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Abstract Nowadays, the increasing demand for high-
strength, efficient, quiet, and high-precision gear design leads
to the use of various optimization methods. In this study, a
new evolutionary optimization algorithm, named adaptive
mixed differential evolution (AMDE), based on a self-
adaptive approach is introduced. The proposed method is ap-
plied to solve the problem of the optimal spur gear tooth pro-
file, where the objectives are to equalize the maximum bend-
ing stresses and the specific sliding coefficients at extremes of
contact path. The mathematical model of the maximum bend-
ing stresses is developed using a finite element analysis (FEA)
calculation. The effectiveness of the proposed method is dem-
onstrated by solving some well-known practical engineering
problems. The optimization results for the test problems show
that the AMDE algorithm provides very remarkable results
compared to those reported recently in the literature.
Moreover, for the spur gear used in this work, a significant
improvement in balancing specific sliding coefficients and
maximum bending stresses are found.

Keywords Gears . Tooth profile . Bending stresses .
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1 Introduction

Gears are the most important components used as a part of
mechanical systems to transmit motion and power between
rotating shafts. They are widely used in the industry for ad-
vantages of compact structure, large power transmission, and
high efficiency. However, the gear design is a complicated
task involving multiple objectives which often conflict such
as strength, pitting resistance, bending stress, scoring wear,
etc. Furthermore, the complex shape and geometry of a gear
leads to a large number of mixed design parameters and highly
non-linear constraints. By considering the precedent factors,
the traditional gear design is very difficult hence the
computer-aided design is needed [1].

Over the lastdecades, theoptimizationofgearsusingdifferent
methods has been a subject of many research reports [2–5].
Gologlu and Zeyveli [6] used a genetic algorithm (GA) to auto-
mate a preliminary design of gear drives. The objective was to
minimize the volume of gear trains. Mendi et al. [7] employed
also a genetic approach to minimize the total volume of a gear-
box. Savsani et al. [1] presented two advanced optimization al-
gorithms, particle swarm optimization (PSO) and simulated an-
nealing (SA), to find the optimal combination of design param-
eters for the minimum weight of a spur gear train. Marjanovic
et al. [8] provided a practical approach for gearbox optimization
with spur gears based on an optimal selection ofmaterials, posi-
tion of shaft axes, and gear ratio.Wan and Zhang [9] formulated
an optimal design problem of a spur gear drive with a fixed load
factor.Threemethodswerepresented tofindthegloballyoptimal
design scheme on the structure of the spur gear pair.

Recently,Golabi et al. [10]minimized thevolumeof thegear-
box usingMATLABoptimization toolbox,where two and three
stage gear trains have been considered. Buiga and Tudose [11]
optimized the mass of a two-stage helical coaxial speed reducer
by using the genetic algorithm. The objective function was
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describedbyaset of 17mixed-designvariables.Thoanet al. [12]
presented theoptimizationdesignofstress-relievingholesat root
fillet in spur gear. The authors used the genetic algorithmmeth-
odology to findout theoptimized locations and sizes of theholes
at the root fillet. Salomon et al. [13] formulated an optimization
problem of a gearbox for a random variant of torque and speed
requirements. Both the gear numbers and their characteristics
were optimized to minimize the overall energy consumption
and thegearboxcost.Theauthorsemployedanactive robustness
methodology (AR) to solve the problem.

Gear tooth profile has an immense effect on the main operat-
ing parameters of gear pairs such as load capacity, working life,
efficiency, and vibrations. In recent years, a variety of methods
have been introduced to determine the optimal profile in order to
satisfyvariousoptimizationcriteria. Indeed,Divandari et al. [14]
presented the effect of different profilemodifications and profile
error on the dynamic response of gear system in the presence of
tooth-localized defect. In theirwork, a dynamicmodel including
different gear errors and defectswas developed. Furthermore, to
estimate the optimal values of profile shift coefficients aswell as
radius of the tooth root and the pressure angle, an optimization
methodcalledexplicit parametricmethod (EPM)wasdeveloped
by Atanasovska et al. [15]. The objective was to balance the
maximum bending stresses of spur gears. Bruyère and Velex
[16] proposed a simplified multi-objective analysis of optimum
profile modifications in spur and helical gears. The gear design
criteria such as tooth load, contact pressure, root stress, and fric-
tion loss were considered. Diez-Ibarbia et al. [17] studied the
influence of profile shift coefficients on the energy efficiency
of spur gears using a developed load contact model.
Hammoudi et al. [18] optimized the selection values of profile
shift coefficients for cylindrical spur and helical gears using dif-
ferential evolution algorithm (DE). The optimization procedure
wasdeveloped for exactbalancingspecific slidingcoefficients at
extremes of contact path.

In this paper, an efficient adaptive mixed differential evo-
lution (AMDE) algorithm is presented to solve the optimal
tooth profile of a specific cylindrical spur gear problem. The
optimization procedure is developed based on the principles
of equalized maximum bending stresses and the specific slid-
ing coefficients to maximize the service life of the used gear
pair. The mathematical model of maximum bending stresses is
developed according to Atanasovska et al. [15] using a finite
element analysis (FEA) calculations. Minimal transverse con-
tact ratio value, thickness of the tooth tip diameter, and tooth
interferences are considered as constraints. Design variables
are the profile shift coefficient, the radius of root curvature,
and the normal pressure angle. The AMDE algorithm uses a
self adaptive approach to adapt the control parameters. The
performance of the proposed algorithm is demonstrated by
solving three well-studied engineering design problems.

The paper is organized as follows. In Sect. 2, the basic DE
algorithm steps are briefly introduced. The proposed AMDE

is presented in Sect. 3. The performance of the proposed al-
gorithm is evaluated in Sect. 4. The optimization procedure
for gear design profile is described in Sect. 5 and solved in
Sect. 6. Finally, the last section is dedicated to the conclusion.

2 Basic differential evolution

The DE algorithm was firstly introduced by Storn and Price
[19]. It is a very popular evolutionary algorithm and exhibits
remarkable performance in a wide variety of problems from
diverse fields [20]. This technique involves three general evo-
lutionary operators, i.e., mutation, crossover, and selection,
which are associated with certain control parameters. In short,
the procedure of the DE works as follows:

Step 1: Parameter setting

The control parameters of DE are the population size NP,
the maximum number of generations (termination criterion)
Gmax, the scale factor F, and the crossover rate Cr.

Step 2: Initialization

The population NP is initialized by randomly generated

individuals within the boundary constraints x Lð Þ
i ; x Uð Þ

i

h i
(i=1 , 2… ,D), where D is the number of variables and x Lð Þ

i

and x Uð Þ
i are the lower and the upper limits of the ith variable

problem, respectively.

Step 3: Mutation

For each target vector xGi; j, a mutant vector vGþ1
i; j is gener-

ated. The most frequently usedmutation strategies are [21, 22]

“DE
.
rand

.
1
.
bin” : vi; jGþ1 ¼ xi;r1G þ F xi;r2G−xi;r3G

� � ð1Þ

“DE
.
best

.
1
.
bin” : vi; jGþ1 ¼ xi;bestG þ F xi;r1G−xi;r2G

� �
ð2Þ

“DE
.
best

.
2
.
bin” : vi; jGþ1 ¼ xi;bestG þ F1 xi;r1G−xi;r2G

� �
þ F2 xi;r3G−xi;r4G

� �
ð3Þ

“DE
.
rand

.
2
.
bin” : vi; jGþ1 ¼ xi;r1G þ F1 xi;r2G−xi;r3G

� �
þ F2 xi;r4G−xi;r5G

� �
ð4Þ

where j= 1,2,…, NP. r1, r2, r3, r4, r5 are the integer indices
chosen randomly in the interval [1, 2,…, NP] and

2064 Int J Adv Manuf Technol (2017) 90:2063–2073



r1≠ r2≠ r3≠ r4≠ r5 ≠j. F, F1 and F2 are the scaling factors used
to control the amplification of the differential variation be-
tween two individuals.

If the ith element of vGþ1
i; j is infeasible (i.e., out of the

boundary), it is reset as follows [23]:

vGþ1
i; j ¼

min Ui; 2Li−vGþ1
i; j

n o
if vGþ1

i; j < Li

max Li; 2Ui−vGþ1
i; j

n o
if vGþ1

i; j > Ui

8<
: ð5Þ

Step 4: Crossover

The trial vector uGþ1
i; j is generated using the target and mu-

tated vectors as

uGþ1
i; j ¼ vGþ1

i; j if randi; j 0; 1½ �≤Cr or i ¼ irand
xGi; j otherwise

(
ð6Þ

where irand is an integer index randomly chosen in the interval
[1, 2, … ,D]. The operator (randi , j) creates a random value
uniformly distributed in the interval [0, 1].

Step 5: Selection

In the selection step, the better one from the target vector

xGi; j and the trial vector uGþ1
i; j will be chosen to enter the next

generation according to their fitness value:

xGþ1
i; j ¼ uGþ1

i; j if f uGþ1
i; j

� �
≤ f xGi; j

� �
xGi; j otherwise

(
ð7Þ

Step 6: Stopping criterion

If the stopping criterion is satisfied, the best result will be
displayed. Otherwise, steps 3, 4, and 5 are repeated.

3 Adaptive mixed differential evolution

The proposed algorithm, AMDE, is developed to solve the
engineering design optimization problems of mixed discrete
continuous types. The particular variant used throughout this
study in order to generate a mutant vector is the DE/rand/2/bin
scheme (Eq. (4)). Moreover, the AMDE algorithm uses a self-
adaptive approach, proposed by Brest et al. [24] to adapt the
control parameters. For each individual, the scaling factors
(F1 , j, F2 , j) and the crossover factor (Crj) are adjusted before
the mutation is performed. So, they influence the mutation, the

crossover, and the selection operations of the new individual
[24]. The initialization process sets are F1 = 0.1, F2 = 0.2,
and Cr1 =0.5. The new control parameters are calculated as
follows:

F1; j;Gþ1 ¼ Fl þ rand 0; 1½ �*Fu if β1 < τ1
F1; j;G otherwise

�
ð8Þ

F2; j;Gþ1 ¼ Fl þ rand 0; 1½ �*Fu if β2 < τ2
F2; j;G otherwise

�
ð9Þ

Cr j;Gþ1 ¼ rand 0; 1½ � β3 < τ3
Cr j;G otherwise

�
ð10Þ

where Fl=0.1, Fu=0.9, and βk (k= 1,…,3) are uniform ran-
dom values on [0, 1]; rand creates a random value uniformly
distributed in the interval [0, 1]. τ1, τ2, and τ3 represent the
probabilities to adjust the control parameters. In this
work, τ1=0.5, τ2=0.2 , and τ3=0.5.

Further, the penalty function method is applied to handle
the design constraints. The basic idea of this method is to
transform a constrained optimization problem into an uncon-
strained one, by adding the penalty terms into the objective
function to penalize the constraint violations. The pseudocode
of the AMDE algorithm is given in Fig. 1.

3.1 Discrete and integer variables handling

The main idea to handle a discrete variable is to use the var-
iable position index in the array of normalized values [25–27].
For example, when the created index is 2, this is the second
normalized value that will be taken. So, if there are n normal-
ized values in the set, there are n index positions from 1 to n.
The integer variable can be treated in a similar way as the
discrete.

More specifically, instead of optimizing the values of the
discrete and the integer variables directly, we optimize the
values of their indexes which are created as real values, and
then they are transformed to the nearest integer by truncation.
During the evaluation of the objective function and the con-
straints, the discrete values are used instead of their indexes. In
general, the handling of the discrete and the integer variables
are performed in two procedures: initialization and mutation.
The indexes are created as follows:

xG¼0
i; j ¼ INT x Lð Þ

i þ randi; j 0; 1½ �* x Uð Þ
i −x Lð Þ

i þ 1
� �� �

vGþ1
i; j ¼ INT xGi;r1 þ F1 xGi;r2−x

G
i;r3

� �
þ F2 xGi;r4−x

G
i;r5

� �� �
8<
:

ð11Þ

where INT is a function that transforms the real value into the

nearest integer value of xG¼0
i; j and vGþ1

i; j by truncation.

Int J Adv Manuf Technol (2017) 90:2063–2073 2065



3.2 Constraints functions treatment

The exterior penalty method has been widely used to deal with
constraints, due to its simple principle and easy implementation
[28–31]. However, the drawback of this technique is the large
number of the penalty parameters that must be set especially for
the optimization problems with high constraints [32].

In order to overcome the above limitation, we propose in
this study to transform the constraint violation sum to an in-
equality constraint (Eq. (12)). Then, the penalty term will be
introduced into the objective function to treat this constraint
(Eq. (13)). The main advantage of this method is that only one
penalty factor will be set to solve the problemwith constraints:

ϕ xð Þ ¼
Xm
i¼1

max 0; gi xð Þð Þ−υ≤0 ð12Þ

F xð Þ ¼ f xð Þ þ λ max 0;ϕ xð Þð Þ2
� �

ð13Þ

where∅ is the sum of constraint violation, gi are the inequality
constraints, m is the number of inequality constraints, υ is a

very small positive number chosen in the range 10−6; 10−20
� �

depending on the number and the constraint function com-
plexity of the problem, F is the expanded objective function
to be optimized, and λ is the penalty factor.

4 Evaluation of AMDE approach

The performance of the proposed algorithm is evaluated based
on three well-known constrained mixed engineering

Input:  , , the probabilities to adjust the control parameters: = 0.5, = 0.2 and = 0.5

The initial values of control parameters: = 0.1 , = 0.2, = 0.5

1 ; 

2 Generate an initial population : 

3 For discrete and integer variables: [ ] )(
,

)()()(0

, 0, ( 11 )
i j

LULG
i i j i ix INT x rand x x= = + ∗ − +

4 For continuous variables: [ ] )()()(0

,, 0,1 ( )
LULG

i j i i j i ix x rand x x= = + ∗ −
5 Evaluate the initial population using penalty function to handle constraints as in Eq. (13) 

6 Perform the elitism to choose  and  of 

7  For to do 

8  For = 1 to  do 

9 Select randomly five integer indices ≠

10 Adjust the parameters ,  and  according to Eqs. (8), (9) and (10)      

11 Generate the mutant vector  using DE/rand/2 mutation strategy       

12 Handle boundary  constraint violations according Eq. (5) 

13 Generate the trial vector  using binomial crossover

14 Randomly generate an integer in the range 

15  For to do 

16 If [ ], 0 ,1        dnarjjirand C r o r i i≤ =
17 1 1

, ,

G G
i j i ju v+ +=

18  Else  
19 1

, ,

G G
i j i ju x+ =

20  End If  
21  End For  
22 Evaluate the trial vector  using penalty function to handle constraints  

23 Selection 

24 If ( ) ( )1

, ,

G G
i j i jf u f x+ ≤ , for minimization case  

25 1 1

, ,

G G
i j i jx u+ +=

26  Else  
27 1

, ,

G G
i j i jx x+ =

28  End If 
29 Perform the elitism to choose  and  of 

30  End For    
31  End For 
Output: the best individual with the smallest objective function value in the population

Fig. 1 Pseudocode of the AMDE
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Fig. 2 Cylindrical pressure vessel design problem
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Fig. 3 Convergence of AMDE algorithm to the best fitness for pressure
vessel
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problems: pressure vessel, speed reducer, and multiple disc
clutch brake design.

The AMDE parameters for the engineering design problems
are set as follows: NP = 100, initialization process sets
are F1=0.1, F2=0.2, Cr1=0.5, τ1=0.5, τ2=0.2 , and τ3=0.5.
The maximum number of generations varied from 200 to 1200
depending on the problem. For each problem, we independently
run AMDE 100 times to measure the quality of the results and
the robustness of the proposed algorithm. The AMDE was im-
plemented inMATLAB and the optimization runswere executed
on a PC with a 2.2 GHz Intel Dual Core processor and 2 GB of
RAM memory.

4.1 Pressure vessel

This optimization problem was originally formulated by
Sandgren [33]. The cylindrical vessel capped at both ends
by hemispherical heads, as shown in Fig. 2, must be designed
for the minimum total fabrication cost, including the material
cost, forming, and welding. The problem involves fourmixed-
design variables: the thickness of the cylindrical shell (Ts), the
thickness of the spherical head (Th), the inner radius (R), and
the length of the cylindrical segment of the vessel (L). Ts and
Th are integer multiples of 0.0625 in. The problem can be
expressed as follows:

Minimize : f T s; Th;R; Lð Þ ¼ 0:6224 TsR L

þ 1:7781 ThR2

þ 3:1611 Ts
2L

þ 19:84 Ts
2R ð14Þ

Subject to

g1 ¼ − Ts þ 0:0193 R ≤ 0
g2 ¼ − Th þ 0:00954 R ≤ 0

g3 ¼ −πR2L−
4πR3
� �
3

þ 1296000≤0
g4 ¼ L − 240 ≤ 0

ð15Þ

where 0.0625 ≤Ts≤ 6.1875, 0.0625 ≤Th≤ 6.1875, 10 ≤R≤ 200,
and 10 ≤L≤ 200.

Theaboveproblemwas recently studiedbymany researchers
using different optimizationmethods likeHybrid PSO-DE [34],
artificial bee colony (ABC) [35], cuckoo search (CS) [36], and
composite differential evolution with modified oracle penalty
(MOCoDE) [37]. The objective function convergence over the
generations is plotted on Fig. 3. A comparison of results is listed
in Table 1 and the statistical results are shown in Table 2. The
constraint values, for the best solution obtained by AMDE, are
[0, −3.588083E−2; 0, −6.336340E+1].

As it can be seen, the best feasible solution obtained for the
pressure vessel design example using the above methods is
6059.71433, which is also provided by AMDE. In addition, it
is observed from the statistical results that the proposed algo-
rithm is more robust in solving this problem with 8.2267E−12
standard deviation. So, it can be said that AMDE outperforms
the four compared approaches in terms of robustness.

SD standard deviation, NA not available

4.2 Speed reducer

The objective is to optimize the total weight of the speed
reducer [38]. The problem (Fig. 4) is subjected to constraints
on bending stress of the gear teeth, surfaces stress, transverse
deflections of the shafts, and stresses in the shafts. The vari-
ables are the face width (b), module of teeth (m), number of

Table 1 Pressure vessel problem: comparison of AMDE results with literature

Design variables PSO-DE ABC CS MOCoDE AMDE

Ts 0.8125 0.8125 0.8125 0.812500 0.8125

Th 0.4375 0.4375 0.4375 0.437500 0.4375

R 42.098445596 42.098446 42.0984456 42.09844559585 42.098445595854919

L 176.636595842 176.636596 176.6365958 176.63659584337 176.63659584243942

fmin 6059.714335048 6059 .714339 6059.7143348 6059.7143 6059.7143350484

Table 2 Pressure vessel
problem: comparison of statistical
results of AMDE with literature

Statistical PSO-DE ABC CS MOCoDE AMDE

Best 6059.714335 6059.714736 6059.714 6059.7143 6059.7143350484

Mean 6059.714335 6245.308144 6447.736 6059.7143 6059.7143350484

Worst 6059.714335 NA 6495.347 6059.7143 6059.7143350484

SD 1.0E−10 2.05E+02 502.693 1.9444E−8 8.2267 E–12

Best results are shown in italics form
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teeth on pinion (z), length of first shaft between bearings (l1),
length of second shaft between bearings (l2), diameter of shaft
1 (d1), and diameter of shaft 2 (d2). The third variable is inte-
ger and the rest of them are continuous. The mathematical
formulation of this problem can be described as follows:

Minimize : f b;m; z; l1; l2; d1; d2ð Þ ¼ 0:7854 b m2

3:3333 z2 þ 14:9334 z−43:0934
� �

−1:508 b d21 þ d22
� �þ

7:4777 d31 þ d32
� �þ 0:7854 l1d21 þ l2d22

� �
ð16Þ

Subject to

g1 ¼
27

b m2z
− 1 ≤ 0

g2 ¼
397:5

bm2z2
− 1 ≤ 0

g3 ¼
1:93l31
mzd41

− 1 ≤ 0

g4 ¼
1:93l32
mzd42

− 1 ≤ 0

g5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
745l1
mz

� �2
þ 16:9� 106

r
110d31
� � −1 ≤ 0

g6 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
745l2
mz

� �2
þ 157:5� 106

r
85d32
� � −1≤0

g7 ¼
mz
40

‐ 1 ≤ 0

g8 ¼
5m
b

− 1 ≤ 0

g9 ¼
b

12m
− 1 ≤ 0

g10 ¼
1:5d1 þ 1:9

l1
− 1 ≤ 0

g11 ¼
1:1d2 þ 1:9

l2
− 1 ≤ 0

ð17Þ

where 2.6 ≤b≤ 3.6, 0.7 ≤m≤ 0.8, 17 ≤z≤ 28, 7.3 ≤l1≤ 8.3, 7.3
≤l2≤ 8.3, 2.9 ≤d1≤ 3.9, and 5 ≤d2≤ 5.5.

The convergence of AMDE to the best fitness is given on
Fig. 5. The best results obtained by AMDE and the other algo-
rithms are given in Table 3. The statistical results are shown in
Table 4. The best feasible solution found by AMDE is
2994.47106 and the constraints are [−7.39152E−2, −1.97998E
−1, −4.99172E−1, −9.04643E−1, −7.00E−16, 0, −7.0250E−1,
−2.00E−16, −5.83333E−1, −5.13257E−2, −9.00E−16].

It can be seen from Table 3 that the feasible solution found
by AMDE is the best among those of all the compared ap-
proaches. Furthermore, it is observed from the statistical results
that AMDE presents the smaller standard deviation 1.3711E
−12. So, our method is more efficient than are the compared
approaches in terms of quality solutions and robustness.

4.3 Multiple disc clutch brake

Themultiple disc clutch brake [39] (Fig. 6)must be designed for
the minimum weight using five discrete variables: inner radius
(ri)∈ (60,61,62,…, 80), outer radius (r0)∈ (90,91,…,110), thick-
nessofdiscs (t)∈ (1,1.5,2,2.5,3), actuatingforce (F)∈ (600,610,
620,…, 1000), and number of friction surfaces (Z)∈ (2, 3, 4, 5, 6,
7, 8, 9). The problem can be stated as

Minimize : f ri; r0; Z; tð Þ ¼ π tρ r20−r
2
i

� �
Z þ 1ð Þ ð18Þ

Subject to
g1 ¼ r0− ri− Δ r ≥ 0

g2 ¼ lmax− Z þ 1ð Þ
�
t þ δ

� �
≥0

g3 ¼ pmax− prz≥ 0
g4 ¼ pmaxvsrmax þ przvsr ≥ 0
g5 ¼ vsrmax− vsr≥ 0
g6 ¼ Tmax− T ≥ 0
g7 ¼ Mh− s Ms≥ 0
g8 ¼ T ≥ 0

ð19Þ

whereMh ¼ 2

3
μFZ

r30−r3i
r20−r2i

; prz ¼
F

π r20−r2i
� � ; vsr

¼ 2πn r30−r3i
� �

90 r20−r2i
� � ; T ¼ I zπn

30 Mh þM f
� � ð20Þ

l 1

l 2z1 z2
d2

d1

Fig. 4 The speed reducer design problem
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Fig. 5 Convergence of AMDE algorithm to the best fitness for the speed
reducer design
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Δr = 20 mm, tmax = 3 mm, tmin = 1.5 mm, lmax = 30 mm,
Zmax = 10, vmax = 10 m/s, μ = 0.5, δ = 0.5 mm,
Ms = 40 Nm, = 3 Nm, input speed n = 250 rpm,
pmax = 1 MPa, IZ = 55 kg.m2, Tmax = 15 s, Fmax = 1000 N,
rimin = 55 mm, romax = 110 mm, and ρ = 7800 kg/m3.

Multiple disc clutch brake problem has been solved using
non-dominated sorting genetic algorithm (NSGA-II) [40] and
teaching learning-based optimization (TLBO) [39]. Figure 7
demonstrates the convergence function values with respect to
the number of generation for the multiple disc clutch brake
design problem.

The objective function value is 0.313656611 and the con-
straints are [0, 24, 9.19427E−1, 9.83037E+3, 7.89469E+3,
7.02013E−1, 3.77062E+4, 14.29798]. According to Table 5,
the best feasible solution found by AMDE is better than obtained
byNSGA-II and is similar for that provided by TLBO.However,
it is observed from the statistical results (Table 6) that AMDE
outperforms TLBO for the best, the mean, and the worst solu-
tions. Hence, AMDE is effective to solve the multiple disc clutch
brake design problem.

5 Optimization procedure for gear design profile

The flowchart in Fig. 8 displays a brief description of the
developed optimization procedure for selecting the optimal
tooth profile parameters of the spur gear.

In Atanasovska et al. [15], an explicit parametric method
(EPM) was developed to estimate the optimal spur gear tooth
profile. The objective was to balance the maximum bending
stresses in gear pair. The FEAwas used for all necessary stress
and strain calculations. The EPM was applied to optimize the
profile tooth of a real spur gear in a large transport machine.
The main characteristics of this gear are as follows: number of
teeth z1= 20, z2= 96; face width b= 175 mm; normal module
mn= 24 mm; normal pressure angle αn = 20°; sum of profile
shift coefficients x1 + x2 = 0.5; rotational wheel speed
n2= 4.1596 rpm and wheel torque T2= 1263 kN m. The au-
thors found that the exponential functions, as shown in
Eqs. (20) and (21), describe how the maximum root stresses
depend on the profile shift coefficient.

σF1 x1ð Þ ¼ a1eb1x1 ð21Þ
σF2 x1ð Þ ¼ a2eb2x1 ð22Þ

where a1, a2, b1, and b2 are coefficients depending on the
variables αn and ρf; e is the natural base logarithm; and σF1
and σF2 are the maximum bending tooth root stress of the
pinion and the wheel, respectively.

In this work, the coefficients a1, a2, b1, and b2 are
expressed according to variables αn and ρf based on the
results of numerical experiments found by Atanasovska
et al. [15]. The toolbox Surface Fitting Tool of MATLAB
is used to create 2D polynomials. So, the final mathematical

Table 3 Speed reducer problem:
comparison of AMDE results
with literature

Design variables ABC PSO-DE CS AMDE

b 3 .499999 3.5000000 3.5015 3.5000000001

m 0.7 0.7000000 0.7000 0.7000000000

z 17 17.000000 17.0000 17

l1 7.3 7.300000000013 7.6050 7.3000000012

l2 7.8 7 .800000000005 7.8181 7.715319911478252

d1 3.350215 3.3502146 66,097 3.3520 3.350214666096448

d2 5.287800 5.286683229758 5.2875 5.286654464980222

fmin 2997.058412 2996.3481649 3000.9810 2994.471066146

Best results are shown in italics form

Table 4 Speed reducer: comparison statistical results of AMDE with
literature

Statistical ABC PSO-DE CS AMDE

Best 2997.058412 2996.348165 3000.9810 2994.471066146

Mean 2997.058412 2996.348165 3007.1997 2994.471066146

Worst NA 2996.348165 3.0090 2994.471066146

SD 0 1.0E-07 4.9634 1.3711E−12

Best results are shown in italics form
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t

Fig. 6 Multiple disc clutch brake design problem
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models of the maximum bending stresses depending on the
three parameters are presented as follows:

σF1 x1;αn; ρ f

� �
¼ 2065−19:53αn−96:6ρ f

� �
e −1:437−0:00403αnþ0:09107ρ fð Þx1

ð23Þ
σF2 x1;αn; ρ f

� �
¼ 1237−13:39αn−43:48ρ f

� �
e 0:3755−0:02243αnþ0:06075ρ fð Þx1

ð24Þ

After modeling the maximum bending stresses, the model
formulation of the studied spur gear is developed for bi-
objective optimization. Finally, the AMDE algorithm is used
to solve the problem.

6 Optimization of gear design profile using AMDE

The studied case is a real gear pair in a large transport machine
[15]. The optimal tooth profile problem is formulated as a bi-
objective optimization problem, among the objectives are
equalized the maximum bending stresses and the specific sliding
coefficients.

The parameters used by the AMDE for optimization
search process are NP = 100, Gmax = 1000, the scaling
factors and the crossover factor kept the same as in
Sect. 4.

6.1 Model formulation

6.1.1 Objective functions

To provide an equally strong teeth on the pinion and
the wheel, their maximum bending stresses should be
balanced as

Minimize : f 1 x1;αn; ρ f

� �
¼ σF1−σF2j j ð25Þ

To maximize the wear resistance of the gear pair, the
maximum specific sliding coefficients must be equal at
extremes of contact path [18] (points A and E, Fig. 9):

Minimize : f 2 x1;αnð Þ ¼ γ2max−γ1maxj j ð26Þ

The maximal specific sliding coefficients γ1max

and γ2max are given by

γ1max ¼
tanαat1−tanα

0
t

1þ uð Þtanα0
t−tanαat1

uþ 1ð Þ ð27Þ

γ2max ¼
tanαat2−tanα

0
t

1þ 1

u


 �
tanα0

t−tanαat2

uþ 1

u


 �
ð28Þ

where u is the transmission ratio, α
0
t is pressure angle at

the pitch cylinder, and αat1 and αat2 are the tip trans-
verse pressure angles of the pinion and the wheel
respectively.

For solving this bi-objective problem, the ε-constraint
method [41] is used. The objective of the specific slid-
ing coefficients is converted into an inequality constraint
and that of the maximum bending stresses is minimized.

f 2 x1;αnð Þ≤10−5 ð29Þ
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Fig. 7 Convergence of AMDE algorithm to the best fitness for the
multiple disc clutch brake design

Table 5 Multiple disc clutch brake problem: comparison of AMDE
results with literature

Design variables NSGA-II TLBO AMDE

ri 70 70 70

ro 90 90 90

Z 3 3 3

t 1.5 1 1

F 1000 810 810

fmin 0.4704 0.313656611 0.313656611

Table 6 Multiple disc clutch brake problem: comparison statistical
results of AMDE with literature

Statistical NSGA-II TLBO AMDE

Best NA 0.313657 0.313656610

Mean NA 0.3271662 0.313656610

Worst NA 0.392071 0.313656610

SD NA NA 2E−016

Best results are shown in italics form
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6.1.2 Design variables

The final optimization model of the gear design profile is devel-
oped for threemixed-design variables. The profile shift x1 and the
radiusofrootcurvatureρfarecontinuous,andthepressureangleαn

is discrete. The upper and the lower variable limits are −0.5 ≤x1≤
0.8, 6 ≤ρf≤ 8.3mm, andαn(°)∈ (18, 19, 20, 21, 22).

6.1.3 Constraints formulation

The objective functions listed above are subjected to the fol-
lowing constraints:

& To reduce the vibrations, the contact ratio εα should be
greater than 1.5 [42]:

g1 ¼ 1:5−εα≤0 ð30Þ

& To avoid the narrow top lands of the teeth, the thickness of
the tooth tip diameter should be greater than or equal to 0.4
mt [43]:

g2 ¼ 0:4mt−sat1≤0 ð31Þ
g3 ¼ 0:4mt−sat2≤0 ð32Þ

where mt is the transverse module, sat1 and sat2 are the trans-
versal arc thickness of the tooth at the tip diameter for the
pinion and the wheel respectively.

& To avoid the operating interference on the two mating
gears, the following relations should be checked:

g4 ¼
mt z2 þ 2þ 2x2ð Þ

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rb22 þ a0sinα0

t

� �2q
< 0 ð33Þ

g5 ¼
mt z1 þ 2þ 2x1ð Þ

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rb12 þ a0sinα0

t

� �2q
< 0 ð34Þ

where a′ is the working center distance and rb1 and rb2 are the
base radii of the pinion and the wheel, respectively.

6.1.4 Results and discussion

The found specific sliding distribution along the contact path
is as plotted in Fig. 10. The best solution reported by the
proposed algorithm is (0.4018724121, 6.2888763721 mm,
21°), corresponding to the objective functions values
f1 =3.3537*10

−11 MPa and f2 =5.5444*10
−6. The constraint

violation are [−1.58464E−2, −2.69271, −8.90131,
−42.39185, −6.050492421E+2].

From the obtained results, it can be clearly seen that the
design variable values really lead to a perfect balancing in
both parameters the tooth root stresses as well as the maxi-
mum specific sliding coefficients for the studied gear pair
(σF1 =σF2 = 765.642771 MPa and γ1max = γ2max = 1.0093).

Gear pair data and the base aspect

for the optimal tooth profile

selection

The selection of the discrete values of tooth

profile parameters which are subject of the

optimization

The calculation of strains and stresses for pinion

tooth and wheel tooth for combinations of the
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Creation of mathematical

models

Formulation model of the

spur gear tooth profile
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Fig. 9 Characteristic points on the path of contact
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Consequently, it may be assumed that the mating gear teeth
flanksmake sure a regulated resistance to bending stresses and
to wear, leading to an extended gear service life.

7 Conclusion

Gear pair design is a highly complex task including different
non-linear constraints and requires the use of mixed-design
variables. In this paper, a new evolutionary optimization algo-
rithm named AMDE has been presented based on a self-
adaptive approach. The method was applied for solving the
optimal tooth profile of a specific cylindrical spur gear. The
optimization purposes were to compromise between the maxi-
mum bending stresses and the specific sliding. The mathemat-
ical model of the maximum bending stresses was developed
using FEA calculations. For the specific spur gear studied in
this work, a significant improvement in balancing specific slid-
ing coefficients and maximum bending stresses were found.

The proposed algorithm was implemented to solve three
well-studied engineering design examples, pressure vessel,
speed reducer, and multiple disc clutch brake design.
Simulation results showed that AMDE algorithm provides
very remarkable results compared to those reported recently
in the literature using different optimization methods. So, it
can be concluded that the AMDE is a very effective algorithm
for solving the engineering optimization problems with high-
quality solutions and robustness.

As part of our future work, the verified optimization algo-
rithm gives a base for developing a multi-objective optimiza-
tion algorithm by taking into account all the other involved
aspects for solving the optimal tooth profile of cylindrical spur
and helical gears.
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