
ORIGINAL ARTICLE

Simulation of forced vibration in milling process considering
gyroscopic moment and rotary inertia

Mohammad Mahdi Jalili1 & Jamal Hesabi1 & Mohammad Mahdi Abootorabi1

Received: 31 July 2016 /Accepted: 13 October 2016 /Published online: 11 November 2016
# Springer-Verlag London 2016

Abstract Prevention of resonance in vibration of cutting tool
is essential for achieving high quality and efficiency of the
milling process. The resonance causes the cutting tool to os-
cillate with great amplitude and increases cutting tool wear
and production costs. Using a 3-D nonlinear dynamic model
of the milling process including both structural and cutting
force nonlinearities, gyroscopic moment, and rotary inertia,
different types of resonances in milling process are investigat-
ed in this article. The cutting tool is modeled as a rotating
clamped-free beam which is excited by cutting forces. Using
the method of multiple scales, frequency response function of
the system in primary and super harmonic resonances is ob-
tained. Using this model, the influences of axial depth of cut,
cutting tool diameter, cutting tool length, and the number of
cutter teeth on the frequency response of the tool tip vibrations
are studied. The results showed that increase of axial depth of
cut increases the steady state vibration response of the tool tip
in all resonance cases.

Keywords Milling process . Primary resonance . Super
harmonic resonance . Nonlinear model . Method ofmultiple
scales

Abbreviations
A cross-sectional area
E Young’s modulus
Fr feed (radial) cutting force
Ft tangential cutting force
G shear modulus
I diametrical mass moment of inertia
J polar mass moment of inertia
Ktc the cutting coefficient contributed by the

shearing in tangential direction
Kte the cutting coefficient contributed by the edge

action in tangential direction
Krc the cutting coefficient contributed by the

shearing in radial direction
Kre the cutting coefficient contributed by the edge

action in radial direction
Lv ,Lw components of generalized nonconservative

forces in y and z directions
N number of teeth cutting tool
R tool radius
U strain energy
X, Y, Z inertial coordinate system
A depth of cut
b(U), b(T) Strain and kinetic energy boundary terms
cf feed per tooth per revolution
D tool diameter
v, w transverse displacement
i
!
; j
!
; k
!

unit vectors associated with deformed beam
coordinate system

L length of tool
ρ density of the tool material
φ elastic torsion about the elastic axis
ϕ1 ,ϕ2 ,ϕ3 Euler angles
τ period of tool revolution
Ω tool rotational speed
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σxx ,σxy,σxz engineering stress components
εxx , εxy, εxz engineering strain components
( )tran related to translation
( )rot related to rotation
δ( ) variation of ( )
( )′ ∂/∂x
(·) ∂/∂t
→ð Þ denotes vector

1 Introduction

Milling is one of the main machining processes used exten-
sively in industrial productions. The generation of complex
shapes with high quality for various types of materials is the
main advantage of the milling process in contrast to other
machining processes. Prediction and prevention of chatter vi-
bration and resonance are essential for achieving high quality
and efficiency of this process. Occurrence of chatter and vi-
bration resonance during milling may cause damage to tool,
spindle bearing, or the workpiece or may result in poor dimen-
sional accuracy and surface finish of the workpiece.

In recent decades, an extensive number of efforts have been
done to understand chatter in milling process. In the early
works, modeling and analysis of the complex geometry and
relative motion of workpiece/tool in milling process was car-
ried out. Material nonlinearity, structural nonlinearities, non-
linearities due to tool/workpiece geometry, and high order
nonlinear terms in the cutting force are the major sources of
nonlinearity included in cutting models. Several mathematical
methods, such as the bifurcation theory, perturbation analysis,
phase portraits, and Poincare section, are developed and used
for nonlinear dynamic analysis. Many researches have been
carried out for chatter prediction, detection, suppression, and
elimination. For example, Balachandran and Zhao developed
multiple degrees of freedom model to identify the instabilities
that may occur due to regenerative and/or loss of contact ef-
fects [1]. They predicted instabilities and explored motions
beyond the instability or bifurcation locations. Mann et al.
used a 2-DOF linear tool model to analyze the effects of
asymmetric structural modes and the nonlinear regeneration
in a discontinuous cutting force model of milling process [2].
Their investigations show hysteresis in bifurcation diagrams
and the presence of coexisting periodic and quasi-periodic
attractors. Vela-Martinez et al. developed a weak nonlinear
model in both structural stiffness and regenerative terms to
demonstrate the self-excited vibrations in machining [3].
They derived an approximate solution for this problem using
the method of multiple scales. Altintas et al. presented an
analytical multifrequency method (MF) for the prediction of
milling stability lobes [4]. This method requires transfer func-
tions of the structure at the cutter-workpiece contact zone and
is not suitable for small radial cutting depth problems. Some

of the researches have been focused on the chaotic dynamics
beyond the stable region of milling process. For instance,
using a 2-DOF tool model, chaotic vibrations in high-speed
milling were studied by Banihasan et al. [5]. Also, using a 2-
DOF tool model, Moradi et al. predicted the chaotic behavior
of the limit cycles in the presence of regenerative chatter for
the nonlinear milling process [6]. The averaging method was
used by Campa et al. to predict the stability in the milling of
thin floors with bull-nose end mills [7]. Using the multistage
homotopy perturbation method, Compean et al. investigated
the stability of milling process [8]. Peng et al. presented a new
method based on dynamic cutting force simulation model and
support vector machine to predict chatter stability lobes in
milling process [9]. Also, Wan et al. used semi-discretization
method to obtain stability lobe diagram in milling process
[10]. This method is also used by Wan et al. to predict the
lateral and torsional/axial chatter stability in multifunctional
tools [11]. Also, Wan et al. established lowest envelop method
(LEM) to predict the ultimate stability lobe in milling process
by taking the lowest envelop of a group of stability lobes [12].
Transforming the dynamic cutting process into semi-discrete
time domain, the stability of the thread milling process was
modeled and predicted by Wan and Altintas [13]. Wang et al.
utilized Visual C++ software to calculate the chatter stability
domain in the high-speed vertical milling during the finish
machining of thin-walled workpiece made of titanium alloy
[14]. Referencing with the zero order solution, the frequency
domain 3-D chatter stability prediction based on the linear and
exponential force models are formulated by Yang et al. [15].
Modeling the workpiece-holder system as a 2-DOF system,
Qu et al. studied the machining stability in milling of thin-
walled plates and developed a 3-D stability lobe diagram of
the spindle speed, tool position, and axial depth of cut [16].
Using a 2-DOF tool model, reliability analysis for dynamic
structural system was presented by Liu et al. to predict chatter
vibration in a milling system based on first-order second-mo-
ment method [17]. Also, considering different contact charac-
teristic between milling cutter and workpiece, stability lobe
diagrams at different cutter positions are proposed by Yue
et al. to predict milling stability by employing full-discrete
method [18]. Aiming at process damping caused by interfer-
ence between a tool flank face and a machined surface of thin-
walled part, the dynamic model and critical condition of sta-
bility were investigated by Liu et al. using the relative transfer
functions [19].

In other researches, internal, primary, sub-, and super
harmonic resonances in milling process have been stud-
ied. For example, Moradi et al. investigated the occur-
rence of various types of bifurcation in milling process
considering tool wear and process damping [20]. They
used 2-DOF linear model for the tool and multiple-scale
approach to construct an analytical approximate solutions
under primary resonance for this model. They used
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similar model to analyze forced vibration of the milling
process [21]. They investigated both types of primary and
super harmonic resonances while the internal resonance
condition exists. In another work, they used a 2-DOF
dynamic model including both structural and cutting force
nonlinearities to investigate internal resonance and regen-
erative chatter in milling process [22]. Using 2-DOF mod-
el, Nakano et al. investigated the effect of multiple dy-
namic absorbers on regenerative chatter and resonance
caused by forced vibration generated in the end milling
operations [23].

In this article, a new model of tool vibration in milling
process is presented. Here, we focus on the forced vibra-
tion where a 3-D flexible nonlinear model of the cutting
tool with including gyroscopic moment and rotary inertia
is considered. Equations of motion of the system are ob-
tained using Hamilton’s principle. Multiple-scale ap-
proach is used to achieve the frequency response of the
system in primary, sub-, and super harmonic resonances.
Using this analytical solution, the effects of axial depth of
cut, cutting tool diameter, cutting tool length, and the
number of cutter teeth on the frequency response of the
system have been investigated.

2 System model

The cutting tool is modeled as a rotating clamped-free
Rayleigh beam as shown in Fig. 1. According to this figure,
frame X ,Y,Z is an inertial coordinate system and frame x, y, z
is a local coordinate system that rotates with a constant rotat-
ing speed. It assumes that the tool in start time t = 0 is in the
direction of a straight line.

Beam bending deflections is shown in Fig. 2.
According to Rayleigh beam theory, the components of
displacements u1(x, y, z, t), u2(x, y, z, t), and u3(x, y, z, t)
from the displacement vector of tool particles with respect
to rotating coordinate system may be expressed as:

u1 ¼ −z
∂w x; tð Þ

∂x
−y

∂v x; tð Þ
∂x

u2 ¼ v x; tð Þ
u3 ¼ w x; tð Þ

ð1Þ

that v and w show the transformation of the centerline of
tool with respect to rotating coordinate. These transformation
parameters with respect to rotating coordinate can be calculat-
ed by:

v ¼ v cosϕþ w sinϕ

w ¼ w cosϕ−v sinϕ
ð2Þ

where ϕ is the rotation angle of frame x, y, z about X, Y, Z
coordinate system with speed ofϕ ¼ Ω.

In addition to the moving displacement, the elements
of cutting tool have rotating displacement. The relation
between the original frame X, Y, Z and the deformed
frame x, y, z is described by three sequential Euler an-
gles ψx(x, t) , ψy(x, t) and ψz(x, t), as shown in Fig. 3.
Because of ignoring the torsional deformation of the
tool, one may assume that ψx(x, t) =Ωt.

The angular velocity of the deformed frame x, y, z
about frame X, Y, Z is [24, 25]:

Fig. 1 Undeformed coordinate system [25]

Fig. 2 Deformed beam after elastic displacements [25]

Fig. 3 Coordinate transformations
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ω ¼ ω1ê1 þ ω2ê2 þ ω3ê3
¼ Ω−ψzsinψy

� �
ê1 þ ψzcosψy sinΩtþ ψy cosΩt

� �
ê2

þ ψzcosψy cosΩt−ψy sinΩt
� �

ê3 ð3Þ

If shear deformation is neglected, angles ψz and ψy can be
related to the displacements as [24, 25]:

ψz ¼ sin−1
∂v
∂xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ∂u
∂x

� �2 þ ∂v
∂x

� �2q
2
64

3
75

ψy ¼ −sin−1
∂w
∂xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ∂u
∂x

� �2 þ ∂v
∂x

� �2 þ ∂w
∂x

� �2q
2
64

3
75

ð4Þ

3 Equations of motion

In this section, equations of motion of the system are obtained
using Hamilton’s principle. Hamilton’s principle may be
expressed as [26]:

Z t2

t1
δ U−Tð Þ−δW½ �dt ¼ 0: ð5Þ

3.1 Strain energy

The usual expression for strain energy in terms of engineering
stresses and strains is:

U ¼ 1

2

Z l

0
∬A σxxεxx þ σxyεxy þ σxzεxz
� �

dzdydx ð6Þ

Where

σxx ¼ Eεxx
σxy ¼ Gεxy
σxz ¼ Gεxz

ð7Þ

The variation of strain energy yields:

δU ¼
Zl

0

Yvδvþ Ywδw
� �

dxþ b Uð Þ ð8Þ

where

Yv ¼ Mz0
� �00− Vx0 v

0
� �0

Yw ¼ −My0
� �00

− Vx0w
0

� �0 ð9Þ

and

b Uð Þ ¼ Vx0 v
0
− Mz0
� �0h i

δv
l
0

���� þ Mz0
� �

δv
0 l
0

����
þ −My0
� �

δw
0 l
0
þ Vx0w

0
− −My0
� �0� 	

δw
l
0

����
���� ð10Þ

where the resultant stress and moments are defined by:

Vx0 ¼ ∬
A
σxxdydz ¼ EA


2
v
02 þ w

02
� �

My0 ¼ EIy0 −w″
� �

Mz0 ¼ EIz0 v″
� � ð11Þ

The section integrals in Eq. (11) are defined as follows:

A ¼ ∬
A
dydz ¼ πR2

Iy0 ¼ ∬
A
z2dydz ¼ π=4R

4

I z0 ¼ ∬
A
y2dydz ¼ π=4R

4

ð12Þ

3.2 Kinetic energy

The kinetic energy of cutting tool is calculated as follow [24,
25]:

T ¼ T tran þ Trot

¼ 1

2

ZL

0

Z
A

ρ r ̇⋅r ̇dA dxþ 1

2

ZL

0

Z
A

ρ ωf gT I½ � ωf gdA dx

¼ 1

2

ZL

0

ρA v ̇
2 þ w ̇2

� �
þ ρJ ω2

1 þ ρI ω2
2 þ ω2

3

� �h i
dx

ð13Þ

where

J ¼ ∬
A

y2 þ z2
� �

dydz ¼ π=2R
4 ð14Þ

For small deformations, the displacement components and
the variation of them with respect to x is so small. Therefore,
the magnitudes of ψz and ψy are small and can be approximat-
ed by ∂v/∂x and −∂w/∂x, respectively. So the kinetic energy of
system is equal to:

T ¼ 1

2

ZL

0

ρA v ̇
2 þ w ̇2

� �
þ ρI 4ω

∂v̇
∂x

∂w
∂x

þ ∂v ̇

∂x

� �2

þ ∂w ̇

∂x

� �2
 !

þ ρJ Ω2

" #
dx

ð15Þ

The variation of strain energy yields:

δT ¼
ZL

O

zv
� �

δvþ zw
� �

δw
h i

dxþ b Tð Þ ð16Þ
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in which:

zv ¼ −m€vþ mR2

2
€v″ þ 2Ωẇ″
� �

zw ¼ −m€wþ mR2

2
€w″−2Ωv″
� � ð17Þ

b Tð Þ ¼ mR2

4
€v
0 þ 2Ωẇ

0� �
δv

L
o

����
þ mR2

4
€w

0
−2Ωv ̇

0� �
δw

L
o

���� ð18Þ

3.3 Virtual work of the nonconservative forces

The virtual work δW of the nonconservative forces may be
expressed as:

δW ¼
Z l

0
Lvδvþ Lwδwð Þdx ð19Þ

where

Lv ¼ F f δD x−x0ð Þ
Lw ¼ FtδD x−x0ð Þ ð20Þ

Cutting force in radial (Fr) and tangential (Ft) directions
can be obtained by [22, 27]:

Fr ¼ −
N
2π

h
α0 v x; tð Þ−v x; t−τð Þð Þ þ β0 w x; tð Þ−w x; t−τð Þð Þ þ γ0

� �
þ

‐
c f
2

ζ1cos 2Ωt‐π=2ð Þ‐η1cos2Ωtþ η1½ �‐η2cos Ωt‐π=2ð Þ‐ζ2cosΩt
� �

Ft ¼ N
2π

h
α

0
0 v x; tð Þ−v x; t−τð Þð Þ þ β0

0 w x; tð Þ−w x; t−τð Þð Þ þ γ00

� �
þ

‐
c f
2

η1cos 2Ωt‐π=2ð Þ þ ζ1cos2Ωt‐ζ1½ � þ ζ2cos Ωt‐π=2ð Þ‐η2cosΩt
� �

ð21Þ

where τ=2π/NΩ.
For half immersion up-milling, the coefficients of Eqs. (21)

are specified as:

α0 ¼ 0:5ξ1 þ 0:25πη1 α0
0 ¼ −0:5η1 þ 0:25πξ1

β0 ¼ 0:5η1 þ 0:25πξ1 β0
0 ¼ 0:5ξ1−0:25πη1

γ0 ¼ η2 þ ξ2 γ00 ¼ ξ2−η2
ð22Þ

where the parameters ξ1 , ξ2 ,η1 ,η2 are equal to:

ξ1 ¼ ktca ξ2 ¼ ktea
η1 ¼ krca η2 ¼ krea

ð23Þ

Substituting Eq. (8), Eq. (16), and Eq. (19) in Eq. (5), equa-
tions of motion in two directions y and z can be derived as:

EI v″
� �″−EA


2
v
02 þ w

02
� �

v
0

h i0
þ m€v −2ρIΩw ̇″−ρI€v″ ¼ FrδD x−xoð Þ

EI w″
� �0 0−EA


2
v
02 þ w

02
� �

w
0

h i0
þ m€wþ 2ρIΩv̇

″−ρI €w″ ¼ FtδD x−xoð Þ

ð24Þ

In Eq. (24), the terms 2ρIΩw ̇″ and 2ρIΩv ̇
″
appear because

of the gyroscopic moment, and the terms ρI€v″ and ρI €w″ ap-
pear because of the rotary inertia [28].

4 Solution of equations of motion

For the Eq. (24), the deflection fields v(x, t) and w(x, t) can be
assumed as follows:

v x; tð Þ ¼
Xn
i¼1

Vi xð ÞTvi tð Þ

w x; tð Þ ¼
Xn
i¼1

Wi xð ÞTwi tð Þ
ð25Þ

where Vi(x)andWi(x) are the mode functions of the cutting tool in
y and z directions, respectively; Tvi(t)and Twi(t)are the generalized
coordinates in terms of time t; and n is the total mode numbers of
the tool mode functions selected for the calculation. The cutting
tool boundary conditions are considered as follow:

v 0; tð Þ ¼ 0;
∂v 0; tð Þ

∂x
¼ 0;

∂2v l; tð Þ
∂x2

¼ 0;
∂3v l; tð Þ
∂x3

¼ 0

w 0; tð Þ ¼ 0;
∂w 0; tð Þ

∂x
¼ 0;

∂2w l; tð Þ
∂x2

¼ 0;
∂3w l; tð Þ

∂x3
¼ 0

ð26Þ

According to reference [29], the following shape functions
are selected for cutting tool:

Vi xð Þ ¼ Wi xð Þ ¼ cosβi xð Þ−coshβi xð Þ− cosβi⋅l þ coshβi⋅l
sinβi⋅l þ sinhβi⋅l

sinβi xð Þ−sinhβi xð Þð Þ

ð27Þ

in which for the first three modes of vibration, βiis equal to:

β1l ¼ 1:875; β2l ¼ 4:691; β3l ¼ 7:8547 ð28Þ

After substituting Eq. (25) into Eq. (24) and multiplying re-
sultant equations by Vi(x)andWi(x), respectively, and then apply-
ing integral over the tool length, yields the second-order ordinary
differential equations of the tool lateral vibration in terms of the
unknown time-dependent functions Tvi(t)and Twi(t)as follows:
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A1iT vi tð Þ þ A2iT vi
3 tð Þ þ A3iT vi tð ÞTwi

2 tð Þ þ A4iTwi tð Þ þ A5i€Tvi tð Þ ¼ A6i T vi tð Þ−Tvi t−τð Þð Þ þ
A7i Twi tð Þ−Twi t−τð Þð Þ þ A8i þ A9ið‐c f2 ζ1cos 2Ωt‐π=2ð Þ‐η1cos2Ωt½ �‐η2cos Ωt‐π=2ð Þ
‐ζ2cosΩtÞ
B1iTw tð Þ þ B2iTwi

3 tð Þ þ B3iTwi tð ÞTvi
2 tð Þ þ B4iT vi tð Þ þ B5i€Twi tð Þ ¼ B6i T vi tð Þ−Tvi t−τð Þð Þ þ

B7i Twi tð Þ−Twi t−τð Þð Þ þ B8i þ B9ið‐c f
2

η1cos 2Ωt‐π
.
2

� �
þ ζ1cos2Ωt

h i
þ ζ2cos Ωt‐π

.
2

� �
‐η2cosΩt

�

The coefficients of Eq. (29) are presented in “Appendix A”.

5 Perturbation analysis of the process

In this section, the multiple-scale approach is used to find the
frequency response for the milling process in primary and super
harmonic resonances. In this method, an expansion representing
the response to be a function of multiple-independent scales is
used, where ε is a small parameter representing the time scale
[30]. Accordingly, derivatives with respect to t become expan-
sions in terms of the partial derivatives with respect to indepen-
dent scales as:

d
dt

¼ D0 þ εD1 þ ε2D2 þ…

d2

dt2
¼ D2

0 þ 2εD0D1 þ ε2 D2
1 þ 2D0D2

� �þ…
ð30Þ

in which

Di ¼ d
dTi

; Ti ¼ εit; i ¼ 1; 2; 3;… ð31Þ

Solution of Eq. (29) can be written in the expansion form
as:

Tvi t; εð Þ ¼ qi t; εð Þ ¼ q0i T0; T1; T2;…ð Þ þ εq1i T0; T1; T2;…ð Þ þ ε2q2i T0; T1; T2;…ð Þ þ…
Twi t; εð Þ ¼ pi t; εð Þ ¼ p0i T0; T1; T2;…ð Þ þ εp1i T0; T1; T2;…ð Þ þ ε2p2i T0; T1; T2;…ð Þ þ…

ð32Þ

Case 1: Nonresonant excitation

In this case, with substituting Eqs. (30)–(32) into Eq. (29)
and equating coefficients of similar powers of εto zero and
neglecting powers of εthat are more than 2, we obtain:

ε0 :

D2
0q0iþA

0
4iD0p0iþA

0
1iq0i ¼

A
0
8i þ A

0
9i ‐

c f
2

ζ1cos 2Ωt‐π=2ð Þ‐η1cos2Ωt½ �‐η2cos Ωt‐π=2ð Þ‐ζ2cosΩt
� �

D2
0p0iþB

0
4iD0q0iþB

0
1ip0i ¼

B
0
8i þ B

0
9i ‐

c f
2

η1cos 2Ωt‐π=2ð Þ þ ζ1cos2Ωt½ � þ ζ2cos Ωt‐π=2ð Þ‐η2cosΩt
� �

ð33Þ

ε1 :

D2
0q1i þ A

0
4iD0p1i þ A

0
1iq1i ¼

−2D1D0q0i−A
0
4D1p0i þ A″

6 q0i−q0iτð Þ þ A″
7 p0i−p0iτð Þ−A″

2iq0i
3−A″

3ip0i
2q0i

D2
0p1i þ B

0
4D0q1i þ B

0
1ip1i ¼

−2D1D0p0i−B
0
4iD1q0i þ B″

6i q0i−q0iτð Þ þ B″
7i p0i−p0iτð Þ−B″

2ip0i
3−B″

3iq0i
2p0i

ð34Þ

w h e r e A
0
i ¼ Ai=A5i, B

0
i ¼ Bi=B5i, A″

i ¼ εA
0
i, B″

i ¼ εB
0
i,

piτ=pi(t− τ), and qiτ=qi(t− τ).
Solution of Eq. (33) can be expressed in the form

q0i ¼ C1 T 1ð Þexp iω1T 0ð Þ þ C2 T 1ð Þexp iω2T 0ð Þ þ A
0
8i

A
0
1i

þ P1cos 2Ωt−π=2ð Þ
þP2cos2Ωt þ P3cos Ωt−π=2ð Þ þ P4cosΩt þ cc

p0i ¼ Λ1C1 T 1ð Þexp iω1T 0ð Þ þ Λ2C2 T 1ð Þexp iω2T 0ð Þ þ B
0
8i

B
0
1i

þ P5cos 2Ωt−π=2ð Þ
þP6cos2Ωt þ P7cos Ωt−π=2ð Þ þ P8cosΩt þ cc

ð35Þ

where cc stands for the complex conjugate of the preceding
terms,C1 andC2 are arbitrary functions at this level of approx-

imation, and Λn ¼ − iωnB
0
4i

B
0
1i−ω2

n
, in which:

ω1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

0
1i þ B

0
1i−A

0
4iB

0
4i

� �
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

0
1i þ B

0
1i−A

0
4iB

0
4i

� �2−4A0
1iB

0
1i

qr

2

ω2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

0
1i þ B

0
1i−A

0
4iB

0
4i

� �þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

0
1i þ B

0
1i−A

0
4iB

0
4i

� �2−4A0
1iB

0
1i

qr

2

ð36Þ

The coefficients of P1 to P8 are presented in “Appendix B”.
Substituting q0 and p0 into Eq. (34), the solvability condi-

tion yields:

R11 þ Λ1R21 ¼ 0; R12 þ Λ1R22 ¼ 0 ð37Þ

where R11 and R12 are the coefficient of terms exp(iω1T0) and
exp(iω2T0) in the first equation of motion and R21 and R22are
the coefficient of terms exp(iω1T0) and exp(iω2T0) in the sec-
ond equation of motion.

Separating real and imaginary parts in Eq. (37) and
using λr as real and λi as imaginary parts, Eq. (37) can
be written as:

λ1r þ iλ1ið ÞC1 þ λ2r þ iλ2ið ÞC1 þ λ3r þ iλ3ið ÞC1C2C2 þ λ4r þ iλ4ið ÞC2
1C1 ¼ 0

λ5r þ iλ5ið ÞC2 þ λ6r þ iλ6ið ÞC2 þ λ7r þ iλ7ið ÞC1C2C1 þ λ8r þ iλ8ið ÞC2
2C2 ¼ 0

ð38Þ

Coefficients of Eq. (38) are presented in “Appendix C”.
Putting:

C1 ¼ 0:5 f 1exp iθ1ð Þ
C2 ¼ 0:5 f 2exp iθ2ð Þ ð39Þ

in Eq. (38) and separating real and imaginary parts, the
amounts of C1 and C2will be achieved. Substituting
C1andC2into Eq. (35), the response of the system can be writ-
ten as follows:

(29)
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qi ¼ 0:5 f 10exp
−λ2i

λ1i
t

� �
exp i

λ2r

λ1i
t−

λ3rλ5i

8λ1iλ6i
f 20

2exp
−2λ6i

λ5i
t

� �
−
λ4rλ1i

8λ1iλ2i
f 10

2exp
−2λ2i

λ1i
t

� �
þ θ10

� �� �

exp iw1tð Þ
þ0:5 f 20exp
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t

� �
exp i

λ6r
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� �
þ θ20

� �� �

exp iw2tð Þ þ cc

þ A
0
8i

A
0
1i

þ P1cos 2Ωt−π
.
2

� �
þ P2cos2Ωt þ P3cos Ωt−π

.
2

� �
þ P4cosΩt

pi ¼ 0:5Λ1 f 10exp
−λ2i

λ1i
t

� �
exp i

λ2r

λ1i
t−

λ3rλ5i

8λ1iλ6i
f 20
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−2λ6i

λ5i
t

� �
−
λ4rλ1i

8λ1iλ2i
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t
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þ θ10

� �� �

exp iw1tð Þ
þ0:5Λ2 f 20exp
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� �
exp i
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λ5i
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8λ5iλ2i
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λ1i
t

� �
−
λ8rλ5i

8λ5iλ6i
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2exp
−2λ6i

λ5i
t

� �
þ θ20

� �� �

exp iw2tð Þ þ cc

þ B
0
8i

B
0
1i

þ P5cos 2Ωt−π
.
2

� �
þ P6cos2Ωt þ P7cos Ωt−π

.
2

� �
þ P8cosΩt

ð40Þ

In this paper, both types of primary and super har-
monic resonances are investigated. For this reason, some
parameters of Eq. (29) have been replaced with follow-
ing expressions:

A2i ¼ εA2i; A3i ¼ εA3i; A6i ¼ εA6i; A7i ¼ εA7i; A9i ¼ εA9i

B2i ¼ εB2i; B3i ¼ εB3i; B6i ¼ εB6i; B7i ¼ εB7i; B9i ¼ εB9i

ð41Þ

Case 2: Primary resonance, Ω=ω1

In this case, to express the nearness ofΩ to ω1 quantitative-
ly, detuning parameter σ is introduced as:

Ω ¼ ω1 þ εσ ð42Þ

Substituting Eqs. (30)–(32) and (41)–(42) into Eq. (29) and
equating coefficients of like powers of ε to zero, we obtain:

ε0 :
D2

0q0iþA
0
4iD0p0iþA

0
1iq0i ¼ A

0
8i

D2
0p0iþB

0
4iD0q0iþB

0
1ip0i ¼ B

0
8i

ð43Þ

ε1 :

D2
0q1i þ A

0
4iD0p1i þ A

0
1iq1i ¼ −2D1D0q0i−A

0
4iD1p0i þ A

0

6i q0i−q0iτð Þ þ A
0

7i p0i−p0iτð Þ−A
0

2iq0i
3−A

0

3ip0i
2q0i

þA
0
9i ‐

c f
2

ζ1cos 2Ωt‐π=2ð Þ‐η1cos2Ωt½ �‐η2cos Ωt‐π=2ð Þ‐ζ2cosΩt
� �

D2
0p1i þ B

0
4iD0q1i þ B

0
1ip1i ¼ −2D1D0p0i−B

0
4iD1q0i þ B

0
6i q0i−q0iτð Þ þ B

0
7i p0i−p0iτð Þ−B0

2ip0i
3−B

0
3iq0i

2p0i
þB

0
9i ‐

c f
2

η1cos 2Ωt‐π=2ð Þ þ ζ1cos2Ωt½ � þ ζ2cos Ωt‐π=2ð Þ‐η2cosΩt
� �

ð44Þ

The solution of Eq. (43) can be expressed in the form

q0i ¼ C1 T 1ð Þexp iω1T 0ð Þ þ C2 T 1ð Þexp iω2T 0ð Þ þ A
0
8i

A
0
1i

þ cc

p0i ¼ Λ1C1 T 1ð Þexp iω1T 0ð Þ þ Λ2C2 T 1ð Þexp iω2T 0ð Þ þ B
0
8i

B
0
1i

þ cc
ð45Þ

After substituting Eq. (45) into Eq. (34), the solvability
condition yields that:

R11 þ Λ1R21 ¼ 0; R12 þ Λ1R22 ¼ 0 ð46Þ

where R11 and R12 are coefficient of terms exp(iω1T0) and
exp(iω2T0) in the first equation of motion and R21 and
R22are, respectively, coefficient of terms exp(iω1T0) and
exp(iω2T0) in the second equation of motion.

Separating real and imaginary parts in Eq. (45), using λr as
real part and λi as imaginary part, we obtain:

λ1r þ iλ1ið ÞC1 þ λ2r þ iλ2ið ÞC1 þ λ3r þ iλ3ið ÞC1C2C2 þ λ4r þ iλ4ið ÞC2
1C1 þ 1

2

�
A

0
9iη2 þ iΛ1B

0
9iη2

� �
sin σT1ð Þ

þ A
0
9iζ2 þ B

0
9iiΛ1ζ2

� �
cos σT1ð Þ

�
þ i
� 1
2

−A
0
9iη2‐iΛ1B

0
9iη2

� �
cos σT1ð Þ þ A

0
9iζ2 þ B

0
9iiΛ1ζ2

� �
cos σT1ð Þ

� �
¼ 0

λ5r þ iλ5ið ÞC2 þ λ6r þ iλ6ið ÞC2 þ λ7r þ iλ7ið ÞC1C2C1 þ λ8r þ iλ8ið ÞC2
2C2 ¼ 0

ð47Þ

Putting:

C1 ¼ 0:5 f 1exp iθ1ð Þ
C2 ¼ 0:5 f 2exp iθ2ð Þ ð48Þ

σT1−β ¼ υ ð49Þ

into Eq. (47) and separating real and imaginary part, for
steady state condition, we have:
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σ ¼ 1

λ1i
λ2r þ 1

4
λ5r f 1

2 �
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2 −λ2
2i

vuuut
0
BB@

1
CCA

ð50Þ

Equation (50) that is frequency response function is an
implicit equation for the amplitude of the response f1 as a
function of the detuning parameter σ.

Case 3: Primary resonance, Ω=ω2

Similar to case 1, for this case, the frequency response
function can be expressed as follows:

σ ¼ 1

λ5i
λ6r þ 1

4
λ1r f 2

2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

0
9iη2 þ iΛ1B

0
9iη2

� �2
þ A

0
9iζ2 þ iΛ1B

0
9iζ2

� �2
f 2

2 −λ2
6i

vuuut
0
BB@

1
CCA ð51Þ

Equation (51) represents the amplitude of the response f2 as
a function of the detuning parameter σ.

Case 4: Super harmonic resonance, 2Ω=ω1

In this case, detuning parameter σ is introduced as:

2Ω ¼ ω1 þ εσ ð52Þ

With substituting Eqs. (30)–(32) and (52) in Eq. (29)
and equating coefficients of like powers of ε to zero,
we obtain:

ε0 :
D2

0q0iþA
0
4iD0p0iþA

0
1iq0i ¼ A

0
8i þ A

0
9i ‐

c f
2

ζ1cos 2Ωt‐π=2ð Þ‐η1cos2Ωt½ �‐η2cos Ωt‐π=2ð Þ‐ζ2cosΩt
� �

D2
0p0iþB

0
4iD0q0iþB

0
1ip0i ¼ B

0
8i þ B

0
9i ‐

c f
2

η1cos 2Ωt‐π=2ð Þ þ ζ1cos2Ωt½ � þ ζ2cos Ωt‐π=2ð Þ‐η2cosΩt
� � ð53Þ

ε1 :
D2

0q1i þ A
0
4iD0p1i þ A

0
1iq1i ¼ −2D1D0q0i−A

0
4iD1p0i þ A″

6i q0i−q0iτð Þ þ A″
7i p0i−p0iτð Þ−A″

2iq0i
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3ip0i
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0
4iD0q1i þ B

0
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3iq0i
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ð54Þ

The solution of Eq. (53) can be expressed as

q0i ¼ C1 T1ð Þexp iω1T0ð Þ þ C2 T1ð Þexp iω2T0ð Þ þ A
0
8i

A
0
1i

þ P1cos 2Ωt−π=2ð Þ
þP2cos2Ωt þ P3cos Ωt−π=2ð Þ þ P4cosΩt þ cc

p0i ¼ Λ1C1 T1ð Þexp iω1T0ð Þ þ Λ2C2 T1ð Þexp iω2T0ð Þ þ B
0
8i

B
0
1i

þ P5cos 2Ωt−π=2ð Þ
þP6cos2Ωt þ P7cos Ωt−π=2ð Þ þ P8cosΩt þ cc

ð55Þ

Similar to case 2, we can obtain that:

σ ¼ 1

λ1i
λ2r þ 1

4
λ5r f 1

2 �
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c f
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0
9i
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2 η1
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0
9i
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2 ζ1 þ iΛ1B
0
9i
c f

2 ζ1
� �2

f 1
2 −λ2

2i

vuuut
0
BB@

1
CCA ð56Þ

Fig. 4 Computational and experimentally measured stability limit

Table 1 Main simulation parameters for a milling process

Parameters Value Parameters Value

E 2 × 1011 Pa x0 0.13 m

ρ 7850 Kg.m−3 ξ1 620 N/mm

l 0.13 m ξ2 43 N

d 8 mm η1 208 N/mm

N 4 η2 52 N

cf 0.2 mm/rev− tooth

Fig. 5 Frequency response of the tool tip vibration for the primary
resonance case (Ω=ω1)
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Case 5: Super harmonic resonance, 2Ω=ω2

Similar to case 4, the frequency response function for this
case can be determined as follows:

σ ¼ 1

λ5i
λ6r þ 1

4
λ1r f 2

2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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0
9i
c f
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0
9i
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� �2

þ A
0
9i
c f

2 ζ1 þ iΛ1B
0
9i
c f

2 ζ1
� �2

f 2
2 −λ2

6i

vuuut
0
BB@

1
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ð57Þ

6 Simulations, results, and discussion

6.1 Validation of the model

To validate the model presented in this paper, its predic-
tions of the system stability are compared with the

experimental results reported by Moradi et al. [31]. In this
reference, the stability lobes diagram for a milling process
has been investigated experimentally. The results for two
spindle speeds of Ω= 8000 and 10000 rpm are presented
in Fig. 4. Using the basic parameters presented in refer-
ence [31] and the solution method of this paper, stability
diagram for the milling process has been constructed
using the following process:

1. For special tool rotational speed, time response of
the system for different depth of cut (a) has been
plotted.

2. The first depth of cut in which the process is unstable is
the border between stable and unstable process and spec-
ified in the stability diagram by a point.

Fig. 7 The effect of cutting tool diameter on the frequency response of
the tool tip vibration for the primary resonance case (Ω=ω1)

Fig. 8 The effect of cutting tool length on the frequency response of the
tool tip vibration for the primary resonance case (Ω=ω1)

Fig. 6 The effect of axial depth of cut on the frequency response of the
tool tip vibration for the primary resonance case (Ω=ω1)

Fig. 9 The effect of the number of cutter teeth on the frequency response
of the tool tip vibration for the primary resonance case (Ω=ω1)
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3. Steps 1 and 2 have been repeated for other tool rotational
speeds.

4. Stability diagram has been plotted between different
points obtained in step 2.

Constructed stability diagram for the milling process is
presented in Fig. 4. Also this figure shows the stability dia-
gram when gyroscopic moment and rotary inertia have not
been considered. It can be seen from Fig. 4 that the results
predicted by the current model with considering gyroscopic
moment and rotary inertia are in reasonable agreement with
the experimental results. Also according to this figure,

ignoring gyroscopic moment and rotary inertia in the tool
model causes error in the prediction of stability limits of the
process.

6.2 Primary resonance

To investigate the nonlinear dynamics of the milling process, a
realistic nominal set of the process parameters is adopted for
simulation as presented in Table 1.

For the case of primary resonance (Ω=ω1), according
to Eq. (50), the frequency response of the tool tip vibra-
tion is presented in Fig. 5. As it is observed, increasing
the detuning parameter from point A to point C leads to
a gradual increase in steady state vibration amplitude. At

Fig. 11 The effect of cutting tool diameter on the frequency response of
the tool tip vibration for the primary resonance case (Ω=ω2)

Fig. 10 The effect of axial depth of cut on the frequency response of the
tool tip vibration for the primary resonance case (Ω=ω2)

Fig. 12 The effect of cutting tool length on the frequency response of the
tool tip vibration for the primary resonance case (Ω=ω2)

Fig. 13 The effect of the number of cutter teeth on the frequency
response of the tool tip vibration for the primary resonance case (Ω=ω2)
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point C, upward jump occurs to point D. After that, by
increasing the detuning parameter, vibration amplitude
decreases. On the other hand, as σ is decreased from
point E to F, steady state vibration amplitude increases;
and at point F, there is a downward jump to the point B.

Figures 6, 7, 8, and 9 show effects of axial depth of cut,
cutting tool diameter, cutting tool length, and the number of
cutter teeth on the frequency response of the tool tip vibra-
tions, respectively. As it is shown in Figs. 6 and 8, by increas-
ing the axial depth of cut and cutting tool length, steady state
amplitude of vibration of the tool tip increase. Also in accor-
dance with Fig. 7, increase in cutting tool diameter decreases
the steady state amplitude of vibration of the tool tip. As
shown in Fig. 9, variation of the cutter teeth number has small
effect on frequency response of the system.

The effects of axial depth of cut, cutting tool diameter,
cutting tool length, and the number of cutter teeth on the
frequency response of the tool tip vibrations for another pri-
mary resonance case (Ω=ω2) are presented in Figs. 10, 11, 12,
and 13. As shown in these figures, the results are similar to
frequency response of primary resonance (Ω=ω1).

6.3 Super harmonic resonance

Frequency response of the tool tip vibration for the super
harmonic resonance case (2Ω =ω1) in accordance with
Eq. 56 is presented in Fig. 14. According to this figure, if
the detuning parameter is started at point E and is slowly
decreased, a jump from point F to point B takes place. On

Fig. 14 Frequency response of the tool tip vibration for the super
harmonic resonance case (2Ω=ω1)

Fig. 15 The effect of axial depth of cut on the frequency response of the
tool tip vibration for the super harmonic resonance case (2Ω=ω1)

Fig. 16 The effect of cutting tool diameter on the frequency response of
the tool tip vibration for the super harmonic resonance case (2Ω=ω1)

Fig. 17 The effect of cutting tool length on the frequency response of the
tool tip vibration for the super harmonic resonance case (2Ω=ω1)
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the other hand, if the detuning parameter is started at point A
and is increased, a jump from point C to point D takes place.

The effects of axial depth of cut, cutting tool diameter
and length, and the number of cutter teeth on the frequen-
cy response of the tool tip vibrations for this case
(2Ω=ω1) are shown in Figs. 15, 16, 17, and 18. Effect
of axial depth of cut on frequency response function for
this case is similar to primary resonance cases. According
to Fig. 16, with increase in cutting tool diameter, the
steady state amplitude of the tool tip vibration increases
and the curvature of the back bone curve decreases. Also
as shown in Figs. 17 and 18 with increase in the cutting
tool length and cutter teeth number, the steady state am-
plitude of the tool tip vibration decreases.

Figures 19, 20, 21, and 22 show the effects of different
parameters on the frequency response of the tool tip vibrations
for super harmonic case (2Ω=ω2). As shown in these figures,
effects of axial depth of cut, cutting tool diameter and length,
and the number of cutter teeth on frequency response function
for this case are similar to super harmonic case (2Ω=ω1).

To investigate the effect of the gyroscopic moment and
rotary inertia on the response of the system, frequency
responses of the tool tip vibration with and without con-
sidering gyroscopic moment and rotary inertia are pre-
sented in Figs. 23, 24, 25, and 26 for different primary
and super harmonic resonances. According to these fig-
ures, ignoring gyroscopic moment and rotary inertia in the
tool model decreases the predicted amplitude of steady
state response of the system.

Fig. 18 The effect of the number of cutter teeth on the frequency
response of the tool tip vibration for the super harmonic resonance case
(2Ω=ω1)

Fig. 19 The effect of axial depth of cut on the frequency response of the
tool tip vibration for the super harmonic resonance case (2Ω=ω2)

Fig. 20 The effect of cutting tool diameter on the frequency response of
the tool tip vibration for the super harmonic resonance case (2Ω=ω2)

Fig. 21 The effect of cutting tool length on the frequency response of the
tool tip vibration for the super harmonic resonance case (2Ω=ω2)
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7 Conclusion

In this paper, resonance in milling process has been in-
vestigated using a 3-D nonlinear model of the cutting tool.
The tool has been modeled as a rotating clamped-free
beam excited by nonlinear cutting forces. The complete
system equations have been obtained for vertical and lat-
eral beam vibrations. This model considers gyroscopic
moment and rotary inertia of the tool. The method of
multiple scales has been used to obtain the analytical ex-
pression for frequency response of the system.

Using this model, primary and super harmonic resonances
of cutting tool have been investigated and following results
have been obtained:

1- Increase of axial depth of cut increases the steady state
vibration amplitude of the tool tip in all resonance case.

2- With increase in cutting tool diameter, the steady state
vibration response of the tool tip decreases for primary
resonance cases and increases for super harmonic reso-
nance cases.

3- With increase in cutting tool length, the steady state vi-
bration response of the tool tip increases for primary res-
onance cases and decreases for super harmonic resonance
cases.

4- Variation of the number of cutter teeth has negligible ef-
fect on the frequency response of the system in primary
resonances, but it extremely changes the steady state vi-
bration response of the tool tip in super harmonic
resonances.

Fig. 22 The effect of the number of cutter teeth on the frequency
response of the tool tip vibration for the super harmonic resonance case
(2Ω=ω2)

Fig. 23 The effect of the gyroscopic moment and rotary inertia on the
frequency response of the tool tip vibration for the primary resonance case
(Ω=ω1)

Fig. 25 The effect of the gyroscopic moment and rotary inertia on the
frequency response of the tool tip vibration for the super harmonic
resonance case (2Ω=ω1)

Fig. 24 The effect of the gyroscopic moment and rotary inertia on the
frequency response of the tool tip vibration for the primary resonance case
(Ω=ω2)
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Appendix A
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Fig. 26 The effect of the gyroscopic moment and rotary inertia on the
frequency response of the tool tip vibration for the super harmonic
resonance case (2Ω=ω2)
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