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Abstract The development of largemachinery in the industry
of the machine tool implies moving heavy structural compo-
nents and pieces. The consequence is the apparition of inac-
curacies at the tool tip during the motion due to the high
inertial forces acting on the compliant machine. To predict
the dynamic behavior of these machines, a three degree of
freedom mechatronic model has been developed considering
the dynamics of the transmission chain of the drive, the ma-
chine structural element dynamics, and the control. The model
can be used in the design stage to estimate the maximum jerk
that can be commanded without the appearance of overshoot
at the tool tip. Also, it can be used to predict the bandwidth of
the whole mechatronic system. The model has been tested in a
ball screw-based test bench with a compliant mass that simu-
lates the structural compliance of a real large machine tool.

Keywords Largemachine tool . Machine tool drive . Jerk .

Mechatronic modeling

Nomenclature
ϕi Eigenvector or deformation mode
cem Damping coefficient in the motor shaft
cAF1 Damping coefficient of the first half in the flexible

coupling
cAF2 Damping coefficient of the second half in the flexible

coupling
cHt Torsional damping coefficient in the screw shaft
cHa Axial damping coefficient in the screw shaft
cT Damping coefficient in the nut
cM Damping coefficient in the table
cC Damping coefficient in the column
kaT Nut axial stiffness
kaS Nut support axial stiffness
kft Bending stiffness of the screws that attach the nut

support to the table
kb Bearing stiffness
kfb Thrust bearing stiffness
kHa1 Axial screw stiffness on the side between the table and

thrust bearing
kHa2 Axial screw stiffness on the opposite side between the

table and bearing
τd Disturbance torque
θṀ Real angular velocity of the motor
τFc Coulomb friction force torque

1 Introduction

In the recent years, the rise of renewable energy sectors, rail-
road, aviation, marine platforms, fusion energy in large scien-
tific plants, etc. has required the development of largemachine
tools. The main challenge for the designers is to guarantee the
precision of the tool tip motion in the whole workspace, due to
their high weight and the use of large cantilevered structural
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elements as columns or rams. As a consequence, several prob-
lems appear. For example, these machines have low natural
frequencies, which mean that they suffer from chatter during
the milling [1]. They also need to be calibrated in a very large
workspace to compensate for deflections due to their own
weight [2]. Also, thermal problems are present and must be
compensated, especially in machines that work in tropical
climates under relatively high gradients of ambient tempera-
ture [3]. Finally, the combination of low natural frequencies
and high inertial forces complicates the position control of the
tool tip when the machine attempts to perform complex move-
ments [2].

This work is focused on the last problem, that is, the
position control of the tool tip for large machines. In these
machines, the location of the encoders used for the posi-
tion control is far away from the tool tip, see Fig. 1,
which means that the deflection of the structural elements
due to the inertial forces results in a tracking error that
must be minimized. This can be done from the design
stage, using mechatronic models to analyze the mechani-
cal transmission and structure dynamic performance.

For a simple mechatronic analysis of servo drives, in-
ertial models can be used [4]. However, in order to con-
sider the flexibility of the transmission chain, the most
common approach is to develop models with two degrees
of freedom (dof). Over the recent decades, various
mechatronic models of two dof, angular position at the
motor encoder and position at the linear encoder, have
been developed. Among others, A. Dequidt [5] in 2000
developed a model of two dof, with new rules for deter-
mining the bandwidth and the inertial ratio. Y. Altintas [6]
in 2011 conducted a comprehensive review of the design
and control of drive systems, and more recently, R.
Caracciolo [7] in 2014 proposes a new mechatronic model

that minimizes the torque of the motor. However, for large
machine tools with a large inertia and limited stiffness in
the elements of the machine, two dof models are not pre-
cise enough. A third dof must be added for the tool tip as
in Fig. 1 modeling the compliant nature of the structural
elements located from the linear encoder to the tool tip. If
not, high overshoots will be obtained at the end of the
column or ram where the tool tip is.

Among the authors who have developed three dof
mechatronic models, R. Neugebauer [8] presents an opti-
mization of large machines behavior to achieve higher
accelerations thus reducing the machining process time.
Wu S. T. [9] built a prototype based on a compliant beam
over a ball screw drive, using noise filters and a linear
enhancer to control the vibration during the motion. A.
Fortunato [10] designed a virtual model of machining
centers, based on the approximation of lumped mass and
a finite element method. This virtual model helps the de-
signer in the optimum definition of the characteristics of
the machine tool.

The present work presents a three dof mechatronic
model of a general drive and analyzes the influence of
the commanded jerk from the NC on the position error
on the linear encoder and the tool tip of the machine.
Zulaika and Altamira [11] demonstrated that the impact
of the jerk on the overshoot depends heavily on the nat-
ural frequency of the transmission using a two dof model.
Here, the three dof model has been used to quantify the
influence of the jerk on the overshoot considering the
flexibility of the structural elements of the machine. The
analysis has been experimentally validated simulating the
machine tool compliance in a test bench with a mass lo-
cated over two thin cantilever plates attached to a ball
screw drive table.

First, in Section 2, the dynamic and mechatronic three
dof model will be presented comparing it with a two dof
model and calculating the corresponding transfer func-
tions. In Section 3, the influence of structural flexibility
on the position error in tool tip and the maximum
commanded jerk are analyzed. Section 4 is a case study
where the modeling is applied to the test bench, charac-
terizing all the dynamic parameters, and calculating the
modal frequencies and transfer functions. Finally, in
Section 5, it is presented in an experimental validation
with the time response of the test bench under several jerk
conditions.

2 Modeling

To develop the three dof mechatronic model, first, it is neces-
sary to analyze the three dof dynamic model of the plant.

Fig. 1 Influence of the column flexibility on the tool tip error. x1 motor
encoder position, x2 linear encoder measured position, x3 tool tip real
position
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2.1 Dynamic modeling

In Fig. 2, the two and three dof-lumped parameters models are
shown, connecting lumped masses by springs and dampers.
This is a well-known approach to dynamic modeling of an
electromechanical drive [12, 13].

In the two dof model of Fig. 2, x1 is the position of the
motor and x2 is the position of the load (tool tip) measured at
the linear encoder. In the three dof model, x1 is the same, x2 is
the position measured at the linear encoder, and x3 is the tool
tip position. The mass m1 represents the motor inertia, the
second mass m2 is the transmission inertia for the b case,
and the transmission and load for the a case. The third mass
m3 represents the inertia of the compliant structure in the b
case. k and c represent the transmission stiffness and damping
of the two dof model. Respectively, k1 and c1 are the stiffness
and damping of the transmission chain from the motor to the
linear encoder and k2 and c2 the stiffness and damping of the
structural element from the linear encoder to the tool tip.
Moreover, for both models, the f force is equivalent to the
servomotor torque, fd is the disturbance force due to friction
and cutting forces, and cm is the viscous damping of the motor.
The latter two terms will be considered as an external distur-
bance torque.

The model equations can be found using the principle of
D’Alembert, the virtual works principle, energy theorem, the
Lagrange equations [14], or Newton’s second law. In this
study, following the Newton approach, the matrix form of
the motion equation of two dof model is

m1 0
0 m2

� �
⋅ €x1

€x2

� �
þ c −c

−c c

� �
⋅ €x1

€x2

� �

þ k −k
−k k

� �
⋅ x1

x2

� �

¼ f
0

� �
: ð1Þ

From the modal analysis, there are two modal frequencies.
The first is null because it represents the rigid body mode.
The second is

ω2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k m1 þ m2ð Þ

m1⋅m2

s
: ð2Þ

The matrix form of the motion equation of three dof model is

m1 0 0
0 m2 0
0 0 m3

2
4

3
5 €x1

€x2
€x3

8<
:

9=
;

þ
c1 −c1 0
−c1 c1 þ c2 −c2
0 −c2 c2

2
4

3
5 €x1

€x2
€x3

8<
:

9=
;

þ
k1 −k1 0
−k1 k1 þ k2 −k2
0 −k2 k2

2
4

3
5 x1

x2
x3

8<
:

9=
;

¼
f
0
0

8<
:

9=
;: ð3Þ

From the equations of motion of the two and three dof models,
the Laplace transform is developed.

As in the two dof model, the first modal frequency is zero,
and the second and third mode frequencies are the following:

ω2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ω123ð Þ2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω123ð Þ4−4k1k2 mT

m1m2m3

� �� �s !vuut :

ω3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ω123ð Þ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω123ð Þ4−4k1k2 mT

m1m2m3

� �� �s !vuut :

ð4Þ

The mT term of Eq. (4) corresponds to the sum of the three
mass systems. The ω123 frequency depends on the natural
frequencies resulting from fixing 2 of the 3 degrees of freedom
alternatively:

ω123ð Þ2 ¼ k1
m1

þ k1 þ k2
m2

þ k2
m3

� �

¼ ω1r23ð Þ2 þ ω2r13ð Þ2 þ ω3r12ð Þ2 ð5Þ

From the motion equations, after passing them to the frequen-
cy domain, the dynamic of the drive is here modeled by trans-
fer functions, although the state space approach can be also
used [12]. It is defined as the primary transfer function TF1,
the one that relates the angular position of the motor in the
encoder with the motor torque. The secondary transfer func-
tion TF2 relates the linear encoder position with the motor
angular position. Finally, the tertiary transfer function TF3Fig. 2 Lumped parameters scheme. a Two dof model. b Three dof model
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relates the tool tip position with the linear encoder position.
The transfer functions are represented by Eq. (6) whose coef-
ficients are shown in Table 1 for two and three dofs.

T Fi ¼ n4s4 þ n3s3 þ n2s2 þ n1sþ n0
d6s6 þ d5s5 þ d4s4 þ d3s3 þ d2s2 þ d1sþ d0

: ð6Þ

Also, the modal analysis of the three dof model has been
performed to find in symbolic way to relate the damping co-
efficients with the damping ratios in the three dof model,
which is explained in Section 2.1.1. The modal matrix of the
three dof model is provided by Blevins [15], and here, in
Appendices 1–3, it is shown that the mass normalized modal
matrix necessary for the damping calculation.

2.1.1 Damping

From the characteristic equation associated with a plant of a
two dof model, the damping coefficient of the system is relat-
ed to the damping ratio ξ2 as

c ¼ 2ξ2ω2
m1m2

m1 þ m2
: ð7Þ

In a three dof model, the damping coefficient matrix [C] con-
verted to modal coordinates and assuming proportional
damping is:

ϕ½ �T C½ � ϕ½ � ¼
0 0 0
0 2ξ2ω2 0
0 0 2ξ3ω3

2
4

3
5: ð8Þ

Taking into account the normalized modal matrix of Eq. (18)
in Appendix 1, Eq. (8) gives the relation between the two
damping coefficients of the three dof model, c1 and c2.

c2 ¼
c1 −ω4

3r12 þ ω2
2ω

2
3r12 þ ω2

3ω
2
3r12−ω2

2ω
2
3

	 

ω2
2−ω2

1r23

	 

ω2
3−ω2

1r23

	 
 : ð9Þ

Also, it provides the relation with the damping ratios in the
three dof system:

ξ2 ¼
c1ω3

2 ω2
2−ω2

3

	 

ω2
2−ω2

3r12

	 

ω2
3r12−ω2

1r23

	 

2 ω2

3−ω2
1r23

	 

m3ω4

3r12 ω2
2−ω2

1r23

	 
2 þ m1 ω2
2−ω2

3r12

	 
2
ω4
1r23 þ m2 ω2

2−ω2
3r12

	 
2
ω2
2−ω2

1r23

	 
2� � :

ξ3 ¼
c1ω3

3 ω2
3−ω2

2

	 

ω2
3−ω2

3r12

	 

ω2
3r12−ω2

1r23

	 

2 ω2

2−ω2
1r23

	 

m3ω4

3r12 ω2
3−ω2

1r23

	 
2 þ m1 ω2
3−ω2

3r12

	 
2
ω4
1r23 þ m2 ω2

3−ω2
3r12

	 
2
ω2
3−ω2

1r23

	 
2� � :
ð10Þ

Table 1 Transfer function numerator and denominator coefficients in natural coordinates

T F1 ¼ x1
f T F2 ¼ x2

x1
T F3 ¼ x3

x2

2 dof 3 dof 2 dof 3 dof 3 dof

n0 k k1k2 k k1k2 k2
n1 c c1k2 + c2k1 c c1k2 + c2k1 c2
n2 m2 m3k1 + (m2−m3)k2 + c1c2 0 m3k1 + c1c2 0

n3 0 m3c1 + (m2−m3)c2 0 m3c1 0

n4 0 m2m3 0 0 0

d0 0 0 k k1k2 k2
d1 0 0 c c1k2 + c2k1 c2
d2 (m1 +m2)k (m1 +m2−m3)k1k2 m2 m3k1 + (m2−m3)k2 + c1c2 m3

d3 (m1 +m2)c (m1 +m2−m3)(c2k1 + c1k2) 0 m3c1 + (m2−m3)c2 0

d4 m1m2 m1 þ m2ð Þm3k1 þ m2−m3ð Þm1k2þ þ m1 þ m2−m3ð Þc1
c2

0 m2m3 0

d5 0 (m1 +m2)m3c1 + (m2−m3)m1c2 0 0 0

d6 0 m1m2m3 0 0 0
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2.1.2 Friction perturbation

Considering the friction as the only source of disturbance, the
viscous damping cm, and the Coulomb friction torque τfc, the
disturbance torque in the models is

τ f d ¼ cm⋅θṀ þ τ f c : ð11Þ

Those two values can be determined by measuring motor
torque for several constant feed rates and performing a linear
regression vs. motor speed [16, 17].

2.2 Mechatronic model

Themechatronic model integrates the plant dynamics, control,
and sensor performance. The model is shown in Fig. 3, where
the position and the velocity control loops with their cycle
times are modeled and the tertiary transfer function is located
after the closed position loop.

System belongs to a servo drive that is added a compliant
mass as shown in Fig. 1. Regarding the control, it is the usual
PID cascade control of position, speed, and intensity. Position
control is based on a proportional controller P with a feed
forward (FFV) added. The velocity control has a PI controller
as well as the current control. Nevertheless, the current loop is
modeled only with constant torque as it runs with a cycle time
much faster than the speed and position control loops, because
the dynamics of electrical phenomena will be faster than me-
chanical for large machine tools. It is worth noting that there is
no direct control of the tool tip position as it usually happens
with machine tools.

To adapt to the shape of the mechatronic model shown in
Fig. 1, the angular position can be related to the linear position
through a screw pitch p, in the case of a ball screw drive. Also,
the conversion between torque and force must be solved. So,
the resulting transfer functions are the following:

TF 0
1 ¼ ωm

τm
¼ x1

f
2π
p

� �2

s ¼ T F1
2π
p

� �2

s: TF 0
2 ¼ x2

ωm
¼ x2

x1

p
2π

� � 1
s
¼ T F2

p
2π

� � 1
s
:

TF 0
3 ¼ T F3 ¼ x3

x2
:

ð12Þ

The “s” term used in the first two transfer functions of Eq. (12)
represents the Laplace variable.

For tertiary transfer function, there is no need of any
changes as it directly has the relation between flexible
mass positions with table position. Obviously, for the
two dof model study, tertiary transfer function is
excluded.

3 Structural flexibility influence on the tool tip
position error and the maximum commanded jerk

One way to quantify the influence of the jerk in the propaga-
tion of the motion from the motor to the tool tip through the
transmission is to analyze the temporal response of the two
and the three dof models. Assuming the motor describe a sine

Fig. 3 Three dof mechatronic model of a compliant machine tool drives
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square path x1, here, it will be seen how the transmission at the
linear encoder x2 and the tool tip x3 follow that motion. This
analysis has been done initially under the open loop hypothe-
sis. To perform this analysis, a motor path generator with
increasing jerk has been programmed in Simulink defining
TF2 and TF3 transfer functions as in Section 2.1, see Fig. 4.
The time response of x2 and x3 will be compared to x1 to
calculate the tracking errors focusing especially on the over-
shoot. In the case of a three dof model, the compliance of the
structure will cause a different overshoot between x2 and x3.
To change the jerk between simulations, the acceleration time
tacc, which will define the slope of the speed command curve,
will be changed.

The main figure of Fig. 5 orients the tendency of the over-
shoot when the maximum commanded jerk increases for dif-
ferent cases of rigidities ratio k2/k1. On the other hand, in the
sub graph window, overshoots and jerks are detailed, this time
comparing only a three dof model case (k2 = 0.01*k1) and the
two dof model.

In the window of Fig. 5, it is shown that in the two dof
model for 15 μm of overshoot, the maximum commanded
jerk must be 680 m/s3. For the three dof model, it is noted that
there are many intersections between the 15 μm line and the

curve, so there is not only one value for the commanded max-
imum jerk for 15 μm of overshoot. But the most conservative
jerk is 30 m/s3. Between 30 m/s3 and 680 m/s3, there is an
error of 95.59 %. Therefore, the maximum error in the
commanded jerk estimation when the elasticity of the struc-
tural element is ignored, exceeds 95 % in this example
(k2 = 0.01*k1 = 1 %*k1).

In the experience of the authors and after consulting with
the manufacturers of large machine tools, the maximum
commanded jerk is usually between the 15 and 30 m/s3 and
agree with the values that have been studied.

4 Case study

A test bench has been set up as shown in Fig. 6. It consists of a
servomotor Fagor 42.30 A FKM with a nominal torque of
6.3 Nm, a Korta KBS-3210 ball screw with an outer diameter
of 32 mm and a pitch of 10 mmwith a single nut and a flange,
and a Heidenhain Ls 186 MI640 linear encoder with 0.5 μm
of resolution. The drive is controlled by a Fagor 8035 NC,
which has an oscilloscope function that allows measuring po-
sition at the motor and linear encoder, tracking error, and

Fig. 4 A position command
diagram

Fig. 5 Overshoot vs. jerk, two
dof, and three dof
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motor torque. The cycle times are 4 ms for the position loop,
and 62.5 μs for the of the velocity loop. On top of the table of
the drive, two cantilever thin plates of steel have been setup
with a mass of 30 kg above, which will be considered as the
tool tip position. Concerning the natural frequencies of the
machine tools, the dominant structural natural frequency is
in the range of 10–100 Hz, while in large machines is between
3 and 15 Hz [2]. The prototype of our case has a structural
natural frequency around 15 Hz.

4.1 Transmission chain elements inertia and stiffness
characterization

The drive components rigidities have been modeled using the
standard formulation of elasticity theory, Eq. (20) of Appendix
2. The resulting rigidities of some element have been calcu-
lated with Eqs. (21) and (22) of the Appendix 3 and listed in
Table 2, assuming that the union nut-carriage is located in the
middle of the axis. The remaining rigidities have been provid-
ed by the manufacturers as indicated. Inertias are also calcu-
lated with Eqs. (23), (24), and (25) of Appendix 3 and listed
below.

As Magnani et al. [18] propose, here, first the lumped pa-
rameters of all the components have been coupled in series,
thus providing an eight dof dynamic model as shown in
Fig. 7a. The degrees of freedom are servomotor position θ0,

flexible coupling first half position θ1, flexible coupling sec-
ond half position θ2, screw section at the nut angular and
linear position θ3 and x2, nut position x2, table s1, and flexible
mass position s1’. For simplicity’s sake, that model has been
reduced to the three dof model here studied, see Fig. 7b.

In order to obtain the screw equivalent axial stiffness, the
shaft stiffness kHa1 on the side between the table and the thrust
bearing stiffness kfb, will be added to the rigidity of the oppo-
site side kHa2 and kb according to the distribution of Fig. 7.

kHa ¼ kfb⋅kHa1
kfb þ kHa1

þ kb⋅kHa2
kb þ kHa2

ð13Þ

With Eq. (14), the calculation of stiffness is explained by the
displacement of the table, where table-nut-screw joint has in-
fluence. The flange of the nut is axially fixed with five screws
to a support nut, and the nut is fixed vertically by four screws
to the table. The first screws affect only structurally, but the
vertical screws may flex so may influence in the transmission.
The resulting transmission stiffness of this link will be

1

kM
¼ 1

kaT
þ 1

kaS
þ 1

4⋅kft
: ð14Þ

All rigidities of Table 2, except the columns one, represent k1
of the three dof model, see Fig. 7. The stiffness of the thin
plates is k2.

Table 2 Components’ rigidities, inertias and equivalences to the three dof model

Components stiffness Equivalent
stiffness (N/m)

Components inertia and masses Equivalent
mass (kg)

Motor shaft kem= 3.23 ⋅ 104Nm/rad k1 = 5.362.10
7 *Jm= 8.5 ⋅ 10−4kg ⋅m2 m1 = 335.57

Coupling *kAF= 4.01 ⋅ 103Nm/rad *JAF1 = JAF2 = 8.53 ⋅ 10−5kg ⋅m2 m2 = 392.97
Ball

screw
Torsion kHt= 1.72 ⋅ 104Nm/rad *JH= 6.25 ⋅ 10−4kg ⋅m2

Axial kHa= 1.23 ⋅ 108N/m
Nut *kT= 5.45 ⋅ 108N/m *mT= 1.23 kg

Table kM= 6.29 ⋅ 107N/m *mM= 68.5 kg

Column **kC= 3.7060 ⋅ 104N/m
k2 ¼ 3:7060:104

**mC= 4.228 kg m3 = 4.2280

*Provided by the manufacturers

**Calculated by modal analysis

Fig. 6 Test bench with a
compliant mass over a ball screw
drive

Int J Adv Manuf Technol (2017) 90:2849–2861 2855



4.2 Experimental characterization

4.2.1 Experimental characterization of the damping
and disturbance in the drive

Following the steps of Section 2.1.2 and considering the ex-
perimental perturbations and the regression curve
τfC = 2.2 Nm and cm = 0.0076 Nms are obtained. These values
of friction and viscous friction damping will be introduced in
the disturbance torque block of the mechatronic model, as in
Fig. 3.

4.2.2 Experimental characterization of the flexible element

The characterization of the flexible element allows to quantify
the mass, stiffness, and damping of the thin plates and the

mass. The experimental modal analysis has been done with
an impact test with the aid of a hammer 086c03 PCB, a small
mass teardrop accelerometer PCB 352C22 with 10.44 mV/g
of sensitive, a OROS OR35 signal analyzer with four chan-
nels, and a OROS NV Gate acquisition program.
Subsequently, in MATLAB transfer function as well as the
phase and the real and imaginary plots, it is obtained, as shown
below in Fig. 8.

The results of Fig. 8 show that the natural frequency is
f2 = 14.9 Hz. The two peaks of the real part of the transfer
function are produced in f21 = 15.63 Hz and f22 = 14.38 Hz.
Therefore, the frequency is increased Δf = 1.25 Hz, and the
relative damping of the flexible mass of the prototype gives

ξ3 ¼ Δf
f 2
¼ 0:0839.

The minimum value of the imaginary part determines the
rigidity of the flexible element as

Fig. 7 Test bench lumped
parameters model. a n dof model.
b Three dof equivalent model
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Immin ¼ −1
2k2ξ3

¼ −0:0001608. T h e r e f o r e ,

k2 =3.7060 ⋅104 N/m.
To calculate the modal mass of the flexible mass, m3 ¼ k2

ω2
2

¼ k2
2π f 2ð Þ

2, thus m3 =4.22 kg.

Considering Eq. (4), Eq. (5), Eq. (9), Eq. (10), the value cal-
culated of the relative damping ξ3, and the values in Table 2,
the damping coefficients c1 and c2 will be 16,789 and
11.80 Ns/m.

4.3 Frequency analysis, transfer functions, and modes

The result of the modal analysis of the two dof model is that
the natural frequency of the secondmode is 85.1 Hz, while the
frequency of the second and third modes of the three dof
model are 15.1 and 85.65 Hz. In the second mode, it can be
seen in the effect of the resonance of the flexible mass and in
the third mode the vibration of the transmission.

From left to right, in Fig. 9, the primary transfer function
(TF1) for the two and three dof model, the secondary transfer
function TF2 of both models, and the tertiary transfer function
TF3 of the three dof model are shown. Finally, the closed
position loop TF of the two and three dof models and the
closed position loop together with the tertiary TF are com-
pared. The influence of the structural compliance of the plate
is TF1 and TF2, where at 15 Hz, there are changes in magni-
tude and phase. Also, the closed position loop TFs of the two
and three dof are practically equal. However, when the tertiary
TF is added to the closed position loop of the three dof model,

the peak at 15 Hz has a strong influence that will result in the
appearance of overshoot and vibrations due to the inertial
forces, even reducing the bandwidth of the drive.

5 Experimental validation

The validation of the model has been performed on the test
bench assembly of Fig. 6. Internal and external data have been
collected. The internal data have been the commanded posi-
tion, the following error measured by the table linear encoder,
the motor torque and velocity. These data have been collected
by the oscilloscope function of the Fagor NC. The external
data is the position of a retroreflector attached to the compliant
mass, measured by a laser-interferometer HP 5529A with
submicrometer precision and sampled by the HP 10474A me-
trology software [19]. All the signals have been sampled with
a 4-ms period.

5.1 Time domain signals

The tests consisted on several linear motions with a square
sine velocity profile with a variable length of 20, 100, and
400 mm and feed rates of 7, 15, and 30 m/min. Some results
are shown in Fig. 10. There, the dashed line is the simulated
position or following error in the table, continuous thick line is
the measured position or following error in the table, dashed-
dot line is the simulated position and following error in the
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compliant mass, and the continuous thin line is the measured
position and following error in the mass.

Generically, it is observed that the model curves fit well
with the experimental, ones as in the case of Fig. 10a. Due to
the shorter travel, which means higher frequency content in
the motion, in Fig. 10c, Fig. 10d, and Fig. 10e, higher oscil-
lations are observed in the following error of the flexible mass.
This is due to the inertia and limited rigidity of the structural
element. Oscillations in the following error in Fig. 10d are
higher because at that shaft speed, the axis is working near
the first natural frequency (15 Hz). At the same feed rate and a
shorter stroke, case Fig. 10e, the oscillations in the flexible
element are greater, even noticeable on the position curve.

Generally, a short and high feed rate stroke is more likely to
get to work near the natural frequency (15 Hz) and get larger
oscillations and overshoots, but it is not the only factor. The

harmonic content of the motion actually influences the track-
ing error and the overshoot and that depends on the feed rate,
stroke, profile shape, and acceleration time. Therefore, even
programming a slower feed rate with the same stroke,
Fig. 10c, greater oscillations in the following error may ap-
pear. In Fig. 11, it is seen with greater detail the comparison of
the simulated and measured following error of the table; as in
Fig. 10, it can be hardly seen.

In Fig. 11 again, the signals are very similar. The main
difference is the amplitude of the oscillations, which seems
to be higher in the simulation of the flexible mass motion but
lower in the simulated table motion. This is probably due to an
imperfect estimation of the damping of both the transmission
chain and the compliant mass, or even due to the fact that
probably the proportional damping hypothesis assumed has
its limitations comparing with the experimental evidence.

a

b

c

d

e

Fig. 10 Position and following
error curves to several working
conditions. From top to bottom: a
Vf = 30,000 mm/min and
Δx = 400 mm, b 30,000 mm/min
and 100 mm, c 15,000 mm/min
and 100 mm, d 7000mm/min and
100 mm, and e 7000 mm/min and
20 mm

Fig. 11 Following error in the
table and flexible mass.
Vf = 7000 mm/min and
Δx = 100 mm
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5.2 Compliant mass and table overshoot vs. maximum
commanded jerk

Here, several tests have been done varying the
commanded jerk of the motion profile and measuring
the resulting overshoot on the drive table and the compli-
ant mass. The measuring system is the same as in the
previous section. The idea is to verify experimentally

how the jerk together with the system compliance affects
the overshoot of the system.

As the motion profile is a velocity square sine, to change the
commanded jerk, first, the equations of the motion have to be
developed. In this motion profile, the acceleration time tacc is the
time needed to reach the fast positioning speed G0 of the drive.
Deriving the velocity equation, the following commands in accel-
erationand jerkareobtained; seeEq. (15),whereVf is the feed rate:

a tð Þ ¼ π⋅G0
2⋅tacc

⋅sin
π⋅G0
V f ⋅tacc

t
� �

: j tð Þ ¼ 1

2⋅V f

π⋅G0
tacc

� �2

⋅cos
π⋅G0
taccV f

⋅t
� �

: ð15Þ

Thus, the maximum acceleration and jerk values correspond
to the following:

amax ¼ π⋅G0
2⋅tacc

: jmax

¼ 1

2⋅V f

π⋅G0
tacc

� �2

¼ 2 amaxð Þ2
V f

: ð16Þ

Hence, varying the acceleration time of the profile, the
demanded acceleration, and jerk can be changed. Here, sever-
al acceleration times from 60 to 300 ms have been tested,
which means that a maximum jerk of 1370, 771, 610, 493,
216, 124, 79, 63, and 54 m/s3 have been tested. The feed rate
has been set at 15 m/min, and the stroke is 590 mm. The
measured overshoot values on the table and flexible mass
are compared with the simulated ones in Fig. 12a and
Fig. 12b, respectively. Regarding the simulations, the over-
shoots calculated with the whole mechatronic model are plot-
ted but also as a reference, the displacements obtained consid-
ering only the transmission TFs as in Section 3 are shown.

Comparing the overshoots simulated with the mechatronic
model and the experimental ones, it can be said that there is a
reasonable agreement. In Fig. 12b all the tests are above the
predicted trend, while in Fig. 12a, the measured overshoots
seem to be always higher than the predicted ones, which again
can be due to a poor damping identification. Although the
expected trend was an increase of the overshoot with the
commanded jerk, the experimental results and the model show
that there are several jerk values where the overshoot decays,
as at 54 and 124m/s3 in Fig. 12b. At those values, it seems that
the demanded jerk together with the profile shape and the
system dominant natural frequency result in a cancelation of
the compliant mass vibration. This is an interesting effect that
will be further analyzed.

Comparing the predictions of the mechatronic model and
the transmission models, it is clear that the position control
task means a lower overshoot as predicted by the mechatronic
model. However, it must be noted how the shape of the sim-
ulated curves is similar in Fig. 12b, but not in Fig. 12a. This is
explained again by the dominant frequencies of the simulated

a

b

Fig. 12 Table and flexible mass
overshoot Δs depending on the
commanded maximum jerk
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systems. In Fig. 12b, the dominant frequency of the transmis-
sion, TF2 and TF3, is the same as the closed position loop, that
is, 15.3 Hz, see Fig. 9. In Fig. 12a, the shape is different
because the TF2 dominant frequency is 56.5 Hz, different
from the dominant frequency of the closed position loop.
The result is that with the transmission model only, the jerk
values that minimize the overshoot are higher.

On the other hand, the drive precision without compliant
mass was calculated by means of ISO 230–2 norm [20], as in
the tests performed by Castro and Burdekin [21, 22].
According to the standard, the precision of the drive is
8 μm. However, when the mass is attached, to keep the com-
pliant mass overshoot equal to or below 8 μm, the maximum
commanded jerk must be below 20 m/s3. If a two dof model
was considered, an erroneous maximum jerk of 200 m/s3

would be estimated. That is, the decrease of the maximum
jerk for an overshoot of 8 μm is from 200 to 20 m/s3, a
90 %. Hence, this methodology could be used by a customer
who needs to know themaximum jerk to command for a given
overshoot at the table or the tool tip.

6 Conclusions

The contributions of the present work are the following:
First, a three dof mechatronic model integrating the dynam-

ics of the transmission chain, the structural elements of large
machine tools, and the cascaded control of position, velocity,
and current. All the formulation is provided for the three dof
model, that is, the required transfer functions and the damping
coefficients analytical expressions. The model has been pro-
grammed and used to simulate the influence of the machine
structural element compliance which results in a different dis-
placement at the tool tip suffers compared to the displacement
measured by the control at the linear encoder.

The model developed has been used also to estimate the
maximum commanded jerk that a machine tool can execute
without excessive overshoot at the tool tip. The comparisons
made show that the error in the estimation of the maximum
jerk when the machine compliance is ignored can be up to
90 %.

A test bench consisting on a ball screw drive and a com-
pliant mass that simulates the compliance of a large machine
has been used for experimental testing. Several experimental
tests with variable feed rates and strokes show a good agree-
ment with the model, although there is room for improvement
in the damping values estimation.

Also, to analyze the variation of the mass overshoot with
the maximum commanded jerk, several tests have been done,
measuring the displacement with a linear interferometer. The
results show a good agreement with the model predictions.
What is more, although it is expected to find a higher over-
shoot as the jerk increases, it has been shown how there exist

some jerk values where the resulting overshoot is minimized.
The location of those values seems to have a relation with the
motion profile and specially, with the dominant frequency of
the system. That means that it could be possible to program a
minimum overshoot jerk for each motion, although this has to
be further analyzed.

To conclude, a tool capable of simulating different test
drives of any structural element in the design stage, reducing
the trial and error stage, and avoiding the necessity of building
large and expensive prototypes is presented.

Appendix 1

Modal matrix

The modal matrix is initially obtained as

ϕ½ � ¼

1 1 1

1 1−
ω2
2

ω1r23ð Þ2 1−
ω2
3

ω1r23ð Þ2

1

1−
ω2
2

ω1r23ð Þ2

1−
ω2
2

ω3r12ð Þ2

1−
ω2
3

ω1r23ð Þ2

1−
ω2
3

ω3r12ð Þ2

2
6666666664

3
7777777775
: ð17Þ

After normalization with respect to the mass matrix, the [φ]
modal matrix is

ϕ½ � ¼

1ffiffiffiffiffiffi
mT

p 1

a1

1

a2

1ffiffiffiffiffiffi
mT

p
1−

ω2
2

ω2
1r23

a1

1−
ω2
3

ω2
1r23

a2

1ffiffiffiffiffiffi
mT

p
1−

ω2
2

ω2
1r23

1−
ω2
2

ω2
3r12

� �
a1

1−
ω2
3

ω2
1r23

1−
ω2
3

ω2
3r12

� �
a2

2
666666666666664

3
777777777777775

: ð18Þ

The a1 and a2 constant terms of Eq. (18) simplify the modal
matrix expression. These are defined in Eq. (19).

a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3ω4

3r12 þ m2 ω2
2−ω2

3r12

	 
2� �
ω2
2−ω2

1r23

	 
2
ω2
2−ω2

3r12

	 
2
ω4
1r23

þ m1

vuuut :

a2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3ω4

3r12 þ m2 ω2
3−ω2

3r12

	 
2� �
ω2
3−ω2

1r23

	 
2
ω2
3−ω2

3r12

	 
2
ω4
1r23

þ m1

vuuut :

ð19Þ

2860 Int J Adv Manuf Technol (2017) 90:2849–2861



Appendix 2

Equations for stiffness

Then, equations to determine the values of torsional, axial,
and bending rigidity are presented. These will be function of
the shear modulus G, the torsional moment of inertia J, the bar
length L, the Young’s modulus E, the area of the cross-section
A, and the axial moment of inertia I.

k torsional ¼ G⋅J
L

kaxial ¼ E⋅A
L

kflexure ¼ 3E⋅I
L3

ð20Þ

Appendix 3

Being “p” the screw pitch, the resulting stiffness between ser-
vomotor and the loading part in the two dof model or trans-
mission part in the three dof model is

1

k1
¼ 1

kem 2π
p

� �2 þ 1

kAF 2π
p

� �2 þ 1

kHt 2π
p

� �2
þ kHa

� �

þ 1

kT
þ 1

kM
: ð21Þ

Thus, by inverse, the equivalent rigidity k1 is obtained as fol-
lows:

k1 ¼ 1

kem 2π
p

� �2 þ 1

kAF 2π
p

� �2 þ 1

kHt 2π
p

� �2
þ kHa

� � þ 1

kT
þ 1

kM

2
664

3
775
−1

:

ð22Þ

The unit transformation from the inertia to mass is direct in the
case of the servomotor:

m1 ¼ Jm
2π
p

� �2

ð23Þ

To reduce the mass of the transmission part in the three dof
model or load part in the case of two dof model, which in-
cludes the inertia of the coupling, screw, nut, and table, it is
obtained by

m0
2 ¼ JAF1

2π
p

� �2

þ JAF2
2π
p

� �2

þ JH
2π
p

� �2

þ mT

þ mM : ð24Þ

It should be taken into account that an aluminum block of
9.15 kg is added at the table, which will support and assembly
the set of the flexible mass, therefore:

m2 ¼ m0
2 þ 9:15: ð25Þ
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