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Abstract Polishing processes have steadily evolved from
largely manual operations to automated processes based
on robotized systems. Sensor monitoring can be a viable
solution for process control in order to achieve more ac-
curate, robust, and reliable automated polishing opera-
tions. In this paper, an acoustic emission-, strain-, and
current-based sensor-monitoring system was employed
during robot-assisted polishing of steel bars for online
assessment of workpiece surface roughness. Two feature
extraction procedures, a conventional one based on statis-
tics and an advanced one based on wavelet packet trans-
form, were applied to the sensor signals detected during
polishing. The extracted relevant features were utilized to
construct different types of pattern feature vectors (basic
and sensor fusion pattern vectors) to be fed to a neural
network pattern recognition paradigm in order to make a
decision on polished part surface roughness-level
acceptability.

Keywords Polishing .Multiple sensormonitoring . Surface
roughness . Feature extraction . Pattern recogniton . Neural
networks

1 Introduction

Aworkpiece fabrication comprises of a series of manufactur-
ing processes, casting, forming, machining, etc. To conclude
fabrication, surface finishing is performed in order to smooth-
en surfaces until the required surface roughness is reached [1].
To date, one of the best-performing surface-finishing process-
es, capable to create mirror-like surfaces, is polishing [2],
which is defined as the process of generating a surface
smoother than the initial one [3].

Initially, polishing was a manual process performed by
skilled human operators. Gradually, it is becoming an auto-
mated process [4] aiming at improving the polishing operation
performance in terms of time reduction and quality assurance.
Robot-assisted polishing (RAP) consists of a motorized arm
that performs polishing on a given workpiece [5]. The motor-
ized arm holds the polishing tool and displaces it back and
forth, at a set speed, along a chosen stroke length on the work-
piece surface to be polished. The polishing parameters are
programmed by setting the main spindle rotational speed,
the cutting speed, the cutting force, the stroke length, and
the pulse rate.

In polishing, surface roughness is the quality parameter of
interest consisting of the irregularity measurement in the sur-
face that results from manufacturing process. Essentially, sur-
face inspection methods are based on tactile methods that
measure surface roughness through physical contact with the
workpiece surface [6]. This direct inspection method necessi-
tates the halting of the polishing operation to allow the mea-
surement of the workpiece surface roughness.

Online process control is essential for the complete automa-
tion, performance, and quality improvement of manufacturing
processes and can be implemented by employing innovative
sensor-monitoring systems characterized by high robustness,
reliability, reconfigurability, and intelligence [7–10].
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The application of sensor monitoring for manufacturing
processes, in particular for machining processes, has been of
increasing interest of study and research over the past 30 years.
The first detailed investigation of sensorial systems for tool
wear estimation was published by Micheletti et al. [11] in
1976. Tönshoff et al. [12] disclosed the developments and
trends of monitoring and control of cutting processes in
1988. Byrne et al. [7] compiled an accurate report on the state
of the art of industrial application of cutting process of mon-
itoring in 1995. Teti et al. [13] in 2010 promoted the recent
advancements on advanced monitoring of machining opera-
tions. However, the results of these research activities indicat-
ed that the commercial monitoring systems were excessively
specialized for the purposes of practical applications, and their
employment in industry was limited. This was due to the fact
that most of the commercial monitoring systems were based
on the use of a single sensor.

A new focus of the research on sensor signals relates to
fusion of sensory data obtained by combining homogeneous
or heterogeneous sensory devices for enhanced process char-
acterization [14, 15]. Many definitions for data fusion exist in
literature. Historically, data fusion methods were developed
primarily for military applications. Joint Directors of
Laboratories [16] defines data fusion as a “multilevel, multi-
faceted process handling the automatic detection, association,
correlation, estimation, and combination of data and informa-
tion from several sources.” In recent years, data fusion
methods were applied in diverse areas such as signal process-
ing, information theory, statistical evaluation, and artificial
intelligence. In machining processes, sensory data fusion tech-
niques were utilized for the following main purposes: tool
state identification [17], process condition optimization [18],
surface integrity evaluation [19], and machine tool state [20].

As regards polishing processes, there are few experimental
studies on the implementation of multiple sensor monitoring
and data fusion methods for process optimization and automa-
tion [21, 22]. Among them, the use of acoustic emission sen-
sors has allowed the achievement of valuable results for the
estimation of the process state [23–25].

This research work focuses on the development of a mul-
tiple sensor-monitoring process system for improved control
and enhanced repeatability and predictability of a robot-
assisted polishing process. For this purpose, an experimental
campaignwas carried out, using a RAPmachine [26] to polish
American Iron and Steel Institute (AISI) 52100 alloy steel bars
by varying polishing conditions. Three diverse sensing units,
acoustic emission (AE), strain, and current, were installed on
the RAP machine for sensor signal detection. The following
two feature extraction techniques were applied to the digitized
sensor signals: a conventional one based on statistical analysis
and an advanced one based on wavelet packet transform
(WPT) [27, 28]. The relevant extracted statistical and WPT
features were utilized to construct the following two kinds of

pattern feature vectors: 5-element pattern feature vectors and
15-element sensor fusion pattern feature vectors. These vec-
tors were used as input to a neural network (NN) pattern rec-
ognition paradigm [29, 30] to correlate the sensor signals to
the measured surface roughness in order to make an online
decision on the acceptability of the polished workpiece sur-
face roughness.

2 Experimental procedure

2.1 Robot-assisted polishing machine

The RAP machine is a motorized arm that imitates the work
and skills of polishers who are able to polish, following a
series of operations, bringing the surface roughness level
down to a mirror-like surface removing scratches and defects.
The main objective behind creating and building the RAP
machine is to overcome the time-consuming operational labor
of hand polishing. Moreover, the RAPmachine should be able
to remove defects from previous machining processes and
ensuring that the final surface has a roughness level adequate
for the subsequent application.

The RAP machine, utilized in this paper, is composed of a
main spindle and a polishing module (Fig. 1) [31]. The work-
piece to be polished is chucked to the main spindle, which is
driven by a direct-drive servomotor. This part of the RAP
machine operates similarly to a turning lathe. The rotational
speed of the chuck, and thus the mounted workpiece, is pro-
grammed. The polishing module combines a robot arm on
which interchangeable polishing stones are mounted, a force
sub-module, and a control module. The force sub-module ap-
plies a force orthogonal to the surface of the workpiece to be
polished. While applying this force, the polishing stone pul-
sates along a defined stroke length.

As for the pulsation and rotation-driven tool module, the
controlling parameters (pulse frequency or rotational speed)
and non-conventional polishing parameters (cutting speed and

Fig. 1 Scheme of the RAP machine
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feed rate) can be controlled by the RAP program, which is the
control module of the RAP machine.

2.2 Experimental polishing tests

The experimental polishing test campaign was carried out
within the activities of the EC FP7 Project Intelligent Fault
Correction and self-Optimizing Manufacturing systems
“IFaCOM” [32]. AISI 52100 alloy steel cylindrical bars (Ø
40 × 75 mm) (Fig. 2) were polished using a silicon carbide-
polishing stone with no. 800 grit size.

The experimental setup used during the polishing tests was
the following:

– Spindle speed 300 rpm
– Feed rate 5 mm/s
– Polishing force 1000 or 1800 g
– Pulse rate 500 pulses/min
– Stroke length 1 mm.

The polishing testing sessions were 6, each composed of 60
passes. Each testing session had an approximate duration of
15 min and 50 s. A pass is defined as the polished path that
goes from one end of the desired length to be polished down to
the other extremity.

During the six testing sessions, the full length of the alloy
steel bar was polished over and over using different polishing
force as shown below.

& 1800 g in the first session, 1 session × 60 passes = a total
of 60 passes (from pass no 1 to no. 60)

& 1000 g in the second, third, and fourth sessions, 3 ses-
sions × 60 passes = a total of 180 passes (from pass no.
61 to no. 240)

& 1800 g in the fifth and sixth sessions, 2 sessions × 60
passes = a total of 120 passes (from pass no. 241 to no.
360).

2.3 Multiple sensor-monitoring system

Three diverse sensing units were employed during the
polishing tests, comprising (Fig. 3)

& AE sensor fixed on the tool holder. The AE signals were
pre-amplified and high-pass filtered with a 50-kHz cutoff
frequency. Then, the AE signals were digitized at a 1-MS/

s sampling rate and finally undersampled at almost
131 kS/s.

& Strain gauge sensor mounted between the tool holder and
the robot arm connection to measure the force generated
during polishing. The strain signal was digitized at a 50-
kS/s sampling rate and then undersampled at almost
16 kS/s.

& Current sensor mounted in the electrical cabinet of the
machine providing signals related to the motor power ab-
sorbance. The current signal was digitized at a 50-kS/s
sampling rate and then undersampled at 0.1 kS/s.

A National Instrument DAQ board (NI 9232) was used for
the digitization of all detected sensor signals. The sensor sig-
nals were stored as text files with a variable number of sam-
plings per file according to the relative sampling rate of the
diverse sensor signal types (Table 1). A total number of 5580
sensor signal files were obtained.

2.4 Surface roughness measurements

The typical apparatus employed for measuring surface rough-
ness is a profilometer using a stylus that is drawn along the
surface at constant speed measuring the vertical variation in
surface smoothness variations [33].

After each polishing session, the process was halted, the
workpiece dismounted, and surface roughness measured
using a Mahr profilometer (MarSurf XR 1). The parameters
of interest were Ra (average deviation), Rz (surface roughness
based on the five highest peaks and lowest valleys over the
entire sampling length), and Rt (total height) [32]. Five surface
roughness measurements were done at the end of the polishing
session, and the average of each of Ra, Rz, and Rt was calcu-
lated. The workpiece was then mounted again, and the
polishing process was continued. The average values of the
surface roughness parameters are reported in the graph in
Fig. 4 and Table 2, and it can be noted that the final surface
roughness, i.e., the surface roughness of the workpiece after
the sixth session, was not measured.

3 Sensor signal processing and analysis

3.1 Acoustic emission sensor signals

The AE raw signals are expected to oscillate around the zero
value providing a zero mean in time [34, 35]. As the detected
AE signals presented a bias, possibly due to an electronic/
electrical offset generated by the AE sensor system, a pre-
processing step was carried out to remove the bias from the
detected AE signals by shifting these signals so that a zeroFig. 2 Workpiece, AISI 52100 alloy steel bar
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meanwas obtained. The pre-processing procedure was carried
out using MATLAB® by the following steps:

& Plotting of AEraw signals (Fig. 5a)
& Shifting of AEraw signals, for each AEraw signal, the mean

value was calculated and subtracted from each signal sam-
pling to obtain the typical AE signal oscillating around
zero (Fig. 5b)

& Moreover, for each unbiased AEraw signal, the root-mean-
square (RMS) with time constant 0.12 ms was calculated
to obtain the corresponding AERMS signal (Fig. 5c) [35].

3.2 Strain and current sensor signals

A pre-processing phase was not required for the detected
strain and current sensor signals. In Figs. 6 and 7, an
example of strain and current sensor signal variation is
reported for 1 s of polishing, respectively. The strain
sensor signal was acquired at a sampling frequency of
50 kS/s and was undersampled to 16,384 samples per
second. The strain samples, shown in Fig. 6, consist of
a segment taken at an arbitrary moment from the 50,000
samples of the strain sensor signal corresponding to 1 s

of polishing. The same was applied to the current sensor
signals that were acquired at a sampling rate of 50 kS/s
and then undersampled to 0.1 kS/s (Fig. 7).

4 Sensor signal feature extraction

The following two types of feature extraction methods were
used to process the digitized AE (AEraw and AERMS), strain,
and current sensor signals [26, 31]:

& Conventional feature extraction method
& Wavelet packet transform feature extraction method.

The extracted relevant features were subsequently used to
construct different types of pattern feature vectors (simple and
sensor fusion pattern vectors) to be fed to a neural network
pattern recognition paradigm in order to make a decision on
polished part surface roughness-level acceptability.

4.1 Conventional feature extraction method

The conventional feature extraction method consists of calcu-
lating statistical features from each of the AE, strain, and cur-
rent sensor signals. These statistical features were mean (M),
variance (V), skewness (S), kurtosis (K), and energy (E).

Fig. 3 Multiple sensor-monitoring systemmounted on the RAPmachine, AE sensor and pre-amplifier, strain sensor, and DAQ board. “Drop” indicates
the utilized lubrication system [26]. The current sensor was mounted in the electrical cabinet of the machine

Table 1 Sampling frequency and number of samplings (per file) for the
three diverse sensing units

Sensor Sensing
variable

Sampling
frequency

Number of
samplings
per file

Fuji Ceramics R-
CAST M304A

AE 1 MHz undersampled
at ∼131 kS/s

131,072

Kistler MiniDyn
9256C2

Strain 50 kS/s
undersampled
at ∼16 kS/s

16,384

LEM HASS 50-S Current 50 kS/s
undersampled
at 0.1 kS/s

100

Fig. 4 Measured surface roughness parameters vs. polishing sessions
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Subsequently, two kinds of statistical pattern feature vec-
tors (using features extracted from either AEraw or AEEMS)
were constructed using the extracted statistical signal features.

4.2 Wavelet packet transform feature extraction method

The WPT of a signal decomposes the original signal into a
number of packets of coefficients calculated by scaling and
shifting a chosen mother wavelet that is a prototype function
[31]. Accordingly, at the first level ofWPT, the original sensor
signal S is split into two frequency band packets, approxima-
tion A1 and detail D1. At the second level, each

approximation and detail packet is again split into further ap-
proximations, AA2 and AD2, and details, DA2 and DD2, and
the process is repeated generating other decomposition
packets (Fig. 8) [36].

In this paper, the employed mother wavelet for the process-
ing of the sensor signals is a Daubechies 3 (db3). The decom-
position was performed up to the third level yielding 14
packets, 2 in the first level (A1, D1), 4 in the second level
(AA2, DA2, AD2, DD2), and 8 in the third level (AAA3,
DAA3, ADA3, DDA3, AAD3, DAD3, ADD3, DDD3)
(Fig. 8). For each wavelet packet, the following five features
were calculated: mean, variance, skewness, kurtosis, and
energy.

To illustrate theWPT feature extraction procedure [27, 28],
an example with reference to feature extraction from the sole
wavelet packet A is reported in Fig. 9 and explained below.

The WPT algorithm was applied to the 5580 sensor signals
resulting in the corresponding A packets consisting of a num-
ber of coefficients equal to half of the number of samplings of
the original sensor signal files. For each A packet, five statis-
tical packet features (mean, variance, kurtosis, skewness, en-
ergy) were calculated from its coefficients. The same proce-
dure is repeated for the extraction of features from the other
wavelet packets of the first, second, and third levels.

Overall, 14 packets × 2 AE signal types (AEraw and
AERMS) = 28 WPT pattern feature vectors were obtained.

Table 2 Surface roughness measurements

Polishing session Roughness average value (μm)

Ra Rz Rt

1 (60 passes with 1800 g) 0.111 1.131 1.684

2 (60 passes with 1000 g) 0.081 0.984 1.582

3 (60 passes with 1000 g) 0.083 0.908 1.065

4 (60 passes with 1000 g) 0.053 0.603 0.742

5 (60 passes with 1800 g) 0.107 1.076 1.643

6 (60 passes with 1800 g) NA NA NA

Fig. 5 a AEraw signal, b AEraw-shifted signal, and c AERMS signal

Fig. 6 Strain sensor signal

Fig. 7 Current sensor signal
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5 Feature pattern vector construction

The extracted statistical and WPT features from the diverse
sensor signals were utilized to construct the following two
kinds of pattern feature vectors [37, 38]:

& Five-element pattern feature vectors, these vectors consist
of the five features (statistical or WPT) extracted from
each AEraw, AERMS, strain, and current sensor signals.
For example, the five-element pattern feature vectors, in
the case of the extracted statistical (Stat) or WPT feature
for AEraw, are

& [Stat]AEraw = [mean, variance, skewness, kurtosis,
energy]AEraw

& [WPT]AEraw = [mean of wavelet packet, variance of
wavelet packet, skewness of wavelet packet, kurtosis of
wavelet packet, energy of wavelet packet]AEraw.

Using the pattern feature vector scheme above, for AEraw,
14 WPT 5-element pattern features vectors were constructed
for each wavelet packet.

& Fifteen-element pattern feature vectors, a more complex
vector combining the five features (statistical or WPT)
extracted from eachAEraw/AERMS, strain, and current sen-
sor signals for sensor fusion. For example, the 15-element
sensor fusion (SF) pattern feature vectors, in the case of
the extracted statistical (SFStat) or WPT (SFWPT) feature
for AEraw, are

& [SFStat]AEraw = {[mean, variance, skewness, kurtosis,
energy]AEraw, [mean, variance, skewness, kurtosis,
energy]strain, [mean, variance, skewness, kurtosis,
energy]current}

& [SFWPT]AEraw = {[mean of wavelet packet, variance
of wavelet packet, skewness of wavelet packet, kurto-
sis of wavelet packet, energy of wavelet packet]AEraw,
[mean of wavelet packet, variance of wavelet packet,
skewness of wavelet packet, kurtosis of wavelet pack-
et, energy of wavelet packet]strain, [mean of wavelet
packet, variance of wavelet packet, skewness of

wavelet packet, kurtosis of wavelet packet, energy of
wavelet packet]current}.

Using the pattern feature vector scheme described for
AEraw, 14 WPT 15-element pattern feature vectors are con-
structed for each wavelet packet.

Overall, in the case of the statistical feature vector extrac-
tion, 4 statistical 5-element pattern feature vectors
([Stat]AEraw, [Stat]AERMS, [Stat]strain, [Stat]current) + 2 sta-
tistical 15-element sensor fusion pattern feature vectors
([SFStat]AEraw, [SFStat]AERMS) were obtained.

As for the constructedWPT pattern feature vectors, 4 WPT
5-element pat tern feature vectors ([WPT]AEraw,

Fig. 8 Decomposition wavelet tree up to the third level. S original signal

Fig. 9 WPT feature extraction
method for the sole wavelet
packet A

Fig. 10 Sensor signal feature extraction and feature pattern vector
construction for both conventional statistical and wavelet packet
transform methods from the following four diverse sensor signal types:
AEraw, AERMS, strain, and current
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[WPT]AERMS, [WPT]strain, [WPT]current) + 2 WPT 15-
e l emen t s en so r fu s i on pa t t e rn f e a tu r e vec to r s
([SFWPT]AEraw, [SFWPT]AERMS) were constructed for each
of the 14 packets.

A total number of 84 WPT pattern feature vectors were
obtained. Figure 10 illustrates the sensor signal feature extrac-
tion and feature pattern vector construction for both conven-
tional statistical and wavelet packet transform methods from
the following four diverse sensor signal types: AEraw, AERMS,
strain, and current. The constructed feature pattern vectors
were then utilized as input vectors to knowledge-based,
decision-making paradigms.

6 Neural network pattern recognition

NN systems are inspired by the biological nervous system.
They are computing systems made up of a number of simple,
highly interconnected processing elements, called nodes, which
perform in parallel processing information data by their dynam-
ic state response to external inputs [39]. The connections be-
tween nodes determine the network function, and by adjusting
the connection weights, NNs are trained to perform diverse
specific functions. Among these, pattern recognition, i.e., iden-
tifying patterns in the input features relating them to the target
output, is particularly effective for classification purposes [29].

6.1 Neural network design

The obtained statistical and WPT pattern feature vectors were
employed as input to decision-making paradigms, based on NN
pattern recognition, aimed at assessing the acceptability of the
workpiece surface roughness during robot-assisted polishing.

In this work, NN implementation was carried out in
MATLAB® environment using the Neural Network
Toolbox [36]. The NN architecture is composed of the follow-
ing three layers:

– Input layer
– Hidden layer(s)
– Output layer.

After several simulation trials, it was decided to have
only one hidden layer and the number of nodes in the
hidden layer to be equal to three times the numbers of
nodes in the input layer. Data for pattern recognition and
classification purposes were set up to be inputted to NN
by organizing data into the following two matrices: input
matrix and target matrix.

The input matrix is made of the 5- or 15-element feature
vectors (columns) and the 5580 polishing test cases (row)
corresponding to the 5580 acquired sensor signals.

The output layer (target matrix) had only one node, providing
a binary target value associated with surface roughness accept-
ability, “0” for acceptable and “1” for unacceptable roughness.

Two different three-layer feed-forward (FF) back-
propagation (BP) NN architectures [28] were implemented
for each of the 90 input pattern feature vectors, 84 WPT pat-
tern feature vectors plus 6 statistical pattern feature vectors by
varying the number of input nodes and the number of hidden
layer nodes depending on the number of input pattern vectors.

& Five-element input pattern feature vectors, in this case, the
NN configuration is 5-15-1, where the 5-node input layer

Fig. 11 The broken straight lines denote the measured roughness value graphs. The horizontal dotted lines denote the minimum and maximum Ra

threshold levels

Table 3 NN training set for the diverse threshold values,
Ra = 0.070 μm and Ra = 0.075 μm

Threshold level
(μm)

Acceptable
roughness

Unacceptable
roughness

NN binary
code output
value

Ra = 0.070 μm 2924 2656 0

Ra = 0.075 μm 3174 2406 1
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corresponded to the 5 features of each pattern vector and
15 nodes were utilized in the hidden layer

& Fifteen-element input pattern feature vectors, 15-45-1. The
15 nodes corresponded to the 15 features of each pattern
vector, and the hidden layer was constituted of 45 nodes.

6.2 Neural network training and testing

The NN training set was constructed by associating the appro-
priate binary target value to each of the sensor signal files in
order to map the input sensor signal pattern feature vectors to
the output surface roughness acceptability. This was achieved
as follows: the measured Ra values were linearly connected to
form a broken line graph, and two threshold levels for surface
roughness acceptability were selected (Fig. 11), representing

the following two diverse target roughness values required
from the polishing process: Ra = 0.070 μm and
Ra = 0.075 μm. These threshold values were set according
the industrial machining requirements. For each threshold lev-
el, sensor signal files corresponding to a linearly interpolated
Ra value lower than or equal to the selected threshold were
associated to a 0 binary output, i.e., acceptable roughness, and
sensor signal files corresponding to a linearly interpolated Ra

value higher than the selected threshold were associated to a 1
binary value, i.e., unacceptable roughness. The number of the
acceptable and unacceptable cases is summarized in Table 3.

The NN training and testing procedure were carried out by
sub-dividing the relevant training set, called sample, into the
following three sub-sets: training sub-set (70 % of the sample
instances), validation sub-set (15 % of sample instances), and
testing sub-set (15 % of the sample instances). The output of

Fig. 12 Overall NN SR for all
statistical input pattern feature
vectors and the two threshold
levels (Ra = 0.070 μm,
Ra = 0.075 μm); [Stat]AEraw,
[Stat]AERMS, [Stat]strain, and
[Stat]current are the five-element
statistical input pattern feature
vectors, and [SFStat]AEraw and
[SFStat]AERMS are the 15-
element sensor fusion statistical
input pattern feature vector

Table 4 Overall NN SR for all WPT input pattern feature vectors (threshold = 0.070)

Neural network SR (%)—threshold level, Ra = 0.070 μm

Wavelet packet WPT input pattern feature vector

[WPT]AEraw [WPT]AERMS [WPT]strain [WPT]current [SFWPT]AEraw [SFWPT]AERMS

A 84.23 82.23 84.2 85.3 92.85 90.63

D 83.45 83.31 85.3 85.3 91.58 91.52

AA 84.98 81.13 84.7 85.4 91.23 92.45

DA 83.44 83.35 85.3 85 92.56 91.56

AD 81.89 82.82 84.7 85.3 93.85 90.75

DD 83.74 82.23 85 85.2 92.58 91.23

AAA 85.38 85.21 84.2 85.3 93.12 90.32

DAA 83.56 82.12 85.2 85.3 91.47 91.23

ADA 86.69 84.56 85.3 85.3 90.57 92.65

DDA 84.34 85.47 85.3 85.5 91.56 93.44

AAD 83.65 83.23 85.4 85.3 91.23 91.81

DAD 85.52 84.65 85.3 85.3 92.91 90.88

ADD 82.24 82.88 85.1 85.3 91.19 92.26

DDD 85.25 83.34 85.3 85.3 93.61 92.85

SRaverage 84.16 83.32 85.02 85.29 92.16 91.79
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the NN pattern recognition paradigm consists of the following
four percentage values, called success rates (SR): training set
SR, validation set SR, testing set SR, and overall SR. The SR of
interest to evaluate the NN performance in correctly assessing
the acceptability of the workpiece surface roughness is the
overall SR, the percentage of overall correct classifications that
the NN has achieved in relating the input pattern feature vectors
to the target surface roughness acceptability [39].

7 Results and discussion

In this section, the results of the NN pattern recognition para-
digm in terms of NN SR (%) were reported for the two diverse
input pattern feature vectors.

7.1 Statistical input pattern feature vectors

The overall NN SR for the statistical input pattern feature
vectors is reported in Fig. 12. From the figure, it can be ob-
served that, for both threshold values (Ra = 0.070 μm and
Ra = 0.075 μm), the statistical pattern feature vectors provided
interestingly high average SR value equal to 85.38 %.
Moreover, the sensor fusion statistical pattern vectors
([SFStat]AEraw, [SFStat]AERMS) shown a higher SR ranging
from 91.18 to 94.20 % than the single statistical input pattern
vectors ([Stat]AEraw, [Stat]AERMS, [Stat]strain, [Stat]current)
ranging from 78.40 to 85.30 %.

7.2 WPT input pattern feature vectors

In Tables 4 and 5, the overall NN SR values (%) were reported
for the two threshold values (Ra = 0.070 μm and
Ra = 0.075 μm) both in the case of the single WPT input
pattern feature vectors and in the case of the WPT sensor
fusion input pattern feature vectors for each of the 14 wavelet
packets.

In the case of the threshold value Ra = 0.070 μm, the single
WPT input pattern feature vectors ([WPT]AEraw,
[WPT]AERMS, [WPT]strain, [WPT]current) resulted in a NN
SR ranging in the interval of 81.13–86.69 %, whereas for the
sensor fusion WPT pattern vectors ([SFWPT]AEraw,
[SFWPT]AERMS), the NN SR varied from 90.32 to 93.85 %.

For the threshold value Ra = 0.075 μm, the NN SR for the
single WPT input pattern feature vectors ([WPT]AEraw,
[WPT]AERMS, [WPT]strain, [WPT]current) varied from
83.2 to 92.8 %, whereas for the sensor fusion WPT pattern
vectors ([SFWPT]AEraw, [SFWPT]AERMS), the NN SR var-
ied in the interval from 92.3 to 98.1 %.

As regards the behavior of the 14 wavelet packets, the
following considerations can be done:

& Threshold value Ra = 0.070 μm, the wavelet packet AD
was identified as that generating the most performing pat-
tern feature vectors with NN SR > 93 % obtained for the
sensor fusion pattern feature vector [SFWPT]AEraw

& Threshold value Ra = 0.075 μm, the wavelet packet DD is
the most performing pattern feature vectors with NN

Table 5 Overall NN SR for all WPT input pattern feature vectors (threshold = 0.075)

Neural network SR (%)—threshold level, Ra = 0.075 μm

Wavelet packet WPT input pattern feature vector

[WPT]AEraw [WPT]AERMS [WPT]strain [WPT]current [SFWPT]AEraw [SFWPT]AERMS

A 85.5 83.2 86.4 92.8 95.5 95.5

D 85.3 84.7 88.6 86.6 95.3 96.1

AA 86.8 87.1 85.5 91.2 96.8 92.3

DA 85.4 85.2 88.2 87.7 95.4 95.5

AD 87.8 87.5 89 86.6 97.8 97.2

DD 88.1 87.1 87.1 87.1 98.1 96.2

AAA 87.3 86.5 85.5 88.2 97.3 94.8

DAA 87.2 87.8 88.6 86.5 97.2 95.2

ADA 85.8 86.2 88.7 86.6 95.8 94.7

DDA 86.2 88.2 88.6 86.2 96.2 94.3

AAD 86.8 85.7 88.3 86.6 96.8 95.2

DAD 87.5 87.9 88.5 86.6 97.5 95.6

ADD 84.2 83.3 88.3 86.6 94.2 95.8

DDD 84.8 85.4 85.9 86.6 94.8 93.2

SRaverage 86.33 86.12 87.65 87.56 96.33 95.11
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SR > 98 % achieved in the case of the sensor fusion pat-
tern feature vector [SFWPT]AEraw.

In Fig. 13, the overall average NN SR is reported for all
WPT input pattern feature vectors and for the two threshold
levels. The NN SR values reported in the figure correspond to
the last row of Tables 4 and 5.

7.3 Comparison

By comparing Figs. 12 and 13, it can be noticed that, for
both threshold levels, the NN SR values achieved for the
sensor fusion pattern feature vectors are always higher
than for any of the statistical and WPT pattern feature
vectors, especially for the AEraw signal. This confirms
the high efficacy of sensor fusion technique in making
full use of sensorial information. Furthermore, the in-
crease of threshold value augments the NN SR in
assessing the surface roughness acceptability. This can
be explained by the higher number of acceptable rough-
ness cases generated by the higher threshold that ensures
a more balanced NN training set and, hence, a better NN
performance. However, threshold increase should be treat-
ed with care as too high a value may unbalance the NN
training set in the opposite way and, what is more, may
fai l to agree with the polishing process quali ty
requirements.

8 Conclusions

In this paper, a multiple sensor-monitoring system was
installed on a robot-assisted polishing machine in order to
enhance the automated polishing operations in terms of sur-
face roughness quality acceptability.

To achieve this goal, the previously analyzed sensor signals
(AE (AEraw and AERMS), strain, and current) were subjected
to the following two feature extraction techniques: a conven-
tional one based on statistical analysis and an advanced one

based on wavelet packet transform. Furthermore, workpiece
surface roughness (Ra, Rz, Rt) was measured after each
polishing session, and two diverse threshold levels for surface
roughness acceptability were selected (Ra = 0.070 μm and
Ra = 0.075 μm), representing two diverse target roughness
values required from the polishing process according the in-
dustrial machining requirements.

The extracted statistical and WPT features were utilized to
construct the following two kinds of pattern feature vectors: 5-
element pattern feature vectors and more complex 15-element
sensor fusion pattern feature vectors combining the informa-
tion from the diverse sensor signals. The obtained 90 input
pattern feature vectors (84 WPT pattern feature vectors plus 6
statistical pattern feature vectors) were fed to NN-based pat-
tern recognition paradigms for decision making on polished
workpiece surface roughness acceptability. By comparing the
results obtained with the conventional and the advancedWPT
feature extraction methods for both threshold values, the NN
performance for the WPT pattern feature vectors (average
SR = 86.94 % for Ra = 0.070 μm; average SR = 89.85 %
for Ra = 0.075 μm) was higher than the one of the statistical
pattern feature vectors (average SR = 84.16 % for
Ra = 0.070 μm; average SR = 86.61 % for Ra = 0.075 μm),
asserting the effectiveness of the WPT signal analysis meth-
odology for sensor monitoring of material removal processes.

The higher NN SR was always obtained when the sensor
fusion pattern vectors were considered, always >90 %. This
was due to the fact that the sensor fusion pattern vectors that
combined the information of all diverse sensing units utilized
in the experimental tests allow to achieve a more suitable data
set for pattern recognition decision-making support system.

The proposed procedure based on a multiple sensor-
monitoring system together with advanced sensor signal-
processing procedure and cognitive decision-making para-
digm is suitable for online process control of the RAP ma-
chine in terms of surface roughness assessment, and thus, a
complete automation of polishing process characterized by
high robustness, reliability, reconfigurability, and intelligence
can be implemented.

Fig. 13 Overall average of NN
SR for all WPT input pattern
feature vectors and the two
threshold levels (Ra = 0.070 μm,
Ra = 0.075 μm); [WPT]AEraw,
[WPT]AERMS, [WPT]strain, and
[WPT]current are the 5-element
WPT input pattern feature
vectors, and [SFWPT]AEraw and
[SFWPT]AERMS are the 15-
element sensor fusion WPT input
pattern feature vector
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