

– In the case of fully reserved tension:

σCr;mMax ¼ τ−1 λ2ð Þ
σ−1 λ2ð Þ σa

1
R
R

� �4 þ 1

 !
ð19Þ

σCr;∞ ¼ τ−1 λ2ð Þ
σ−1 λ2ð Þ σa

1ffiffiffiffiffiffi
area

p
R

� 	4 þ 1

0
B@

1
CA ð20Þ

– In the case of fully reserved torsion:

σCr;Mmax ¼ τ−1 λ2ð Þ
σ−1 λ2ð Þ σa

1
R
R

� �5 þ 1

 !
ð21Þ

σCr;∞ ¼ τ−1 λ2ð Þ
σ−1 λ2ð Þ σa

1ffiffiffiffiffiffi
area

p
R

� 	5 þ 1

0
B@

1
CA ð22Þ
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Fig. 6 Iso-probabilistic Kitagawa diagram under fully reserved tension
fatigue loading
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Fig. 7 Iso-probabilistic Kitagawa diagram under fully reserved torsion
fatigue loading

Fig. 8 Prediction of the HCF reliability under fully reserved tension
loading for

ffiffiffiffiffiffiffiffi
area

p
= 500 μm

Fig. 9 Prediction of the HCF reliability under fully reserved torsion
loading for

ffiffiffiffiffiffiffiffi
area

p
= 600 μm
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(iii) The experimental investigations of Iben Houriya et al.
[18] have been made in a range of microstructure
(SDAS) betwee36 umn 36 an 72 umd 72 μm. Several
researches [18, 20, 21] showed that the critical defect
size affecting the fatigue response of A356-T6 isffiffiffiffiffiffiffiffi
area

p ¼ 400þ 100 μum; below this value, this alloy
is considered as a defect-free material. The probabilistic
approach is carried out by taking into account the SDAS
dispersions which are assumed to be normally distributed
[18, 23]. The average SDAS is 52 μm, with a standard
deviation equal to 5 μm.

(iv) The “strength-load” method coupled with Monte Carlo
simulations is used to compute fatigue reliability. It is
observed that when the standard deviation of the

computed reliabilities decreases, the Monte Carlo num-
ber (N) increases. The value of the relative reliability
becomes almost constant for a Monte Carlo number
higher than 104. Therefore, the choice of N equal to
104 is justified.

(v) The generation of random sampling of the SDAS value
leading to transform the Kitagawa diagram into three
zones: (i) an uncertainty zone, (ii) a zone of absolute
failure, and (iii) a zone of absolute safety.

(vi) The reliability-fatigue limit curves are plotted for differ-
ent defect sizes.

(vii) The iso-probabilistic Kitagawa diagrams (PKDs) are
determined for 5, 50, and 95 % reliabilities under fully
reserved tension/torsion loading.

Fig. 10 Main effects plot on the
fatigue limit under tension fatigue
loading: a for

ffiffiffiffiffiffiffiffi
area

p
≤500 and b

for
ffiffiffiffiffiffiffiffi
area

p
≥500
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4.3 Application 3: design of experiment

In this section, experiments were designed based on numerical
simulations carried out on A356-T6 aluminum alloy.

The aim of the design matrix (DM) consists in extracting
relationships and interactions between the response (the fa-
tigue limits under fully reserved tensile and torsion loading)
and different input parameters (defect size and SDAS).

In fact, this method allows investigating both the individual
effects of each parameter and describing the interactions between
them. The ED generates nine experiments with three levels, in
each case. The obtained results are analyzed using MINITAB
17.0 software. Defect size and SDAS are chosen as the main
independent input parameters, and the fatigue limit is considered
as an output response (Tables 3, 4, 5, and 6).

5 Discussion

(i) In the first application, numerical simulations are carried out
under fully reserved tension/torsion loading to validate
Eqs. 15 and 16. Figure 4 shows the stress distribution
around a spherical defect in the case of each loading. A
comparison between the computed σCr

eq using finite element

analysis and the Eq. 15 and Eq. 16 under different condi-
tions (SDAS, loading, and ffiffiffiffiffiffiffiffi

area
p ) are realized. The obtained

results prove the validity of this interpolation (error < 5 %).
(ii) In the second application, a probabilistic approach is

proposed to compute the Kitagawa diagram by taking
into account the SDAS dispersion. The Monte Carlo
method combined with the DSG criterion (using the in-

terpolated expressions of σCr
eq ) is implemented to

Fig. 11 Main effects plot on the
fatigue limit under torsion fatigue
loading: a for

ffiffiffiffiffiffiffiffi
area

p
≤500 and b

for
ffiffiffiffiffiffiffiffi
area

p
≥500
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calculate reliability. Figure 5 shows the method used to
calculate the reliability.

(iii) Figures 6 and 7 show the obtained iso-probabilistic
Kitagawa diagram (PKD) for 5, 50, and 95% reliabilities
under both fully reserved tension/torsion loading. It is
observed that these results are in good agreement with
experimental data [18]. It is noted that the security zone
is reduced when the reliability values increase.

(iv) In both cases of alternate tension and alternate torsion, it
is worth observing that, for the same level of applied
stress amplitude, the reliability decreases when the
SDAS value increases and vice versa. This observation
is physically coherent with the previous experimental
result. Moreover, it should be noted that the decrease of
the reliability is more important in the case of alternate
torsion than in the case of alternate tension.

(v) In the case of fully reserved tension loading (Fig. 6), it is
noted that the fatigue limit response is normally distrib-
uted. It also is observed that the probabilistic results con-
verge for big defect sizes. This result is consistent with
experimental observations [18].

(vi) In the case of fully reserved torsion loading (Fig. 7), it is
noted that fatigue limit response is log-normally distrib-
uted for a range of defect sizes under than 500 μm and,
for bigger defects, it becomes normally distributed. On

the basis of these results, it can be retained that the alter-
nate torsion is more sensitive to the SDAS scattering
than the alternate tension especially for small defects
(≤500). These observations are coherent with previous
experimental investigations [18]. These P-K-D allow the
engineer to be engaged in a practical problem to evaluate
the fatigue limit in a more efficient and safe way.

(vii) Figures 8 and 9 show the change of the reliability value
with the applied stress for a defect size equal to 500 μm
in the case of alternate tension and for a defect size equal
to 600 μm in the case of alternate torsion. In Fig. 8, a
deterministic fatigue limit, taken from experimental data
[18] and corresponding to defect specimens equal to
500 μm, is compared with reliability results. It is well
noticed that this loading point corresponds to a reliability
of 25 % which seems to be reasonable.

(viii) Figure 10 shows the main effects of SDAS and defect
size (

ffiffiffiffiffiffiffiffi
area

p
) on the fatigue limit under tension loading

for
ffiffiffiffiffiffiffiffi
area

p
≤500 and

ffiffiffiffiffiffiffiffi
area

p
≥500 μum. It is noted that

for
ffiffiffiffiffiffiffiffi
area

p
≤500 μum, defect size has not an important

effect on the fatigue limit. However, it is observed that
SDAS has a linear effect which proves that the fatigue
response is strongly depending on the SDAS value. Forffiffiffiffiffiffiffiffi
area

p
≥500, defect size’s effect becomes more

Fig. 12 Pareto diagram: linear, square, and way interaction contribution
of SDAS and

ffiffiffiffiffiffiffiffi
area

p
on the fatigue limit under fully reserved tension

fatigue loading: a for
ffiffiffiffiffiffiffiffi
area

p
≤500, b for

ffiffiffiffiffiffiffiffi
area

p
≥500

Fig. 13 Pareto diagram: linear, square, and way interaction contribution
of SDAS and

ffiffiffiffiffiffiffiffi
area

p
on the fatigue limit under fully reserved torsion

fatigue loading: a for
ffiffiffiffiffiffiffiffi
area

p
≤500, b for

ffiffiffiffiffiffiffiffi
area

p
≥500
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significant and fatigue limit depends in this case on both
parameters (defect size and SDAS).

(ix) Figure 11 shows the main effects of SDAS and de-
fect size (

ffiffiffiffiffiffiffiffi
area

p
) on the fatigue limit under torsion

loading for
ffiffiffiffiffiffiffiffi
area

p
≤500 and

ffiffiffiffiffiffiffiffi
area

p
≥500 μum. It is

noted that for
ffiffiffiffiffiffiffiffi
area

p
≤500 μum, defect size has

practically no effects on the fatigue limit. However,
the impact of the SDAS parameter becomes more
significant compared to the case of tension loading
(Fig. 10a).

For
ffiffiffiffiffiffiffiffi
area

p
≥500, as it was shown in the case of

alternate tension (Fig. 11b), fatigue response, under
torsion loading, is governed by both the defect size
and the SDAS.

(x) Figures 12 and 13 represent the Pareto diagrams in
the case of fully reserved tension and alternate tor-
sion, respectively. It is noted that there is no interac-
tion between the input parameters in both cases of
loading. Moreover, these diagrams show that, for
small defects, fatigue response is mainly governed
by SDAS and for big defects it becomes governed
by SDAS and defect size.

(xi) Figures 14 and 15 present the surface response curves of
endurance limit as a function defect size and SDAS
under fully reserved tension/torsion loading. From
Figs. 14a and 15a, it is observed that for a given
SDAS value, fatigue response is barely changed in term
of

ffiffiffiffiffiffiffiffi
area

p
regardless of the applied load. However, for

ffiffiffiffiffiffiffiffi
area

p
≥500 (Fig. 15b), the fatigue response decreases

when
ffiffiffiffiffiffiffiffi
area

p
and SDAS increase. In fact, for a given

SDAS value, fatigue limit is strongly affected by the
increase of size defect.

6 Conclusions

The aim of this paper is to propose a reliability approach
which takes into account the dispersion in casting aluminum
alloy. From this work, it can be concluded that:

(i) HCF response of A356-T6 alloy shows a large disper-
sion that is mainly attributed to SDAS dispersion.

(ii) The reliability is computed by coupling of FE analysis,
defect stress gradient (DSG) criterion, and Monte Carlo
simulation (MCS) method. A good agreement was
found between simulations and experimental data in
the case of fully reserved tension and torsion loadings.

(iii) Using the proposed approach, it was shown that the
reliability is very sensitive to the SDAS value, especial-
ly for small defect sizes.

(iv) The dispersion of the Kitagawa diagram due to the
SDAS scattering decreases for big defect sizes.

(v) The iso-probabilistic Kitagawa diagram corresponding
to 5, 50, and 95% fatigue reliability under fully reserved

Fig. 15 Response surface diagrams alternate torsion a
ffiffiffiffiffiffiffiffi
area

p
≤500, bffiffiffiffiffiffiffiffi

area
p

≥500
Fig. 14 Response surface diagrams alternate tension. a

ffiffiffiffiffiffiffiffi
area

p
≤500, bffiffiffiffiffiffiffiffi

area
p

≥500
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tension and torsion loadings has been performed. This
method allows engineers to be engaged in practical
problems for predicting fatigue limit in a more efficient
and reliable way.

(vi) The suggested approach results in improving the deter-
ministic fatigue limit prediction by considering the dis-
persions of the fatigue material data especially the
SDAS parameter.
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