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Abstract This study focuses on chip–tool interface tempera-
ture modeling of C-60, 17CrNiMo4, and 42CrMo4 steel al-
loys in dry-cut and high-pressure coolant (HPC)-assisted turn-
ing at various cutting speed-feed rates with SNMG and
SNMM inserts. Improvement of tool life in turning C-60 steel
under the application of jet at elevated pressure over dry ma-
chining is investigated. Scanning electron microscope (SEM)
views of principal and auxiliary flank worn out tip (48-min) of
cutting inserts divulge the effectiveness of high-pressure
coolant emulsion over dry and conventional wet cooling.
The experimental runs were conducted in full factorial orien-
tation and response surface methodology (RSM) has been
employed for subsequent modeling to formulate mathematical
equations to devise accurate predictions of chip–tool interface
temperature. Analysis of variance (ANOVA) is conducted to
perceive the effects of each individual factors and their inter-
actions terms and measure the significance of the proposed
model. Later, optimization with desirability function conclud-
ed factor settings (cutting speed = 93 m/min, feed
rate = 0.10 mm/rev, environment = HPC, material = C-60,
and insert = SNMM) that minimize the response within the
experimental domain satisfying desired goals. Further, artifi-
cial neural network (ANN) model has been developed and the

prediction performance was compared with the cubic equa-
tions of RSM. It was observed that during testing phase
MAPE and coefficient of determination (R2) for RSM is
1.947 and 94.48 %, respectively; and the corresponding
values for ANN (4-22-1) is 2.669 and 93.25 %. Results also
reveal that cutting speed and environment have ∼38.82 and
∼37.82 % contribution on chip–tool interface temperature for-
mation during machining. In addition, the results showed that
HPC-assisted machining reduces chip–tool interface tempera-
ture significantly as well as prolong tool life.

Keywords Chip–tool interface temperature . HPC-assisted
machining . Scanning electronmicroscope . Response surface
methodology . Analysis of variance . Artificial neural network

1 Introduction

Machining is a manufacturing process where a sharp cutting
tool penetrates the surface of a less-resistant work material
due to the relative motion of the tool and the workpiece and
cutting forces exerted by cutting insert at the tool–work
contact zone. The penetration causes shear deformation of
the workpiece in order to remove material from the surface
in the form of chips. During the formation of chips, the
mechanical energy applied by the insert converts to heat
energy. In case of ductile materials, the heat is generated
at three distinguish zones: (a) primary deformation zone, (b)
chip–tool interface, and (c) work–tool interface zones which
adversely influence the quality of the finished product as
well as the cutting insert [1]. Plastic deformation of the
work material, rubbing of the tool flank with the finished
surface and friction between tool rake face, and flowing
chips foster intense amount of heat at the cutting zone
[2]. Furthermore, heat is also generated by the friction at
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the work and tool tip contact zone [3]. This frictional heat is
one of the major causes of reduction in tool hardness and
rapid tool wear which must be controlled by the application
of cutting fluids or coolants in the form of liquid or gas
directed at the hot cutting region. However, traditional
methods of heat extraction with the use of conventional
coolants become less effective during high productivity ma-
chining at augmented feed rate and cutting speed as smooth
flow to the chip–tool interface often gets prevented due to
bulk plastic contact of the chip with the tool rake surface [4,
5]. Moreover, the use of conventional coolant exhibits some
other drawbacks such as, it does not reach the tool–work-
piece and chip–tool interfaces where the maximum temper-
ature attains [6] as sometimes extensive heat evaporates the
coolant before it can reach the cutting region and creates a
semi-conductive high-temperature blanket which renders the
cooling effect to a great extent, also the usage of coolant
causes serious damage to human health and environment
[7]. In many cases, the uses of coolants are still essential
to attain economic feasibility by achieving improved tool
life and ameliorated surface quality. Cryogenic machining
[8, 9], minimum quantity lubrication (MQL) [10], near dry
machining [11], high-pressure coolant jet [12], and ultra-
high-pressure coolant jet [13] are the recent developments
in manufacturing research sector and industrial applications.

Despite the increased usage and production of C-60 steel,
they have relatively poor machinability characteristics com-
pared to many other metals, because of the complexity of the
heat extraction process. 17CrNiMo4 steel is mainly used for
heavy-duty arbors, bushings, wear pins, bearings, sprockets,
gears, shafts, and other high-tensile applications. 42CrMo4 is
a common chromium-molybdenum alloy steel with high
hardenability and good toughness. The carbon content of
42CrMo4 steel alloy is very high and mainly used in automo-
bile industries to make gears and in the manufacture of forgings
which require higher strength. Such materials are very
difficult to machine and intense amount of heat generates dur-
ing machining which must be reduced to ameliorate product
quality and dimensional accuracy by proper application of
coolant and/or lubricant. Again, because of high hardness of
these materials, huge amount of friction generates at the tool
tip. As a result, the tool wears more rapidly causing significant
decrease in tool life. For such applications, high-pressure cool-
ant (HPC)-assisted machining is the preferred technology. For
instance, a comparative analysis has been conducted by M.
Bermingham et al. [14] between cryogenic cooling and high-
pressure emulsion cooling techniques in Ti-6Al-4V turning,
where tool life and chip morphology have been considered as
the quality characteristics. It has been observed that high-
pressure emulsion offers slightly better tool life than that
achievable with liquid nitrogen coolant. According to E. O.
Ezugwu [15], HPC-assisted machining forms a hydraulic
wedge between the tool and workpiece due to the application

of jet, under elevated pressure. Penetration of the jet equipped
with high velocity and energy reduces temperature gradient and
seizure zone [16] also known as a very thin flow zone along the
greater part of the contact between the chip and the tool, where
the two materials associated are in intimate contact and no
relative movement between the chip and the tool at the surface
of the tool. This offers an adequate lubrication at the chip–tool
interface with a significant reduction in friction [17]. Braham-
Bouchnak Tet al. [18] studied the effects of high-pressure cool-
ant assisted turning of the Ti555-3 titanium alloy. It has been
reported that good chip fragmentation and significant improve-
ment of tool life and surface integrity are achieved during HPC-
assisted machining. Naves V et al. [19] investigated the wear
mechanism of coated cemented carbide tools during turning
operation of AISI 316 stainless steel. Cutting fluid was applied
at various pressures (10, 15, and 20MPa) between the chip and
tool at the rake face. They observed that the lowest flank wear-
land was obtained when the concentration of the cutting fluid
was 10 % and pressure was 10MPa; the application of HPC jet
is recommended over dry machining during turning of the in-
vestigated stainless steel.

Response surface methodology (RSM) is embraced by
many researchers to develop an effective empirical relation-
ship between dependent responses and independent process
parameters to measure the effects of various machining factors
on the performance characteristics such as surface roughness
[20, 21], cutting force [21, 22], tool wear [23], cutting temper-
ature [24, 25], and other machining quality characteristics.
Further, response surface equations have been used to make
accurate predictions of one or more responses efficiently prior
to machining, i.e., turning, hard turning, milling, drilling, and
also grinding. Abhang L et al. [26] used the response surface
methodology for modeling chip–tool interface temperature
measured in turning of EN-31 steel alloy with tungsten car-
bide inserts. In their experimental research work, first- and
second-order mathematical models were established to show
the relationship between the response and metal cutting pa-
rameters associated with the response such as cutting speed,
feed rate, depth of cut, and nose radius. R-squared values for
the first- and second-order models were found to be 97.68 and
98.90 %, respectively. Additionally, analysis of variance
(ANOVA) results revealed that cutting speed has the most
dominant effect on determining chip–tool interface tempera-
ture. Sharma MD et al. [27] developed mathematical models
to evaluate the effects of cutting speed, feed rate, and depth of
cut on main cutting force, surface roughness, and stress where
average errors of 3.87, 5.41, and 2.96 % were observed indi-
vidually. Çalışkan H et al. [28] investigated the influence of
hard coatings and cutting parameters such as cutting speed,
feed rate, and depth of cut on cutting forces and surface rough-
ness during face milling of AISI O2 cold work–tool steel-
based on response surface methodology. The response surface
equations exhibited high coefficient of determination which
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proves the adequacy of the method applied. Amini et al. [29]
used regression analysis to investigate the effects possessed by
cutting speed, feed rate, and depth of cut on surface roughness
and cutting force in high-speed turning of Inconel 718 with
ceramic and carbide cutting tools. Literature suggests that
even though lots of studies have been performed employing
response surface methodology during turning of different al-
loys and steels but most of them are concerned with mainly
surface roughness and cutting forces. As controlling cutting
temperature is one the most challenging factor during turning
of any material, so it is necessary to study the effect possessed

by various machining parameters, different machining envi-
ronments, materials, and cutting inserts. Reliable mathemati-
cal models must be formulated to efficiently and accurately
predict the value prior to machining which will not only re-
duce the product cost but also will diminish unnecessary pow-
er consumption and machining time to aid the manufacturers
and industry practitioners.

Artificial intelligence-based models such as artificial neural
network is efficient, easy to operate, and more accurate than
many existingmodels tomake predictions even if it has to deal
with noisy or vast amount of data. Recently, it gained much

Table 1 Experimental conditions
Machine tool Centre Lathe (10 HP), China

Work materials •C-60 steel (Size: Ø178 × 580 mm, BHN: 195)

•17CrNiMo6 steel (Size: Ø200 × 520 mm, BHN: 201)

•42CrMo4 steel (Size: Ø220 × 520 mm, BHN: 252)
Cutting insert

SNMG and SNMM 120408 TTS, Sandvik (ISO Specification)
Tool holder

PSBNR 2525M12, Sandvik
Working tool geometry −6°, −6°, 6°, 6°, 15°, 75°, 0.8 mm
Process parameters

Cutting speed, V 93,133, 186, 266 m/min

133, 152, and 186 m/min (for tool life investigation)

Feed rate, f 0.10, 0.14, 0.18 and 0.22 mm/rev

0.14, 0.18, and 0.22 mm/rev (for tool life investigation)

Depth of cut, d 1.0 mm

1.5 mm (for tool life investigation)

High-pressure coolant (HPC) 80 bar, Coolant: 6.0 l/min through external nozzle

Coolant type VG-68 (ISO grade)

Environments •Dry

•Wet (only for C-60)

•High-pressure coolant (HPC) condition

Fig. 1 Experimental set-up
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appreciation among the researchers and manufacturers. T.
Özel et al. [30] developed feedforward back propagation neu-
ral network models to predict surface roughness and tool flank
wear in finish dry hard turning and also compared the predic-
tion accuracy of the developed models with regression
models. It was anticipated that neural networks are well capa-
ble to predict surface roughness and tool wear accurately and
provided better performance than regression model. K.V. Rao
et al. [31] used a multilayer perceptron artificial neural net-
work (ANN) model (4-14-8-3) where cutting speed, feed rate,
nose radius, and volume of metal are given as input and sur-
face roughness, tool wear, and workpiece amplitude were the
responses. It was reported that the developed neural network
model can be used to select proper cutting parameters to re-
duce surface roughness, tool wear, and tool vibration during
boring of AISI 316 steel. R. Kumar et al. [32] studied the
effects of cutting speed, feed rate, and approach angle on
surface finish during turning of Al 7075 hard ceramic com-
posite and Al 7075 hybrid composite, using PCD cutting tool.
RSM and ANN techniques were applied to predict the re-
sponse where ANN model produced more percentage error
compared to RSM modeling. Artificial neural network is also
being used by some researchers to predict cutting temperature
at the chip–tool interface [33–35]. Neural network model to
predict cutting temperature during orthogonal machining of
AISI 316L stainless steel was developed by F. Kara et al.
[36]. After evaluating the performance, it was suggested that

the learning capability of the neural network model is quite
powerful and highly recommended for prediction of cutting
temperatures without conducting the complicated, expensive,
and time-consuming experimental studies. Absolute mean er-
ror percentage (MEP) for the predicted values was within ±
5 % error limits. Korkut I et al. [37] developed regression and
artificial neural network models to predict tool–chip interface
temperature. The results revealed that both RA and ANN
model are capable to make accurate predictions of the re-
sponse of interest but ANN showed better performance.

Many researchers studied about the implementation and
performance of neural networks on machining where the per-
formance is measured in terms of numerical inputs to the
networks without considering categorical inputs or mixture
of both. In modern day machining, manufacturers are not only
concerned about selecting the most efficient set of machining
parameters in terms of feed rate, cutting speed, depth of cut,
nose radius, cutting force, etc. but also have to test and adopt
various materials, different cutting fluid applications, cutting
inserts, etc. in order to achieve their desired goals and high
precision of results. The literatures also indicate that there is
no sufficient amount of neural network modeling available
regarding prediction of chip–tool interface cutting temperature
prior to machining. According to authors’ knowledge, no re-
search has been conducted yet to show the performance of
ANN in chip–tool interface temperature prediction capability
under high-pressure coolant application and straight turning of
C-60, 17CrNiMo6, and 42CrMo4 steel rods with SNMG and
SNMM inserts; and aforesaid categorical factors are used in
network development as input to the network along with var-
ious speed-feed combinations.

In the present study, the role of high-pressure coolant jet by
water-insoluble mineral oil VG-68 on cutting temperature and
tool life in turning C-60 steel, 17CrNiMo6 steel, and
42CrMo4 steel by uncoated SNMG and SNMM carbide in-
serts is experimentally investigated. To evaluate the effects of
cutting speed, feed rate, environment (dry and HPC-assisted
machining), materials, and cutting inserts on chip–tool inter-
face temperature, mathematical models are formed based on
response surface methodology and validity of the models are
confirmed by employing various statistical evaluation tech-
niques. Further, artificial neural network model has been
established tomake accurate predictions of chip–tool interface
temperature which is later compared with the response surface
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Fig. 2 Tool–work thermocouple calibration curve

Table 2 Factors along with their
values and levels Factor Name Units Type Level 1 Level 2 Level 3 Level 4

A Cutting speed m/min Numeric 93 133 186 266

B Feed rate mm/rev Numeric 0.10 0.14 0.18 0.22

C Environment Categorical Dry HPC – –

D Material Categorical C-60 17CrNiMo6 42CrMo4 –

E Cutting tool Categorical SNMG SNMM – –
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Table 3 Response surface methodology (full factorial) design layout

Run Cutting speed Feed rate Env. Material Insert Response

84 93 0.1 Dry C-60 SNMG 592

73 93 0.14 Dry C-60 SNMG 662

53 93 0.18 Dry C-60 SNMG 694

70 93 0.22 Dry C-60 SNMG 698

25 133 0.1 Dry C-60 SNMG 652

81 133 0.14 Dry C-60 SNMG 694

87 133 0.18 Dry C-60 SNMG 709

1 133 0.22 Dry C-60 SNMG 736

4 186 0.1 Dry C-60 SNMG 714

114 186 0.14 Dry C-60 SNMG 769

98 186 0.18 Dry C-60 SNMG 782

40 186 0.22 Dry C-60 SNMG 790

142 266 0.1 Dry C-60 SNMG 773

164 266 0.14 Dry C-60 SNMG 821

104 266 0.18 Dry C-60 SNMG 826

54 266 0.22 Dry C-60 SNMG 843

60 93 0.1 HPC C-60 SNMG 453

23 93 0.14 HPC C-60 SNMG 534

124 93 0.18 HPC C-60 SNMG 563

17 93 0.22 HPC C-60 SNMG 584

43 133 0.1 HPC C-60 SNMG 566

59 133 0.14 HPC C-60 SNMG 595

83 133 0.18 HPC C-60 SNMG 617

157 133 0.22 HPC C-60 SNMG 640

5 186 0.1 HPC C-60 SNMG 595

135 186 0.14 HPC C-60 SNMG 644

13 186 0.18 HPC C-60 SNMG 678

12 186 0.22 HPC C-60 SNMG 701

74 266 0.1 HPC C-60 SNMG 697

118 266 0.14 HPC C-60 SNMG 717

6 266 0.18 HPC C-60 SNMG 757

123 266 0.22 HPC C-60 SNMG 784

16 93 0.1 Dry 17CrNiMo6 SNMG 690

86 93 0.14 Dry 17CrNiMo6 SNMG 564

90 93 0.18 Dry 17CrNiMo6 SNMG 708

131 93 0.22 Dry 17CrNiMo6 SNMG 591

186 133 0.1 Dry 17CrNiMo6 SNMG 730

113 133 0.14 Dry 17CrNiMo6 SNMG 646

122 133 0.18 Dry 17CrNiMo6 SNMG 743

191 133 0.22 Dry 17CrNiMo6 SNMG 671

127 186 0.1 Dry 17CrNiMo6 SNMG 780

65 186 0.14 Dry 17CrNiMo6 SNMG 706

183 186 0.18 Dry 17CrNiMo6 SNMG 791

165 186 0.22 Dry 17CrNiMo6 SNMG 724

19 266 0.1 Dry 17CrNiMo6 SNMG 826

162 266 0.14 Dry 17CrNiMo6 SNMG 757

125 266 0.18 Dry 17CrNiMo6 SNMG 839

106 266 0.22 Dry 17CrNiMo6 SNMG 770

Table 3 (continued)

Run Cutting speed Feed rate Env. Material Insert Response

133 93 0.1 HPC 17CrNiMo6 SNMG 566

126 93 0.14 HPC 17CrNiMo6 SNMG 468

100 93 0.18 HPC 17CrNiMo6 SNMG 581

160 93 0.22 HPC 17CrNiMo6 SNMG 491

128 133 0.1 HPC 17CrNiMo6 SNMG 606

120 133 0.14 HPC 17CrNiMo6 SNMG 549

166 133 0.18 HPC 17CrNiMo6 SNMG 624

109 133 0.22 HPC 17CrNiMo6 SNMG 590

64 186 0.1 HPC 17CrNiMo6 SNMG 679

37 186 0.14 HPC 17CrNiMo6 SNMG 628

29 186 0.18 HPC 17CrNiMo6 SNMG 680

94 186 0.22 HPC 17CrNiMo6 SNMG 644

11 266 0.1 HPC 17CrNiMo6 SNMG 710

76 266 0.14 HPC 17CrNiMo6 SNMG 651

97 266 0.18 HPC 17CrNiMo6 SNMG 738

107 266 0.22 HPC 17CrNiMo6 SNMG 701

139 93 0.1 Dry 42CrMo4 SNMG 671

190 93 0.14 Dry 42CrMo4 SNMG 688

79 93 0.18 Dry 42CrMo4 SNMG 707

177 93 0.22 Dry 42CrMo4 SNMG 713

49 133 0.1 Dry 42CrMo4 SNMG 692

101 133 0.14 Dry 42CrMo4 SNMG 732

172 133 0.18 Dry 42CrMo4 SNMG 736

52 133 0.22 Dry 42CrMo4 SNMG 749

75 186 0.1 Dry 42CrMo4 SNMG 712

168 186 0.14 Dry 42CrMo4 SNMG 746

181 186 0.18 Dry 42CrMo4 SNMG 767

140 186 0.22 Dry 42CrMo4 SNMG 786

119 266 0.1 Dry 42CrMo4 SNMG 739

20 266 0.14 Dry 42CrMo4 SNMG 769

134 266 0.18 Dry 42CrMo4 SNMG 799

95 266 0.22 Dry 42CrMo4 SNMG 823

182 93 0.1 HPC 42CrMo4 SNMG 510

69 93 0.14 HPC 42CrMo4 SNMG 523

68 93 0.18 HPC 42CrMo4 SNMG 573

14 93 0.22 HPC 42CrMo4 SNMG 613

51 133 0.1 HPC 42CrMo4 SNMG 547

78 133 0.14 HPC 42CrMo4 SNMG 586

148 133 0.18 HPC 42CrMo4 SNMG 633

31 133 0.22 HPC 42CrMo4 SNMG 667

155 186 0.1 HPC 42CrMo4 SNMG 577

39 186 0.14 HPC 42CrMo4 SNMG 619

47 186 0.18 HPC 42CrMo4 SNMG 667

176 186 0.22 HPC 42CrMo4 SNMG 715

48 266 0.1 HPC 42CrMo4 SNMG 621

137 266 0.14 HPC 42CrMo4 SNMG 669

44 266 0.18 HPC 42CrMo4 SNMG 727

112 266 0.22 HPC 42CrMo4 SNMG 757

167 93 0.1 Dry C-60 SNMM 565
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Table 3 (continued)

Run Cutting speed Feed rate Env. Material Insert Response

111 93 0.14 Dry C-60 SNMM 641

36 93 0.18 Dry C-60 SNMM 682

92 93 0.22 Dry C-60 SNMM 691

7 133 0.1 Dry C-60 SNMM 618

188 133 0.14 Dry C-60 SNMM 670

149 133 0.18 Dry C-60 SNMM 697

117 133 0.22 Dry C-60 SNMM 713

45 186 0.1 Dry C-60 SNMM 680

50 186 0.14 Dry C-60 SNMM 744

192 186 0.18 Dry C-60 SNMM 757

56 186 0.22 Dry C-60 SNMM 790

102 266 0.1 Dry C-60 SNMM 727

136 266 0.14 Dry C-60 SNMM 788

63 266 0.18 Dry C-60 SNMM 813

15 266 0.22 Dry C-60 SNMM 822

99 93 0.1 HPC C-60 SNMM 470

175 93 0.14 HPC C-60 SNMM 540

170 93 0.18 HPC C-60 SNMM 566

41 93 0.22 HPC C-60 SNMM 578

27 133 0.1 HPC C-60 SNMM 526

32 133 0.14 HPC C-60 SNMM 568

67 133 0.18 HPC C-60 SNMM 587

173 133 0.22 HPC C-60 SNMM 634

55 186 0.1 HPC C-60 SNMM 582

88 186 0.14 HPC C-60 SNMM 638

163 186 0.18 HPC C-60 SNMM 681

178 186 0.22 HPC C-60 SNMM 703

116 266 0.1 HPC C-60 SNMM 631

8 266 0.14 HPC C-60 SNMM 697

103 266 0.18 HPC C-60 SNMM 711

62 266 0.22 HPC C-60 SNMM 755

189 93 0.1 Dry 17CrNiMo6 SNMM 645

61 93 0.14 Dry 17CrNiMo6 SNMM 672

33 93 0.18 Dry 17CrNiMo6 SNMM 709

180 93 0.22 Dry 17CrNiMo6 SNMM 728

72 133 0.1 Dry 17CrNiMo6 SNMM 707

158 133 0.14 Dry 17CrNiMo6 SNMM 741

143 133 0.18 Dry 17CrNiMo6 SNMM 760

96 133 0.22 Dry 17CrNiMo6 SNMM 777

21 186 0.1 Dry 17CrNiMo6 SNMM 771

26 186 0.14 Dry 17CrNiMo6 SNMM 803

93 186 0.18 Dry 17CrNiMo6 SNMM 812

141 186 0.22 Dry 17CrNiMo6 SNMM 826

9 266 0.1 Dry 17CrNiMo6 SNMM 823

3 266 0.14 Dry 17CrNiMo6 SNMM 846

121 266 0.18 Dry 17CrNiMo6 SNMM 858

169 266 0.22 Dry 17CrNiMo6 SNMM 865

132 93 0.1 HPC 17CrNiMo6 SNMM 522

24 93 0.14 HPC 17CrNiMo6 SNMM 551

Table 3 (continued)

Run Cutting speed Feed rate Env. Material Insert Response

187 93 0.18 HPC 17CrNiMo6 SNMM 588

147 93 0.22 HPC 17CrNiMo6 SNMM 612

18 133 0.1 HPC 17CrNiMo6 SNMM 573

2 133 0.14 HPC 17CrNiMo6 SNMM 600

66 133 0.18 HPC 17CrNiMo6 SNMM 638

38 133 0.22 HPC 17CrNiMo6 SNMM 660

57 186 0.1 HPC 17CrNiMo6 SNMM 655

28 186 0.14 HPC 17CrNiMo6 SNMM 675

129 186 0.18 HPC 17CrNiMo6 SNMM 690

150 186 0.22 HPC 17CrNiMo6 SNMM 743

82 266 0.1 HPC 17CrNiMo6 SNMM 691

159 266 0.14 HPC 17CrNiMo6 SNMM 728

35 266 0.18 HPC 17CrNiMo6 SNMM 746

184 266 0.22 HPC 17CrNiMo6 SNMM 770

30 93 0.1 Dry 42CrMo4 SNMM 673

91 93 0.14 Dry 42CrMo4 SNMM 686

151 93 0.18 Dry 42CrMo4 SNMM 700

108 93 0.22 Dry 42CrMo4 SNMM 713

161 133 0.1 Dry 42CrMo4 SNMM 703

179 133 0.14 Dry 42CrMo4 SNMM 720

42 133 0.18 Dry 42CrMo4 SNMM 735

85 133 0.22 Dry 42CrMo4 SNMM 745

89 186 0.1 Dry 42CrMo4 SNMM 736

77 186 0.14 Dry 42CrMo4 SNMM 746

22 186 0.18 Dry 42CrMo4 SNMM 753

34 186 0.22 Dry 42CrMo4 SNMM 771

71 266 0.1 Dry 42CrMo4 SNMM 764

138 266 0.14 Dry 42CrMo4 SNMM 780

130 266 0.18 Dry 42CrMo4 SNMM 797

145 266 0.22 Dry 42CrMo4 SNMM 811

115 93 0.1 HPC 42CrMo4 SNMM 505

156 93 0.14 HPC 42CrMo4 SNMM 528

105 93 0.18 HPC 42CrMo4 SNMM 560

171 93 0.22 HPC 42CrMo4 SNMM 606

185 133 0.1 HPC 42CrMo4 SNMM 534

144 133 0.14 HPC 42CrMo4 SNMM 576

174 133 0.18 HPC 42CrMo4 SNMM 595

154 133 0.22 HPC 42CrMo4 SNMM 671

110 186 0.1 HPC 42CrMo4 SNMM 581

153 186 0.14 HPC 42CrMo4 SNMM 612

146 186 0.18 HPC 42CrMo4 SNMM 663

10 186 0.22 HPC 42CrMo4 SNMM 694

58 266 0.1 HPC 42CrMo4 SNMM 634

152 266 0.14 HPC 42CrMo4 SNMM 654

46 266 0.18 HPC 42CrMo4 SNMM 733

80 266 0.22 HPC 42CrMo4 SNMM 754
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mathematical prediction model. The effects of cutting speed,
feed rate, environment, and tool inserts on tool life are also
measured by performing ANOVA. The scanning electron mi-
croscope (SEM) views of inserts under dry, wet, and HPC
environment during turning of C-60 steel are compared to
each other to evaluate the performance of HPC jet on tool
wear reduction rate. It is expected that HPC-assisted machin-
ing will reduce chip–tool interface temperature and improve
tool life significantly during turning operation of the selected
materials. The outcomes of this research study are expected to
aid the manufacturers and industrial practitioners to, effective-
ly and efficiently, control and adopt the HPC-assisted machin-
ing process, promote higher productivity, and know about the
result prior to actual machining. Furthermore, it will help the
researchers to implement these techniques to model other ma-
chining processes and accelerate the pace by researches.

2 Experimental conditions and set-up

Straight turning of C-60, 17CrNiMo6, and 42CrMo4
steel rod of common use in a rigid and reasonably
powerful lathe (10 HP, China) have been carried out
by standard carbide inserts (SNMG and SNMM,
Sandvik) at discrete cutting speeds and feed rates under
both dry and high-pressure coolant (HPC) machining
conditions. The detailed experimental conditions are
stated in Table 1. The ranges of the cutting speed and
feed rate were selected based on the tool manufacturer’s
recommendation and industrial practices. Depth of cut is
less significant as it only changes the magnitude of
cutting forces and was kept constant to 1.0 mm all
through the experimental domain of investigating cutting
temperature. However, depth of cut was kept at 1.5 mm
during the investigation of tool life. Tool inserts were
replaced after each cut so that the results are not affect-
ed due to wear. The experimental set-up used for the
present purpose is shown in Fig. 1.

An important part of the HPC system is the design of a
nozzle. The purpose of a nozzle is to direct cutting fluid to
the optimal position to achieve maximum fluid flow at the
chip–tool interface. It also fulfills the purpose of increasing
the fluid velocity by contracting the cross-sectional area of
the jet stream. High-pressure coolant jet was impinged from
a specially designed nozzle to cool the tool and the work

material at the hot cutting zone. The thin but high velocity
stream of coolant was projected along the auxiliary cutting
edge of the insert making an angle 15° with true horizontal.
The nozzle was placed 15 mm away from the tool tip to
minimize the interference of the nozzle with the flowing
chips and to reach quite close to the chip–tool contact zone
without avoiding of bulk cooling of the tool and the job,
which may cause unfavorable metallurgical changes.
Considering the jet pattern and to cover the entire cutting
area by issuing jet, the nozzle bore diameter was selected as
0.5 mm. Pump pressurizes the coolant at a pressure of
80 bars with a flow rate of 6 l/min. Effectiveness of cooling
depends on how closely HPC jet can reach the chip–tool
and the work–tool interfaces, where apart from shear zone,
heat is generated. The tool geometry is reasonably expected
to play significant role on such cooling effectiveness. For
the present investigations, two different tools namely
SNMG 120408-TTS and SNMM 120408-TTS have been
undertaken. Standard Sandvik PSBNR 2525M12 tool hold-
er was used to hold the inserts.

The average chip–tool interface temperature was measured
under all the machining conditions undertaken by reliable
tool–work thermocouple technique with proper calibration
[12]. In the present study, almost linear relationships between
the temperature and electromotive force (emf) is obtained with
multiple correlation coefficients around 0.994. Tool–work
thermocouple calibration curves are shown in Fig. 2.
According to ISO 3685 Standard (the International
Organization for Standardization) specification of finish oper-
ation, tool was rejected when the growth of the average wear
on its principle flank reached to 300-μm limit or maximum
flank wear exceeded 600 μm. When the tool operation
reached its 48-min mark, it was inspected under scanning
electron microscope (Philips XL30) to study the wear mech-
anism and for the purpose of comparison.

Table 4 Design summary of the
response Response Name Unit Obs. Min. Max. Mean Std.

Dev.
Ratio Model

R1 Chip–tool
interface
temperature

°C 192 453 865 681.969 88.7455 1.90949 Cubic

Table 5 Statistics of the models

Source P value R-squared
(adjusted)

R-squared
(predicted)

Linear <0.0001 0.8598 0.8531

2FI <0.0001 0.9216 0.9109

Quadratic <0.0001 0.9328 0.9228

Cubic <0.0001 0.9512 0.9366 Suggested

Quartic <0.0001 0.9685 0.9432 Aliased
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3 Experimental results and discussion

To improve cutting performance, a cutting fluid in the form of
liquid or gas must be applied directly to the cutting zone [38].

Machining generates huge amounts of heat at the shear and
frictional zones; such heat generation increases with the in-
crease in process parameters due to high-energy input causing
decrease in hardness of the contact layer of the workpiece and

Table 6 Analysis of variance
table (classical sum of squares—
Type II)

Source Sum of
squares

df Mean square F value P value
(Prob > F)

Model 1.450E + 006 50 29,001.39 75.45 <0.0001 Significant

A-Cutting
speed

5.839E + 005 1 5.839E +
005

1518.92 <0.0001 Significant

B-Feed rate 1.360E + 005 1 1.360E +
005

353.78 <0.0001 Significant

C-Environment 5.688E + 005 1 5.688E +
005

1479.62 <0.0001 Significant

D-Material 9296.28 2 4648.14 12.09 <0.0001 Significant

E-Cutting tool 2054.08 1 2054.08 5.34 0.0222 Significant

AB 25.15 1 25.15 0.065 0.7985

AC 5999.41 1 5999.41 15.61 0.0001 Significant

AD 15,916.08 2 7958.04 20.70 <0.0001 Significant

AE 187.16 1 187.16 0.49 0.4865

BC 8652.00 1 8652.00 22.51 <0.0001 Significant

BD 25,797.34 2 12,898.67 33.56 <0.0001 Significant

BE 6636.02 1 6636.02 17.26 <0.0001 Significant

CD 2837.70 2 1418.85 3.69 0.0274 Significant

CE 408.33 1 408.33 1.06 0.3045

DE 32,193.95 2 16,096.97 41.88 <0.0001 Significant

A2 15,015.01 1 15,015.01 39.06 <0.0001 Significant

B2 1220.08 1 1220.08 3.17 0.0770

ABC 334.58 1 334.58 0.87 0.3524

ABD 1137.92 2 568.96 1.48 0.2311

ABE 333.14 1 333.14 0.87 0.3535

ACD 1490.82 2 745.41 1.94 0.1476

ACE 147.55 1 147.55 0.38 0.5365

ADE 1069.16 2 534.58 1.39 0.2523

BCD 4249.81 2 2124.91 5.53 0.0049 Significant

BCE 2.02 1 2.02 5.246E-
003

0.9424

BDE 13,286.91 2 6643.46 17.28 <0.0001 Significant

CDE 1074.57 2 537.29 1.40 0.2506

A2B 4.68 1 4.68 0.012 0.9123

A2C 181.83 1 181.83 0.47 0.4927

A2D 2146.73 2 1073.37 2.79 0.0647

A2E 37.25 1 37.25 0.097 0.7560

AB2 13.45 1 13.45 0.035 0.8519

B2C 784.08 1 784.08 2.04 0.1554

B2D 3354.82 2 1677.41 4.36 0.0145 Significant

B2E 42.19 1 42.19 0.11 0.7409

A3 60.53 1 60.53 0.16 0.6921

B3 5453.07 1 5453.07 14.19 0.0002 Significant

Residual 54,200.17 141 384.40

Corrected Total 1.504E + 006 191

1554 Int J Adv Manuf Technol (2017) 90:1547–1568



also the tool material. High temperature at the cutting zone has
detrimental effect on cutting tool as well as surface
finish so it must be controlled to improve machinability
index. Cutting fluid reduces not only the generation of
heat at the shear and friction zone but also friction at
the tool–chip and tool–work interfaces. Various forms of
cutting fluids are commercially available each with
unique characteristics, advantages, and disadvantages
[39]. In this section, along with subsequent modeling,
the effect of high-pressure coolant on average chip–tool
interface temperature at different cutting speeds, feed
rates, steels, and inserts has been investigated. A total
of five factors are involved in this experiment. Among
them, two numeric factors: cutting speed and feed rate
and three categorical factors: environment, material, and
cutting tool which are in the nominal form are shown in
Table 2 with their specified levels. The response con-
sidered in this study is chip–tool interface temperature.
According to RSM design layout, shown in Table 3, a
total of 192 observations are made where maximum and
minimum measured value of chip–tool temperature are
865 and 453 °C, respectively. The statistics of the ob-
served response are stated in Table 4. Response surface
design modeling was carried out in Design-Expert soft-
ware, version 10. No transformation of the response was
made as the ratio of the maximum to minimum value of
the response is found to be 1.90949. Usually, a ratio
greater than 10 indicates a transformation is required
as well as for ratios less than 3 the power transforma-
tions have little effect.

3.1 Chip–tool interface temperature modeling by RSM

The regression calculations have been made to fit all of
the polynomial models of chip–tool interface tempera-
ture. Statistics such as P value, adjusted R-squared and
predicted R-squared values are shown in Table 5 to
compare the models. Here, P value is the probability
that the factors and their interaction terms used in this
study are modeling noise rather than helping explain the
trend in the chip–tool interface temperature observa-
tions. The amount of variation in the response that can
be explained by the model is represented by the adjust-
ed R-squared value. The predicted residual error sum of
squares (PRESS) statistics [40] is a form of cross-
validation used in regression analysis to provide a mea-
sure of how a particular model fits each design point.
Predicted R-squared value is calculated from PRESS
statistics which represents the amount of variation in
data predicted by the model. Models that have larger
predicted R-squared values have better capability to
make accurate predictions. Evaluating the statistics of
all the models, cubic model has been chosen for the
study. For the selected model, the adjusted R-squared
of 0.9512 is in reasonable agreement with the predicted
R-squared of 0.93266. The difference between them is
within approximately 0.02 which indicates the signifi-
cance of the developed model. Quartic and higher
models are aliased, which means not enough experi-
ments have been run to independently estimate all the
terms for this model.
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Fig. 3 Perturbation plot. a Dry, C-60 steel and SNMG insert. b HPC, 42CrMo4 steel, and SNMM
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ANOVA (analysis of variance) for the response surface
cubic model of chip–tool interface temperature is per-
formed to check the quality of the model and determina-
tion of the effects of the selected process parameters on
the measured response. Sum of squares (SS), degrees of
freedom (DF), mean square (MS), F value, and Prob > F

for all the factors along with their square, cubic, and in-
teraction terms are shown in Table 6. SS is the sum of the
squared deviations from the mean due to the effect of the
corresponding terms. MS values stated in the third column
of Table 6 are the variance associated with each particular
term which is calculated by dividing SS by the DF. To
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compare the variance associated with a particular term
with the residual variance, F value is calculated by divid-
ing MS of that term by the MS for the residual. Prob > F
is the probability of acquiring an F value of a particular
size if the term did not have an effect on the response.
Evaluating the results’ statistical significance of a partic-
ular factor and the contribution it possesses in determin-
ing the response can be obtained. In general, a term that
has a probability value less than 0.05 would be considered
as statistically significant whereas a probability value
greater than 0.10 is regarded as not significant.

In the chip–tool interface ANOVA, the model F value
of 75.45 implies that the generated cubic model is statis-
tically significant with Prob > F less than 0.0001. As
stated earlier, any term is considered to be significant
when value of Prob > F is less than 0.05; in this case,

A, B, C, D, E, AC, AD, BC, BD, BE, CD, DE, A2,
BCD, BDE, B2D, and B3 are significant model terms.
A-cutting speed has the highest F value and conveys the
most remarkable influence on chip–tool interface tempera-
ture formation with ∼38.82 % contribution which is in
agreement with the studies published by Nayak M et al.
[24], Gosai M et al. [25], Saglam H et al. [41], and
Abhang L et al. [26]. Environment seems to be the second
most dominant contributor with ∼37.82 % contribution
followed by feed with ∼9.04 % contribution. Three differ-
ent steels (Brinell hardness number (BHN) 195, 201, and
252) and two cutting inserts are also found to be signifi-
cant model terms but with very little contribution of ∼0.62
and ∼0.14 %, respectively. The lower contribution level
for residual (∼3.6 %) justifies the validity of the model.
The value of the adequate precision of the model which
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Fig. 5 The influence of cutting speed and feed rate on chip–tool interface
temperature in turning C-60 steel under dry and HPC environment with
SNMG and SNMM inserts. a Dry condition, SNMG insert. b Dry

condition, SNMM insert. c HPC condition, SNMG insert. d HPC
condition, SNMM insert
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measures the signal to noise ratio is 39.770; usually, the
ratio greater than 4 is desired to achieve a significant
model for optimization. Standard deviation, mean value,
and coefficient of variation (CV%) for the model are
19.61, 681.97, and 2.87, respectively. Furthermore, R-
squared value for the model is 0.9640 which is much
higher than the cutting temperature model developed by
Nayak M et al. [24], where R-squared value of 0.8821
was obtained.

Response surface methodology is a collection of sta-
tistical and mathematical models that enable an experi-
mental system in which a response of interest is influ-
enced by several variables to make efficient empirical
exploration of the system of interest [42, 43]. To exhibit
the true functional relationship among the response and
some independent variables, mathematical equation

usually in the non-linear form can be developed to de-
pict the system behavior more vividly. The response
surface equations in terms of actual factors for each
environment, material, and cutting insert obtained from
ANOVA to make predictions about the response for
given levels of each factors are shown in Eqs.1–12.

Δ C1D1E1ð Þ ¼ 688:143þ 1:482� A−6131:598� B−
2:002� A� Bþ 5:276E−04� A2 þ 52916:6� B2þ
1:07E−03� A2 � Bþ 2:554� A� B2−5:233E−06�
A3−1:241Eþ 05� B3 ð1Þ

Δ C1D1E2ð Þ ¼ 629:221þ 1:428� A−5645:405� B−
2:912� A� Bþ 7:975E−04� A2 þ 52330:663� B2þ
1:07E−03� A2 � Bþ 2:555� A� B2−5:233E−06�
A3−1:241Eþ 05� B

3 ð2Þ
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Fig. 6 The influence of cutting speed and feed rate on chip–tool interface
temperature in turning 17CrNiMo6 steel under dry and HPC environment
with SNMG and SNMM inserts. a Dry condition, SNMG insert. b Dry

condition, SNMM insert. c HPC condition, SNMG insert. d HPC
condition, SNMM insert
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Δ C1D2E1ð Þ ¼ 932:954þ 2:009� A−9029:236� B−
1:274� A� B−1:352E−03� A2 þ 58639:256� B2þ
1:07E−03� A2 � Bþ 2:555� A � B2−5:233E−
06� A3−1:241Eþ 05� B

3 ð3Þ
Δ C1D2E2ð Þ ¼ 827:683þ 2:076� A−7927:418� B−
2:183� A� B−1:082E−03� A2 þ 58053:319� B2þ
1:07E−003� A2 � Bþ 2:555� A� B2−5:233E−
06� A3−1:241Eþ 05� B

3 ð4Þ

Δ C1D3E1ð Þ ¼ 996:995þ 0:52� A−8381:892� Bþ
0:03� A� Bþ 1:027E−03� A2 þ 58258:4� B2þ
1:07E−03� A2 � Bþ 2:555� A� B2−5:233E−06�
A3−1:241Eþ 05� B

3 ð5Þ
Δ C1D3E2ð Þ ¼ 974:984þ 0:64� A−8169:762� B−
0:88� A� Bþ 1:296E−03� A2 þ 57672:459� B2þ
1:07E−03� A2 � Bþ 2:555� A� B2−5:233E−06�
A3−1:241Eþ 05� B3 ð6Þ

Δ C2D1E1ð Þ ¼ 604:615þ 1:743� A−6990:623� B−
1:091� A� B−6:843E−05� A2 þ 55442:642� B2þ
1:07E−03� A2 � Bþ 2:555� A� B2−5:233E−06�
A3−1:241Eþ 05� B

3 ð7Þ
Δ C2D1E2ð Þ ¼ 559:592þ 1:635� A−6495:264� B−
2� A� Bþ 2:014E−04� A2 þ 54856:704� B2þ
1:07E−03� A2 � Bþ 2:555� A� B2−5:233E−06�
A3−1:241Eþ 05� B

3 ð8Þ

Δ C2D2E1ð Þ ¼ 850:41þ 2:179� A−9797:636� B−
0:362� A� B−1:948E−03� A2 þ 61165:298� B2þ
1:07E−03� A2 � Bþ 2:555� A� B2−5:233E−
06� A3−1:241Eþ 05� B

3 ð9Þ
Δ C2D2E2ð Þ ¼ 735:914þ 2:192� A−8686:652� B−
1:272� A� B−1:678E−03� A2 þ 60579:361� B2þ
1:07E−03� A2 � Bþ 2:555� A� B2−5:233E−06�
A3−1:241Eþ 05� B

3 ð10Þ
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Fig. 7 The influence of cutting speed and feed rate on chip–tool interface
temperature in turning 42CrMo4 steel under dry and HPC environment
with SNMG and SNMM inserts. a Dry condition, SNMG insert. b Dry

condition, SNMM insert. c HPC condition, SNMG insert. d HPC
condition, SNMM insert
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Δ C2D3E1ð Þ ¼ 803:578þ 0:81� A−8756:23� Bþ
0:942� A� Bþ 4:306E−04� A2 þ 60784:439� B2þ
1:07E−03� A2 � Bþ 2:555� A� B2−5:233E−06�
A3−1:241Eþ 05� B

3 ð11Þ
Δ C2D3E2ð Þ ¼ 782:531þ 0:965� A−8534:933� Bþ
0:032� A� Bþ 7:004E−04� A2 þ 60198:501� B2þ
1:07E−03� A2 � Bþ 2:555� A� B2−5:233E−06�
A3−1:241Eþ 05� B

3 ð12Þ

Where Cn, Dn and En are representing categorical factors (re-
ferring to Table 2) while ‘n’ is representing level of the corre-
sponding factor.

To compare the effects of all the factors at a particular point in
the response surface design space, the perturbation graphs are
plotted. The response is plotted by changing only one factor over
its range while holding all the other factors constant. Example of
two plots are shown in Fig. 3 at 179.5 m/min cutting speed and
0.16 mm/rev feed rate condition. Factor A: cutting speed has a
steep slope or curvature which means the response is sensitive to
this factor whereas a relatively flat line is observed for factor B:

feed rate, this means that its change in the design space can be
considered as insensitive. Similar conclusions were also drawn
after evaluating ANOVA results, as cutting speed (∼38.82 %)
possessed relatively greater share of control on chip–tool inter-
face temperature formation than feed rate (∼9.04 %).

The normal probability plot shown in Fig. 4a indicates that
the residuals follow a normal distribution as the points trail a
straight line except some moderate scatter points. S-shaped
curve visible in Fig. 4a is indicating that a transformation of
the response may provide a better analysis. As calculated ear-
lier, the ratio of the maximum to minimum value of the re-
sponse is 1.90949, which suggested counteractive action of
the suggestion given by the normal probability graph; al-
though some trails were made by transforming (i.e., ArcSine
square root, square root, natural log, power transformation,
etc.) the response to observe the behavior of the system. As
no significant effects were recorded, the initial design space is
selected for further analysis. Figure 4b is the plot of the resid-
uals versus ascending predicted response values. A random
scatter within the range of ±3.74746 for externally studentized
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Fig. 8 Contour plot of desirability optimization. a Desirability. b Chip–tool interface temperature

Table 7 Optimum values of factors and response for desirability optimization

Number Cutting speed Feed rate Environment Material Cutting tool Chip–tool interface temperature Desirability Decision

1 93.000 0.100 HPC C-60 SNMM 468.776 0.962 Selected

2 93.000 0.101 HPC C-60 SNMM 469.164 0.961

3 95.561 0.100 HPC C-60 SNMM 472.307 0.953

4 93.000 0.112 HPC C-60 SNMM 478.587 0.938

5 93.000 0.100 HPC C-60 SNMG 486.343 0.919
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residuals is observed in the figure along with two outliners
which are runs with residuals outside the red lines on the plot.
Run nos. 86 and 90 are the outliners which are not fitted well
by the model. Two unusual observations are also visible in
Fig. 4c where externally studentized residuals is plotted
against the runs but all other points in the graph are randomly
scattered. The observations which showed unusual trend were
verified again and almost similar results were obtained after
machining with proper set-up. The observed chip–tool inter-
face temperatures against the predicted values are plotted in
Fig. 4d. The data points are split evenly by the 45-degree line
which demonstrates the adequacy of the model.

3.2 Analysis of high-pressure coolant effects

Analyzing the 3D surface plots (Figs. 5, 6, and 7) and
Table 2, it has been observed that cooling effect is more at
reduced cutting speed which agrees with the previous re-
search works [2, 44]. Initially, the chip–tool contact is plastic
but when the chip leaves the tool, the nature of contact is
elastic; as a result, the high-velocity jet of high-pressure
coolant is easily dragged in the elastic contact zone in a small
quantity by capillary effect. It has also been observed that
with an increase in cutting speed, the rate of chip–tool inter-
face temperature reduction decreases, as with an increase in

Fig. 10 Artificial neural network
structure for average chip–tool
interface temperature
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cutting speed the chip makes fully plastic or bulk contact
with the tool rake surface which prevents from entering of
jet into the hot chip–tool interface. Again, at high velocity,
little time is provided for the cutting fluid to penetrate, as a
result, the coolant might not get enough time to remove the
heat accumulated at the cutting zone resulting in less reduc-
tion in temperature under high-pressure cooling condition at
a high level of cutting speeds [44]. Furthermore, the thinner
chips are pushed up by the high-pressure coolant jet coming
from the opposite direction of chip flow at lower chip veloc-
ity and enable it to come closer to the hot chip–tool contact
zone to remove heat more effectively. Lifting up the chips
with high-pressure coolant also facilitates chip breakability
which indicates a decrease in shear angle. Curl radius of the
thick chip is increased with an increase in feed rate; due to
the effect, plastic contact length is increased and high-
pressure coolant jet becomes less effective. For instance, in
turning C-60 steel with SNMG inser t a t cut t ing
speed = 93 m/min and feed rate = 0.1 mm/rev, the measured
chip–tool interface temperature at dry condition is 592 °C
while in HPC-assisted turning, it reduces to 453 °C and the
percentage reduction rate is 23.48 %. At augmented cutting
speed (266 m/min), the reduction rate reduces to 9.83 % for
the same level of feed rate. Feed rate also largely affects the
reduction rate. For example, at cutting speed of 186 m/min

and 0.1 mm/rev feed rate, the rate of reduction is 16.67 %
while it decreases to 16.15, 13.30, and 11.27 % for 0.14,
0.18, and 0.22 mm/rev feed rate, respectively. In turning
17CrNiMo4 steel with SNMG insert, at the lowest level of
cutting speed and feed rate, the reduction rate of chip–tool
interface temperature is 17.97 % which is much higher than
8.96 %, quantified at the highest level of cutting speed and
feed rate. The range of reduction rate in turning 42CrMo4
steel with SNMG and SNMM inserts are 23.99–8.02 and
24.96–7.03 %, respectively. The SNMM insert having wide
and deep slope parallel to its cutting edges seemed to provide
better cooling effect than SNMG insert. Higher temperature
was recorded in turning of 17CrNiMo4 and 42CrMo4 steel
with SNMG insert and positively high reduction of chip–tool
interface temperature is endorsed by SNMM insert.

3.3 Optimization by desirability function

Mono-objective numerical optimization by desirability func-
tion has been conducted to find factor settings that will satisfy
the desired goals. The desired goal for each factor (in range)
and response (minimize) is designated along with weight
values. Same weights (=1) are assigned to each goal in this
study to achieve uniform shape of its particular desirability
function. Desirability described by Myers and Montgomery
[42] is an objective function that ranges from 0 to 1. The
numerical optimization finds a point that maximizes the desir-
ability function as well as satisfies all the goals that have been
addressed. To achieve a set of conditions that will satisfy all
the goals is the main objective of the optimization, not to get to
a desirability value of 1. Five optimum solutions are shown in
Table 7 along with their desirability values. The set with the
highest desirability has been selected. According to the best
result (desirability = 0.962), the optimum cutting parameters
which yield the lowest chip–tool interface temperature
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Table 8 Performance evaluation of the models

Type RSM ANN

MAPE (%) Overall 1.750 0.858

Testing 1.947 2.669

R-squared (R2) Overall 0.9640 0.9868

Testing 0.9448 0.9325
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(∼468.776 °C) are as follows: cutting speed = 93 m/min, feed
rate = 0.10 mm/rev, material = C-60 steel, cutting tool =
SNMM, and most eminently, machining environment =
HPC. The lowest level of cutting speed (78 m/min) and feed
rate (0.12 mm/rev) in HPC-assisted turning is necessary for
minimum cutting temperature is suggested in the research
work by Mia et al. [45], where the Taguchi and Gray-
Taguchimethods were used to optimizemachining parameters
during turning of Ti-6Al-4Valloy. As the optimum-factor set-
ting was already on the current design space, so a performance
measure of the desirability function is done by comparing the
specific given temperature in solution 1 with the actual value.
Absolute percentage error (APE) of 3.48 % is calculated for
this particular solution. For further inspection, contour plot of
desirability optimization is illustrated in Fig. 8. While Fig. 9
depicts the interaction plots of desirability and predicted chip–
tool interface temperature. According to Fig. 9a, desirability
value is maximum (0.961709) at the lowest level of cutting
speed and with the progression of cutting speed, desirability
value decreases. The slope of the curves (B − 0.1 and B +
0.22) form a similar pattern although lower desirability value
is obtained at the curve of feed rate = 0.22 mm/rev. Figure 9b
conveys the message that augmented cutting speed and feed
rate are affiliated with elevated chip–tool interface
temperature.

3.4 Prediction by ANN

Artificial neural network is an AI-based simulation tool com-
petent of non-linear modeling of inputs and outputs more ef-
ficiently compared to conventional techniques in terms of ac-
curacy, speed, and simplicity. ANN is capable to learn and
implement as like functionality of the human brain learning
process as well as to adapt changes altering various weighted
connections and biases which interconnects nodes called neu-
rons contained in different layers of ANN architecture.
Generally, three layers construct the anatomy of an ANN
model: (a) input layer, (b) hidden layer, and (c) output layer.
Input layer comprises of some control variables represented
by neurons that have authority over the output of the neural
network. The output layer of the neural network is what actu-
ally presents the numerical values of the responses or variables
that are dependent. The intermediate layer also known as the
hidden layer consists of hidden neurons which play a note-
worthy role in the overall performance of the neural network

specially in case of dealing with complex, noisy, and compar-
atively large problems. Process of determining the optimum
number of hidden neurons is much confusing and not yet
stated properly though many researches have been performed
on this specific topic throughout the last decade. If the number
of hidden neurons are less compared to the complexity of the
input–output relationship, then under fitting may occur where-
as if excess number of neurons populates the hidden layer than
performance of the neural network will deteriorate mainly
because of overfitting. Modeling of ANN consists of two dis-
tinct phases: training and testing. During the training phase,
numerical values of the predictor factors or numerical repre-
sentation of any categorical factor acting as a predictor are
given to the input neurons located at the input layer and their
corresponding responses are given to the output neurons, in
the form of matrices on any compatible computational envi-
ronment (Matlab, Java, etc.). After training, unseen data of the
predictors can be provided to the input neurons to get the
predicted values of the responses through the output neurons.

In this article, feedforward back propagation neural
network [46] is developed with five input neurons and
one output neuron which provides the predicted values
of chip–tool interface temperature. The numerical values
of cutting speeds (v); feed rates ( f ); and categorical
values of machining environments (dry and HPC); mate-
rials (C-60, 17CrNiMo6, and 42CrMo4 steel); and cutting
inserts (SNMG and SNMM) are given to the network as

Table 10 Tool life of SNMG and SNMM insert at VB = 300 μm

Cutting
speed
(m/min)

Feed rate
(mm/
rev)

SNMG insert SNMM insert

Tool life (min) Tool life (min)

Dry HPC %
increment

Dry HPC %
increment

133 0.14 59 91 54 35 84 140

0.18 45 73 62 29 67 131

0.22 41 67 63 23 50 117

152 0.14 44 71 61 30 62 107

0.18 35 53 51 24 50 108

0.22 30 42 40 17 31 82

186 0.14 40 53 33 25 50 100

0.18 24 42 75 19 40 111

0.22 21 36 71 12 22 83

Table 9 Properties of the insert, work material, and cutting oil

Insert C-60 Cutting oil

Thermal
conductivity (λt)

Thermal
conductivity (λ)

Thermal
diffusivity (ac)

Density (ρ) Prandtl
number (Pr)

Absolute
viscosity (υ)

Thermal
conductivity (λ0)

0.47 J/cm s °C 0.43 J/cm s °C 3.84 cm2/s 882 × 10−6 Kg/cm3 754 68 × 10−6 m2/s 0.0015 J/cm s °C
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input. A total of 192 data sets are divided into two parts:
154 data sets are used to train the ANN model and 38 data
sets are separated in order to test the accuracy of the
developed model. Normalization of the data set is not
adopted in the present study. It is important to keep in
mind that testing data does not have any effect during
training. The training of the networks is done on
MATLAB R2015a, neural network toolbox 7 [47].
Figure 10 represents a model structure of the neural net-
work considered in this study. Single hidden layer is
adopted to construct the networks but the number of hid-
den neurons varied. In this article, 22 hidden neurons
have been chosen after evaluating the results found during
testing the networks in terms of MAPE, configured with 3
to 25 hidden neurons.

The networks are trained using Bayesian regularization
(BR) algorithm as it is proven to perform well as stated by
Mia and Dhar [48]. Artificial neural networks trained operat-
ing with Bayesian regularization generates the potential to
reduce or ignore the lengthy cross-validation process and
has the ability to handle imprecise noisy data [49–51]. Two
transfer functions have been used to devolve the models: hy-
perbolic tangent sigmoid transfer function (hidden layer) and
linear transfer function (output layer). The performance func-
tion adopted for the networks are mean square error (MSE).
After the training phase, simulations have been made using
unseen data to test the prediction capability of the developed
model. Following the training-testing procedure for selecting
number of neurons in hidden layer employed by T. Özel [30],

five trials of training and testing phase are performed for each
network structure for precise evaluation. Training multiple
times generated different results within close proximity for
same structures because of the different initialization values
of weights and biases.

MSE ¼ 1

N
∑
N

n¼1
Actual−Predictedð Þ2 ð13Þ

MAPE ¼ 1

N
∑
N

n¼1

Actual−Predictedj j
Actual

� �
� 100 ð14Þ

The prediction accuracy of the networks are measured
using mean absolute percentage error (MAPE). The lowest
MAPE during testing phase is found to be 2.669 % for 4-22-
1 neural network configuration trained with BR algorithm.
Figure 11 illustrates the prediction accuracy of the developed
ANN prediction model (4-22-1). Predicted values and actual
measured values of chip–tool interface temperature of 38 data
sets chosen for the testing purpose is plotted against the testing
runs to ascertain the amount of aberration. On assessing the
graphs, it could be summarized that the network structure has
given quite a similar line pattern for actual and predicted
values. Linear regression is calculated for these selected data
set to measure the prediction capability. Linear regression R
value is found to be 0.9660, the high value of regression re-
flects the high accuracy and acceptability of the formulated
model.

3.5 Comparison of the prediction models

In this section, a comparison is supervised between the two
prediction techniques analyzed in erstwhile sections to predict
chip–tool interface temperature. The all-inclusive perfor-
mance (training and testing) and testing accuracy of these
techniques are evaluated in terms of MAPE and coefficient
of determination (R2); the results are explicitly shown in
Table 8. As stated earlier, 38 data sets were used to test the
adequacy of the ANN model and MAPE quantified at the
testing phase is 2.669 %. To present a comparison with
RSM model, Eqs. 1–12 are used to predict the response for
the same testing data set which was used in case of ANN.
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Table 11 Analysis of variance for tool life

Source DF Sum of
squares

Mean
square

F
value

P value
Prob > F

Cutting
speed

2 3335 1667.36 47.65 0.000

Feed rate 2 2662 1331.03 38.04 0.000

Environment 1 5160 5160.03 147.46 0.000

Cutting tool 1 1078 1078.03 30.81 0.000

Error 29 1015 34.99

Total 35 13,250
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MAPE of 1.947 % is accounted for the RSM model, which is
slightly more accurate than the neural network model. Again,
MAPE is calculated for predictions of all 192 data sets includ-
ing both training and testing domain which reveals that ANN
model performed better with 0.892 % improvement in accu-
racy. In terms of R2 value, overall ANN model outperformed
the performance of the overall RSM model, similar outcome
was also reported in research works published by Karkalos N
et al. [20] and Mia and Dhar [52]. However, higher coefficient
of determination was observed in case of developed equations
for RSM within testing domain which is in accordance with
the analysis made by R. Kumar et al. [32]. Furthermore, Ihsan
Korkut et al. [37] showed ANN can perform better than re-
gression models when chip–tool interface temperature predic-
tion ability was measured. Figure 12 illustrates the graphical
comparison of errors found during testing phase of the
models.

3.6 Tool life

Tool life can be defined as the length of cutting time that the
tool can be used until final catastrophic failure. The main three
reasons behind the failure of a cutting tool in machining are (i)
fracture failure, (ii) temperature failure, and (iii) gradual wear
[53]. The fracture failure occurs when the cutting force at the
tool point becomes excessive, causing it to fail suddenly by
brittle fracture. When the cutting temperature is too high for
the tool material, temperature failure occurs which leads to
plastic deformation of the tool and loss of the sharp edge.
These two types of failures result in premature loss of the
cutting tool. Again, cutting tools in conventional machining,
particularly in continuous chip formation processes like turn-
ing, generally fails by gradual wear (i.e., abrasion, adhesion,
diffusion, chemical erosion, galvanic action) depending upon

the tool–work materials and machining condition. In the pres-
ent investigation with the tools and work material and the
machining conditions undertaken, the tool failure mode has
been mostly gradual wear, more specifically, adhesion or at-
trition wear [54]. The material properties of the uncoated car-
bide tool inserts (SNMG 120408 and SNMM 120408), the
workpiece, and the coolant are listed in Table 9.

The effect of application of jet impingement at elevated
pressure over traditional dry-cut machining on tool life of
SNMG and SNMM inserts at different v–f combination in
turning C-60 steel can be divulged from the summary of the
times to failure for all test conditions stated in Table 10. The
cutting speeds chosen for the experiment are 133, 152, and
186 m/min while feed rate is kept within the range of 0.14 and
0.22 mm/rev and depth of cut is held constant at 1.5 mm.
Significant improvement of tool life under the application of
high-pressure coolant jet is perceptible from Table 10, where
in case of uncoated carbide SNMM insert, up to 140 % incre-
ment over dry-cut is achieved. Time, until the rejection of a
tool, decreases at augmented cutting speed and feed rate due to
higher friction and heat generation [18]. For example, at cut-
ting speed of 133 m/min and feed rate of 0.14 mm/rev, the life
of the SNMG insert is 59min for dry-cut and 91min for HPC-
assisted machining. Tool life decreases to 21 min during ma-
chining under the absence of cutting fluids and 36 min for
machining with high-pressure coolant at higher level of cut-
ting speed, 186 m/min and feed rate, 0.22 mm/rev. Identical
relation is also observable by analyzing the measured tool life
for SNMM insert. Moreover, high-pressure coolant drastically
ameliorates tool condition by the reduction of adhered mate-
rial on flank and rake face [19]. Again, reduction of auxiliary
flank wear due to retention of tool hardness promoted by
reduction of chip–tool interface temperature in HPC-assisted
cutting, aid to achieve prolong tool life [55]. It is also evident

(a) (b) (c) Fig. 15 SEM views of principal
flank of worn out tip of SNMM
insert after machining C-60 steel
under a dry condition, 48 min; b
wet condition, 48 min; and cHPC
condition, 48 min

(a) (b) (c) Fig. 14 SEM views of principal
flank of worn out tip of SNMG
insert after machining C-60 steel
under a dry condition, 48 min; b
wet condition, 48 min; and cHPC
condition, 48 min
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from Table 10 that percentage increment rate of SNMM tool
life dwindles with the progression of cutting speed. However,
no such pattern can be depicted for SNMG insert.

ANOVA for tool life is presented in Table 11. All four
process factors associated with the analysis are signifi-
cant model terms as P value is less than 0.05. The influ-
ence of machining environment, dry, and HPC-assisted,
is found to be the most dominant factor with ∼38.94 %
contribution on the formation of tool life model. Cutting
speed has the second most commanding effect with
∼25.17 %, followed by feed rate with ∼20.1 %, and tool
characteristics with ∼8.1 % contribution. The contribu-
tion of the error term is ∼7.7 %. R-squared value of the
model is found to be 92.34 %, whereas adjusted R-
squared and predicted R -squared are 90.76 and
88.20 %. Two unusual observations are found which are
run nos. 19 and 28. The mean effect plot is framed in
Fig. 13.

The SEM views, for micro-scale observation, of SNMG
and SNMM inserts after 48 min of continuous machining of
C-60 steel at 193 m/min cutting speed and 0.18 mm/rev feed
and 1.5-mm depth of cut in dry-cut, conventional wet, and
HPC-assisted cooling mechanism are framed in Figs. 14, 15,
16, and 17. It is discernable from the micro-level representa-
tion that conventional soluble oil cutting fluid did not signif-
icantly ameliorate the nature and extent of wear as such turn-
ing steels with the usage of conventional wet cooling causes
faster oxidation and corrosion of the tool surfaces and rapid
micro fracturing of the cutting edges by thermo-mechanical
shocks. Whereas application of elevated pressure has provid-
ed remarkable improvement [56] and even after 48 min of
machining, both flank and crater wear have been much uni-
form and much smaller in magnitude and only a small notch
appeared on the auxiliary flank. Such improvement by HPC

jet can be attributed mainly to retention of hardness and sharp-
ness of the cutting edge for their steady and intensive cooling,
protection from oxidation and corrosion and absence of built-
up edge (BUE) formation, which accelerates both crater and
flank wear by flaking and chipping.

4 Conclusions

In this research paper, turning at different cutting speed and
feed rate combinations of commonly used C-60, 17CrNiMo4,
and 42CrMo4 steel alloys in dry and HPC-assisted machining
with SNMG and SNMM cutting inserts have been conducted
to evaluate the performance of application of jet stream at
elevated pressure on chip–tool interface temperature as well
as tool life. Furthermore, development of predictive models of
cutting temperature with the help of RSM and ANN along
with performance measure of the aforementioned models, is
another concern of the analysis. The following conclusions
can be drawn based on the results of the present investigation:

1. A total of 192 observations have been conducted based on
full factorial design plan and RSM has been employed for
subsequent modeling to formulate mathematical equa-
tions to make accurate predictions of chip–tool interface
temperature. ANOVA has been performed to evaluate the
effects of cutting speed, feed rate, environment, material,
and cutting insert as well as their interactions terms on the
formation of chip–tool interface temperature and to mea-
sure the significance of the proposed model. R2 value for
the model is 0.9640 and the model F value of 75.45 im-
plies that the model is statistically significant.

2. Cutting speed has relatively greater share of control on
chip–tool interface temperature formation with

(a) (b) (c) Fig. 17 SEM views of auxiliary
worn out tip of SNMM insert after
machining C-60 steel under a dry
condition, 48 min; b wet
condition, 48 min; and c HPC
condition, 48 min

(a) (b) (c)Fig. 16 SEM views of auxiliary
flank of worn out tip of SNMG
insert after machining C-60 steel
under a dry condition, 48 min; b
wet condition, 48 min; and cHPC
condition, 48 min
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∼38.82 % contribution. Environment has the second most
influential effect in this analysis accounting for ∼37.82 %
contribution followed by feed rate with ∼9.04 % contri-
bution. Materials and cutting inserts possessed very little
effects where ∼0.62 and ∼0.14 % contribution are
accounted respectively.

3. The lowest measurement of chip–tool interface tempera-
ture is achieved at the lowest level of cutting speed and
feed rate in turning of C-60 steel (BHN: 195) with SNMM
cutting insert in HPC-assisted machining. Optimization
with desirability function manifested exact set of factors
and absolute percentage error (APE) between the predict-
ed response and actual experimental value on the afore-
said conditions is 3.48 %. Noteworthy, the calculated val-
ue of desirability is 0.960.

4. Feedforward back propagation neural networks trained
using Bayesian regularization algorithm have been de-
veloped with five input neurons and one output neuron
to predict the values of chip–tool interface tempera-
ture. The lowest MAPE during testing phase is found
to be 2.669 % for 4-22-1 neural network configuration
and overall MAPE including both training and testing
phase is 0.858 %. R2 value for the overall performance
phase and testing phase are 98.68 and 93.25 %,
respectively.

5. The mathematical equations formulated using RSM have
evinced less MAPE compared to ANNmodel during test-
ing phase. MAPE quantified for total 192 observations
and the testing data set are 1.750 and 1.947 %, respective-
ly. Again, predicted R2 value for the overall performance
is 96.40 % whereas testing data reckoned at 94.48 %.

6. HPC-assisted machining promotes improved tool life
where up to 140 % improvement over dry machining is
observable. Even after 48 min of machining, it has been
scrutinized from SEM figures that HPC jet has provided
remarkable improvement of tool condition on both prin-
cipal and auxiliary flank whereas conventional soluble
cutting fluid did not significantly improve the nature and
extent of wear. Environment (dry and HPC) is the most
dominant factor which has ∼38.94 % contribution on tool
life followed by cutting speed with ∼25.17 % contribu-
tion, according to ANOVA for tool life.
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