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Abstract The stability prediction of thin-walled workpiece
milling is an awkward problem due to the time variant of
dynamic characteristics during milling process. Integrating
the time discretization method for stability prediction men-
tioned in many articles, a novel time-space discretization
method for thin-walled component milling stability prediction
is proposed based on thin plate theory and mode superposition
principle, which includes the effects of the engagement posi-
tion between cutter and workpiece and multi-modes of the
system. The results show that the method presented is very
reliable and efficient, and its accuracy is also in good agree-
ment with experimental results. Additionally, the method can
be used to handle various complex boundary conditions by
means of the updated Rayleigh-Ritz solutions together with
the penalty method. Two case studies are performed to explain
the validation of the method as well as milling experiments of
a half-clamped thin plate.

Keywords Thin-walled component . Thin plate theory .

Time-varyingmodal parameter .Milling stability . Time-space
discretizationmethod

1 Introduction

Due to the requirements of high performance products, thin-
walled components with complex shape and light weight have
become more and more desirable in many application fields,
such as military, energy, and aerospace industries. Thin-walled
workpiece milling is of great significance [1]. However, high
flexibility of the workpiece and the time-varying dynamic char-
acteristics of cutting process are prone to induce severe vibra-
tion, which greatly limits the cutting efficiency, damages cutter
and spindle units, affects the surface machining quality, and
even shortens the service life of a part.

There are many kinds of vibrations in milling process [2],
such as free vibration, forced vibration and self-excited vibra-
tion, and so on. Regenerative chatter is a kind of self-excited
vibration, which has been the research focus in this research
direction for more than one century. After some early
pioneering work done by Tobias [3] and Smith et al. [4], many
stability prediction methods have been presented, which can
be sketchily divided into three classes: frequency domain,
time domain, and time simulation. The former two methods
are much sought after due to the wide applications and high
efficiency. For example, Altintas et al. [5] presented a harmon-
ic balance and infinite determines method based on zero order
Fourier transform of cutting force, which is suitable for large
radial immersion cases. For low radial immersion cases, more
than one Fourier items are necessary to catch the flip bifurca-
tion induced by loss contact between cutter and workpiece [6].
In this case, time discretization methods, such as semi-
discretization method (SDM) [7], full-discretization method
(FDM) [8], temporal finite element method (TFEM) [9], dif-
ferential quadrature method (DQM) [10], Chebyshev colloca-
tion method (CCM) [11], spectral element method (SEM)
[12], and so on, are more adept at handling the discontinuous
cutting. These studies have led to graphic charts (stability lobe
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diagram, SLD) showing the stability information as a function
of cutting depth and spindle speed. However, all these studies
assumed that the dynamic characteristics of the system did not
change during the whole machining process.

For thin-walled workpiece milling, the dynamic char-
acteristics of cutting process are time varying with the
motion of the cutter [13, 14], which is caused by two
key factors. One is that the relative space location be-
tween cutter and workpiece is time varying. The other is
that the material is removed during the machining pro-
cess. So the stability also changes during the machining
process, and the 3D SLD appears, where the third coordi-
nate axis is cutting position. Budak et al. [15] predicted
the stability lobes of a cantilevered thin plate milling.
Ukar et al. [16] and Bravo et al. [17] presented the fre-
quency domain method to predict the stability with the
assumption of both the mass and rigidity reducing contin-
uously during the milling process. Thevenot et al. [18, 19]
determined optimal cutting conditions during thin-walled
workpiece machining process by three-dimensional stabil-
ity lobes and conducted analysis on the influence of ma-
terial removal on the stability. Song et al. [20] proposed a
method for predicting simultaneous dynamic stability lim-
it of thin-walled workpiece high-speed milling process
using Sherman-Morrison-Woodbury formulas. However,
in the above works, only one mode of the structure is
considered. Actually, during milling of thin-walled work-
piece, with the motion of the cutter, the modal parameters
of each mode also change significantly. Seguy et al. [21]

studied the stability of thin-wall milling with the first
three modes. The results show that all these modes have
a significant influence on determining the limited cutting
depth. Zhang et al. [22, 23] predicted the stability of flex-
ible part milling with the moving cutting position using
finite element method (FEM). However, in most of these
analyses, the extraction of the modal parameters is real-
ized by the experimental modal analysis (EMA) and
FEM, where the efficiency is very low. For FEM, the
workpiece model needs to be updated for each modal
analysis step. Meanwhile, it is very time consuming when
dealing with a workpiece with various complex boundary
conditions, especially for non-classical constraints. So the
high-efficiency approach to identify the time-varying dy-
namic characteristics of workpiece is absent.

Therefore, the primary purpose of this paper is to pro-
pose a comprehensive method to investigate the effects of
engagement position between cutter and workpiece and
multi-modes on the time-varying dynamic characteristics
of thin-walled component milling process with arbitrary
boundary conditions. The remainder of this paper is sum-
marized as follows: the model of thin-walled part milling
with various boundary conditions is presented in
Section 2. Then, the modal analysis and time-space
discretization method to predict the stability lobes are il-
lustrated in Section 3, and two case studies are performed
in Section 4 as well as experimental validation to explain
the reliability, efficiency, and accuracy of the method pre-
sented. The conclusions are drawn in the last section.

(a) Model of thin plate milling

(b) The n degrees of freedom dynamic model
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Fig. 1 Dynamic model of thin-
walled component milling
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2 Model of thin-walled component milling
with various boundary conditions

Due to the high flexibility of thin-walled workpiece in
one direction (transverse direction), one degree of
freedom model was usually assumed [15]. As de-
scribed in the previous section, however, the dynamic
characteristics are time varying because of the motion
of cutter. So in the transverse direction of the work-
piece, a continuous system should be modeled, which
corresponds to the whole cutting process. In this sec-
tion, the equation of motion (EOM) of continuous
system for thin-walled component milling is proposed
based on the thin plate theory and Rayleigh-Ritz so-
lution together with the penalty method.

For the thin-walled component with various bound-
ary conditions, the spring penalty method [24] is
employed here to handle the arbitrary constraints.
Without loss of generality, a rectangular thin plate
with length in L, width in W, and thickness in h is
shown in Fig. 1a, where the four edges of the plate
are connected with artificial translational and rotation-
al springs to handle the various constraints. Also, Ω is
the rotational angle velocity of the cutter. It should be
noted that different boundary conditions are expressed
as different combinations of stiffness of these springs.
For example, as shown in Fig. 1a, if the Edge 1
(x = 0) of the plate is clamped, this constraint is
realized by adding some artificial springs with high
non-dimensional stiffness to model constraints, where
translational springs are used to limit the transverse
displacement, w, and torsional springs are applied to
limit the rotation, w,x, and w,y. The additional spring
coefficient is named as penalty parameter.

As we know, dynamic characteristics change with
respect to the cutting process (cutting position or
cutter-workpiece engagement posit ion) for thin-
walled component milling. Thus, the modal parame-
ters of thin-walled workpiece milling system are func-
tions of both time and space. That is, at different
tool-workpiece engagement positions, the different vi-
bration systems are induced and even subjected to the
same milling force. Additionally, considering the
workpiece’s internal damping and contact damping
between the workpiece and fixture, the workpiece
model can be regarded as a structural damping system
with n degrees of freedom (DOF), as shown in
Fig. 1b, where the spring with complex stiffness is
used to connect two mass points. Note that the value
n really approaches to infinity for the continuous
system.

The classical plate theory [25] is used here, and
only the bending effect of thin-walled plate is

considered. Correspondingly, the strain energy is
expressed as

V ¼ D
2
∬A

∂2w
∂x2

� �2

þ ∂2w
∂y2

� �2

þ 2μ
∂2w
∂x2

∂2w
∂y2

þ 2 1−μð Þ ∂2w
∂x∂y

� �2
" #

dxdy

ð1Þ

where w is displacement along z direction (transverse direc-
tion), μ is the Poisson ratio, and D is the complex flexural
rigidity, which is expressed as

D ¼ Eh3 1þ jgð Þ
12 1−μ2ð Þ ð2Þ

where E is the elastic module and g is the loss factor of the
workpiece-fixture system.

The kinetic energy of the plate can be written as

T ¼ ρh
2
∬Aw

2
dxdy ð3Þ

where ρ is the density of the plate and the overdot denotes
differentiation with respect to time.

The Rayleigh-Ritz method (RRM) [26] is employed to ap-
proximately express the transverse displacement. The N × N-
terms Rayleigh-Ritz solutions for the problem are of the fol-
lowing form:

w x; y; tð Þ ¼
XN
i¼1

XN
j¼1

qij tð Þξi xð Þη j yð Þ ð4Þ

where qij is the Ritz coefficient. ξi(x) and ηj(y) are ad-
missible functions in x and y directions, respectively. To
improve the numerical stability and convergent rate, the
combinations of polynomial and trigonometric functions
are adopted to be as the admissible functions [27],
which are expressed as

x‐direction : ξi xð Þ ¼
x
L

� �i−1
; i ¼ 1; 2; 3

cos
i−3ð Þπx
L

i ¼ 4; 5; :::;N

8><
>:

y‐direction : η j yð Þ ¼
y
W

� � j−1
j ¼ 1; 2; 3

cos
j−3ð Þπy
W

j ¼ 4; 5; :::;N

8><
>:

ð5Þ

It is worth noting that the admissible functions adopted
here just satisfy a totally unconstrained boundary condition,
which is associated with the penalty method [24]. Since the
artificial translational and rotational springs are introduced
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into the system to restrict the plate’s motion, the addi-
tional strain energy, Vr, arousing from the deformation

of these constraining springs, should be considered and
given by

Vr ¼ 1

2

Z W

0
k1;t⋅w2

��
x¼0

dyþ
Z W

0
k1;r⋅w2

;x

���
x¼0

dyþ
Z L

0
k2;t⋅w2

��
y¼0

dxþ
Z L

0
k2;r⋅w2

;x

���
y¼0

dx
� �

þ 1

2

Z W

0
k3;t⋅w2

��
x¼Ldyþ

Z W

0
k3;r⋅w2

;y

���
x¼L

dyþ
Z L

0
k4;t⋅w2

��
y¼Wdxþ

Z L

0
k4;r⋅w2

;y

���
y¼W

dx
� � ð6Þ

where k,t and k,r are the stiffness coefficients of the translation-
al and rotational springs, respectively, and determined by the
boundary conditions. For the clamped constraint, both the
values of k,t and k,r are 1 × 109, and both are zero for free

boundary condition in this paper.
Since the main aim is to extract the modal parameters, the

external work done by the milling force is neglected.
Therefore, the Lagrange of this system without load is
L = T − V − Vr, and the equation of motion (EOM) of the

continuous system obtained by Lagrange’s equation is shown
as

S €qf g þ U qf g ¼ 0f g ð7Þ

where the double-overdot denotes second-order differenti-
ation with respect to time, {0} is column vector of N2 × 1,
{q} = {q11 q12 … qNN}

T, and

Suv ¼ ρh
Z L

0

Z W

0
ξiξ jηmηndxdy ð8Þ

Uuv ¼ D∬A
ξi;xxξ j;xxηmηn þ ξiξ jηm;yyηn;yy þ μ ξi;xxξ jηmηn;yy þ ξiξ j;xxηm;yyηn

� �
þ2 1−μð Þξi;xξ j;xφm;yφn;y

" #
dxdy

þξi 0ð Þξ j 0ð Þ
Z W

0
k1;tηmηndyþ ξi;x 0ð Þξ j;x 0ð Þ

Z W

0
k1;rηmηndy

þηm 0ð Þηn 0ð Þ
Z L

0
k2;tξiξ jdxþ ηm;y 0ð Þηn;y 0ð Þ

Z L

0
k2;rξiξ jdx

þξi 1ð Þξ j 1ð Þ
Z W

0
k3;tηmηndyþ ξi;x 1ð Þξ j;x 1ð Þ

Z W

0
k3;rηmηndy

þηm 1ð Þηn 1ð Þ
Z L

0
k4;tξiξ jdxþ ηm;y 1ð Þηn;y 1ð Þ

Z L

0
k4;rξiξ jdx

ð9Þ

In Eqs. (8) and (9), u = m + (i − 1) × N and v = n +
(j − 1) × N, here i, j,m, and n = 1, 2,…, N. The (·),x represents
the first-order differentiation with respect to x, which is similar
with (·),xx, (·),y, and (·),yy.

3 Time-space discretization method

3.1 Natural frequency and loss factor

Equation (7) describes the plate’s free vibration and can be used
to extract the natural frequencies and loss factors. Assuming

{q(t)} in the form of q̅
� �

eiλt, Eq. (7) can be rewritten as

U−λ2S
	 


q̅
n o

¼ 0f g ð10Þ

Since the stiffness matrix U is a complex matrix, the gen-
eralized eigenvalue, λ2, is also a complex number. As a result,
the derived complex eigenvalue problem, Eq. (10), gives the
r-order natural frequency ωr and loss factor gr as follows:

ωr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re λ2

r

� 
q
and gr ¼

Im λ2
r

� 

Re λ2

r

� 
 ð11Þ

where Re[·] and Im[·] mean real and imaginary parts, respec-
tively. For small loss factor, it has the following relationship
with damping ratio [28]:

gr ¼ 2ζr ð12Þ

Having determined the natural frequencies and loss factors,
the FRF of the plate is now of primary interest for extracting
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the modal parameters of the system. Assuming a unit harmon-
ic point load applied at point (xin, yin), the FRF with response
to point (xre, yre) can be calculated as

H ωð Þ ¼ W xre; yreð Þf gT −ω2Sþ U
	 
−1

W xin; yinð Þf g ð13Þ

where {W(x,y)} = {ξ1(x)η1(y) ξ2(x)η2(y)… ξN(x)ηN(y)}
T, and S

and U are calculated by Eqs. (8) and (9), respectively.

3.2 Modal parameter identification

Up to now, the natural frequencies, loss factors, FRFs, and
modal shapes of thin plate have been calculated using the
continuous system model in the previous section. For the sta-
bility prediction of thin-walled component milling, the modal
parameters corresponding to each engagement position of cut-
ter and workpiece are necessary. Thus, in this section, the
continuous system is firstly regarded as n-DOFs discrete mod-
el based on spatial discrete operation, and then the modal
parameters of the discrete model are identified and extracted
using modal superposition principle [29].

Before extracting modal parameters, a structural damping
systemwith n-DOFs as shown in Fig. 1b is firstly studied. The
equation of motion of the spring-mass system is

M €xf g þK* xf g ¼ F tð Þf g ð14Þ

where {F(t)} = {F1(t) F2(t) … Fn(t)}, {x} = {x1 x2 … xn}, and

M ¼

m1 0 0 ⋯ 0 0
0 m2 0 ⋯ 0 0
0 0 m3 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ mn−1 0
0 0 0 ⋯ 0 mn

2
6666664

3
7777775

ð15Þ

K* ¼

k*1 þ k*2 −k*2 0 ⋯ 0 0
−k*2 k*2 þ k*3 −k*3 ⋯ 0 0
0 −k*3 k*3 þ k*4 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ k*n−1 þ k*n −k*n
0 0 0 ⋯ −k*n k*n þ k*nþ1

2
6666664

3
7777775

ð16Þ
To decouple Eq. (14), the generalized eigenvectors, ϕ1, ϕ2,

…, ϕn, are used, and the conversions are shown as

ΦTMΦ ¼ M̅dia and ΦTK*Φ ¼ K̅
*
dia ð17Þ

where both K̅
*
dia and M̅dia are diagonal matrices, andΦ = [ϕ1

ϕ2 … ϕn]. The generalized eigenvalues are calculated by

λ2
r ¼

k̅
*
r

m̅r
¼ 1þ jgrð Þ k̅ r

m̅r
¼ 1þ jgrð Þω2

r ð18Þ
where m̅r, k̅ r, and gr are the r-order modal mass, mass stiff-
ness, and loss factor, respectively.

Conducting Fourier transform on Eq. (14), the frequency
response function (FRF) is given by

H ωð Þ ¼ 1

K*−ω2M
¼ 1

Iþ jGð ÞK−ω2M
ð19Þ

where G is matrix of loss factor, and both G and K are real
matrices. Based on Eq. (17), the specific expression of FRF is
written as

H ωð Þ ¼
Xn

r¼1

ϕT
r ϕr

m̅r 1þ jgrð Þω2
r−ω2

� 
 ð20Þ

Therefore, H(ω) is a symmetric matrix, and Hlp(ω) repre-
sents the FRF of exciting on point p and response on point l,
and is given by

Hlp ωð Þ ¼
Xn

r¼1

φlrφpr

m̅r 1þ jgrð Þω2
r−ω2

� 
 ð21Þ

where {φ1 φ2 … φn}r = ϕr. According to the rational fraction
method, Hlp(ω) can be transformed as

Fig. 2 The discrete plate model with finite degrees of freedom

Workpiece
Kinetic energy (Eq.3)
Strain energy (Eq.1)

Boundary conditions
Additional strain energy
(Eq.6)

Modal analysis for continuous
model
Natural frequency & loss factor (Eq.11)
FRF-modal shape (Eq.13)

Spatial discretization

RRM
Admissible functions (Eqs.4,5)
Penalty method

EOM
Free vibration (Eq.7)

Modal parameters for discrete
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Modal mass (Eq.27), modal stiffness &
modal damping (Eq.28)

EOM for continuous model

Modal parameter identification for discrete model

Classic thin plate thoery

Time discretizationStability prediction

Numerical method (SDM, FDM, TFEM, DQM, … )

Fig. 3 Time-space discretization method for stability prediction
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Hlp ωð Þ ¼
Xn

r¼1

Alpr

αωr−ω
þ −Alpr

−αωr−ω

� �
ð22Þ

where Alpr is residue of the r-order modal and given by

Alpr ¼
φprφlr

2αωrm̅r
with α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jgr

p
ð23Þ

For a given milling system, the natural frequency and
loss factor or damping ratio are determined using
Eq. (11). However, the modal mass and modal stiffness
are related to the modal shape (see Eq. (17)). As shown in
Fig. 2, a continuous plate is divided into finite points.

When the cutting force is applied on point p, the trans-
verse vibration of this point is of primary interest, which
directly relates to the machined surface quality. Assuming
r-order modal dominates the plate’s vibration, the equa-
tion of motion of the cutting point p is

m̅r

φ2
pr
€xpþ c̅ r

φ2
pr
x ̇pþ k̅ r

φ2
pr
xp ¼ Ft ð24Þ

whereφpr represents the p-term in eigenvector of r-order mod-
al and Ft is the cutting force.When the cutter moves to point q,
the φpr also changes as φqr. Therefore, the modal parameters
are different for different cutting location points during the
milling process. From Eq. (24), it also can be seen that the
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ratio of the modal parameters at different cutting location
points equals to the quadratic of the inverse ratio of their
modal shapes at a specific modal, namely

m̅pr

m̅qr
¼ φ2

qr

φ2
pr

ð25Þ

Assuming the system resonates at r-order modal,
namely ω = ωr, if the modal density is not high in this

resonant region, other modals’ effects can be neglected,
and Eq. (22) can be written as

Hlp ωð Þ ¼ Alpr

αωr−ω
þ −Alpr

−αωr−ω
ð26Þ

Here, the residue, Alpr, in Eq. (26), can be extracted from the
determined FRF.

For simplicity, the modal shape of a specific modal on the
cutting location points is usually taken as one. In this condi-
tion, the modal mass on this point is given by

m̅ pr ¼ 1

2Apprα
�� �� ð27Þ

The corresponding modal stiffness and modal damping are
given by

k̅ pr ¼ m̅ prω
2
r and c̅ pr ¼ 2m̅ prζrωr ð28Þ

3.3 Stability prediction procedure

For thin-walled workpiece, the transverse vibration is more seri-
ous than the plane vibration. Therefore, n-DOFsmillingmodel in
transverse direction is adopted (Fig. 1b). The stability prediction
procedure for TSDM can be illustrated in Fig. 3 and summarized
as follows:

Step 1. The equation ofmotion (EOM) of continuous system
is modeled based on the classical thin plate theory,

Table 1 The modal parameters of the first two modes

Position
number

First order Second order

Modal
mass
(kg)

Modal
stiffness
(×106 N/
m)

Modal
damping
(N·s/m)

Modal
mass
(kg)

Modal
stiffness
(×106 N/
m)

Modal
damping
(N·s/m)

0 0.1340 2.15 35.27 0.0147 0.59 6.04
1 0.1032 1.66 27.16 0.0170 0.68 7.00
2 0.0810 1.30 21.29 0.0204 0.82 8.40
3 0.0639 1.03 16.78 0.0260 1.04 10.70
4 0.0504 0.81 13.25 0.0363 1.46 14.94
5 0.0399 0.64 10.48 0.0587 2.35 24.15
6 0.0318 0.51 8.35 0.1233 4.94 50.74
7 0.0250 0.41 6.73 0.4800 19.37 199.23
8 0.0210 0.34 5.51 – – –
9 0.0175 0.28 4.59 0.3831 15.35 157.81
10 0.0148 0.24 3.89 0.0990 3.97 40.77
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Fig. 7 The first two modal
shapes (left diagrams) and
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diagrams) along the tool path. a
First mode; b second mode
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Rayleigh-Ritz method together with penalty method
and Lagrange equation, including kinematic energy
(Eq. (3)), strain energy (Eq. (1)), and additional strain
energy (Eq. (6)).

Step 2. Modal analysis, including natural frequency and loss
factor (Eq. (11)), frequency response function, and
modal shape (Eq. (13)), is performed for continuous
model. Then the continuous system is assumed as n-
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Fig. 8 Dynamic SLDs for the milling process with different modes. Blue thin line: first order mode; red thin line: second order mode; orange bold line:
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DOFs discrete model based on spatial discrete
operation. Also, the modal parameters (modal mass,
modal stiffness, and modal damping, Eqs. (27) and
(28)) corresponding to each engagement position of
cutter and workpiece for discrete model are identi-
fied using mode superposition principle.

Step 3. Stability prediction is carried on using time domain
methods (e.g., SDM [7], FDM [8], TFEM [9], DQM
[10], and so on) existed in articles based on the mod-
al parameters identified in the previous step, which
are time varying and are dependent of relative space
position between cutter and workpiece being ma-
chined. It is should be emphasized that the traditional
cutting model [31] of the milling process is used
here.

4 Results analysis

In this section, the experimental and numerical analysis is
conducted to validate the proposed method, and the sta-
bility of the flexible workpiece milling with different
boundary conditions is investigated. It should be empha-
sized that the convergence and flexibility of the method
presented to deal with the dynamic response of thin plate
with arbitrary boundary conditions have been verified in
Ref. [30]. The size of the thin-walled plate used here,
otherwise specified, is 0.1 × 0.07 × 0.005 m. The material
of the part is aluminum alloy, with a density of 2740 kg/
m3, Young’s modulus of 70 GPa, and Poisson’s ratio of
0.33. A milling cutter with four teeth and 12 mm diameter
is used in the down-milling process. The lower radial
immersion ratio, 0.4/12 (≈3.33 %), is selected here in
order to ignore the effect of material removal, which have
been illustrated using several numerical methods in many
publications, such as finite element method [13, 14, 19]
and structural dynamic modification method [20]. It
should be noted that the method presented here can also
be used to consider this effect, which will be investigated
clearly in another future article. Also, the tangential and
normal cutting force coefficients are Kt = 5.4 × 108 N/m2

and Kn = 1.8 × 108 N/m2, respectively [13]. The following
two case studies are presented.

4.1 Case study I: a half-clamped thin plate milling
and experimental validation

Figure 4 shows the model of the workpiece. Without loss of
generality, in this case, only half of one edge is clamped to
create a casual boundary condition. In order to describe the
dynamic characteristics of the plate, 11 evenly distributed

points are selected along the cutter path. It should be men-
tioned that before conducting the modal analysis, the impact
test should be firstly performed to obtain the loss factor of the
plate. Based on Eq. (12), the structural loss factor is assumed
as the average value of each concerned modal loss factor.
Since the loss factor remains unchanged with the variation
of the tool position, only one impacted point is needed. It
should be noted that all stiffness coefficients (k,r and k,t in
Eq. (6)) for three free edges are zero, and the coefficients of
half-clamped edge are the larger value (such as 1 × 109) from
L = 0–0.05 m and zero from L = 0.05–0.1 m, respectively.

Figure 5 illustrates the theoretical and experimental FRFs
of the 11 selected points. It can be seen that the good agreement
between these two kinds of results verifies the accuracy
of the proposed modal analysis method. As predicted, the
natural frequency (location of the peaks) and damping ratio
(slope of the peaks) stand at a stable value in these 11 points.
The first and second natural frequencies are 642 and 1023 Hz,
respectively, and the corresponding damping ratios are both
0.034. However, the magnitude of dominant modal response
changes a lot, which determinates the modal parameters of
each position. It is noted that in the range of 0–0.03 m
(Fig. 5a), the second mode dominates the response, while for
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Fig. 9 The three-dimensional SLD of the half-clamped plate milling

Int J Adv Manuf Technol (2017) 89:2675–2689 2683



So
un
d
pr
es
su
re

(P
a)

Tool position (m)

A B C

0

1.5

3

So
un
d
pr
es
su
re

(P
a)

0

1.5

3

0

1.5

3

A B C

0 1000 1500500 0 1000 1500500 0 1000 1500500
Frequency (Hz)

UnstableStableUnstable
996 Hz
(CF) 636 Hz

(CF) 1032Hz
(CF)

A B

So
un
d
pr
es
su
re

(P
a)

Tool position (m)

0

1.5

3

0

1.5

3
A Stable

636 Hz
(CF)

UnstableB

0 1000 1500500 0 1000 1500500
Frequency (Hz)

So
un
d
pr
es
su
re

(P
a)

A B

Tool position (m)

0

1.5

3

0

1.5

3

0 1000 1500500 0 1000 1500500
Frequency (Hz)

So
un

d
pr
es
su
re

(P
a)

A Stable UnstableB

996 Hz
(CF)

636 Hz
(CF)

So
un
d
pr
es
su
re

(P
a)

(a)

(b)

(c)

Fig. 11 The time domain and
frequency domain sound signals
measured. a n = 3500 rpm; b
n = 5000 rpm; c n = 7000 rpm

2684 Int J Adv Manuf Technol (2017) 89:2675–2689



0.03–0.10 m, the pattern is in the opposite. In addition, the
magnitude of the first mode keeps an increasing trend along
the tool path, while that of the second mode firstly decreases
to null in x = 0.08m (Fig. 5c), and then has a small rise. Figure 6
gives the three-dimensional FRF of the workpiece and clearly
shows the trend indicated in Fig. 5.

Based on the theoretical analysis in Section 3.2, the modal
parameters of the workpiece can be extracted from the obtained
FRF. Table 1 gives the first two modal parameters of the half-
clamped plate. It is easy to find that with themotion of the cutter,
the first-order modal parameters decrease continuously to about
0.11 times of those of position 0. By contrast, the modal param-
eters of second mode firstly increases sharply from position 0
(x = 0m) to position 7 (x = 0.07 m) (increasing by 11 times) and
disappears in position 8 (x = 0.08 m). After that, a reverse trend
occurs from position 9 (x = 0.09 m) to position 10 (x = 0.10 m).
The opposite tendency of the FRF (or modal parameters) can be
explained by Eq. (25). As shown in Fig. 7, the first modal shape
is a bend deformation. However, due to the asymmetric con-
straint, the deformation of the tool path increases by three times
from position x = 0 to x = 0.10 m. Based on Eq. (25), the modal
parameters of the same order has an inverse quadratic relation-
ship with the deformation. Therefore, the increasing defor-
mation of the tool path results in the continuous decrease
of the modal parameters. The reason can also be used to
explain the tendency of the second-order modal parame-
ters. However, it should be mentioned that the torsional
deformation of the plate brings in a node on position

x = 0.08 m. Therefore, the modal parameters on position
x = 0.08 m can be considered as an infinite value.

Figure 8 illustrates the stability lobe diagrams (SLDs) of
the 11 selected points using the TSDM presented in the above
section. As shown in Fig. 8a–c, the limited axial depth is
mainly determinated by the second mode. However, when
the cutter moves to the right side of the plate, the limited value
are gradually identical with that calculated by the first modal
parameters. This may be because the second modal plays a
more important role in the response of the left part of the plate,
while for position x = 0.02–0.10 mm, the first mode determi-
nates the response of the plate (see Fig. 6). Based on the
theoretical SLD, the predicted stable area of the green dot
(axial depth is 2 mm, spindle speed is 3500 rpm) is 0.01–
0.05 m, while that of the blue dot (axial depth of cut is
2 mm, spindle speed is 5000 rpm) and black dot (axial depth
of cut is 2 mm, spindle speed is 7000 rpm) are both 0–0.07 m.
A more clear description of the SLD is shown in Fig. 9.

To verify the correctness of the predicted stability, the mill-
ing experiment is carried out on a high-speed machining cen-
ter VMC0540d with a maximum spindle speed of 30,000 rpm.
A GRAS 40PP microphone with sensitivity of 50 mV/Pa is
used to measure the sound pressure. The milling experimental
setup is shown in Fig. 10. The material of the workpiece is
aluminum alloy 7075, whose geometric parameters are de-
scribed previously, and the material of tool is cemented car-
bide. The diameter of the cutter is 12 mm, and the feed rate is
600 mm/min. To validate the accuracy of the calculated SLD,
three sets of cutting parameters are specially selected, where
the axial depth of cut is 2 mm and the spindle speeds are 3500,
5000, and 7000 rpm, respectively.

Figure 11 shows the measured time domain and frequency
domain signals of the sound pressure. CF indicates chatter
frequency. When the spindle speed is 3500 rpm, based on
the magnitude of the pressure, the sound signal along the tool
position is divided into three different regions, namely A, B,
and C (see Fig. 11a). These three regions range from 0 to
0.008 m, 0.008–0.051 m, and 0.051–0.10 m, respectively.
To detect the stability of these durations, their frequency do-
main analyses are conducted separately. For duration A, the

Table 2 Comparisons of ranges of stable domain and chatter domain
between simulation and experiment

Spindle
speed
(rpm)

Stable
domain of
simulation (m)

Stable
domain of
experiment (m)

Chatter
domain of
simulation
(m)

Chatter
domain of
experiment
(m)

3500 0–0.01, 0.05–
0.10

0–0.008, 0.05–
0.10

0.01–0.05 0.008–0.051

5000 0–0.07 0–0.072 0.07–0.10 0.072–0.10

7000 0–0.07 0–0.074 0.07–0.10 0.074–0.10

(a) FCFF (b) CCFF (c) CCCF
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Fig. 12 The plates with different boundary conditions
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pressure concentrates on 996 Hz, which is near the second
natural frequency, 1023 Hz, of the plate. This is because the
SLD of the left part of the half-clamped plate is mainly
determined by the second modal parameters. By con-
trast, for duration C, when the cutter moves to the right
side of the plate, the pressure mainly focuses on 636 Hz
(near the first natural frequency, 624 Hz). There is also
a small part that concentrates on 1032 Hz. This may
account for the dominance of the first mode in deter-
mining the stability limit of the right area of the work-
piece. A similar phenomenon can also be observed in
Fig. 11b and c. Therefore, in the first cutting condition
(spindle speed is 3500 rpm and axial depth of cut is
2 mm), the stable region is 0.008–0.051 m, and the
unstable region is 0–0.008 m and 0.051–0.1 mm. For
the second and third cutting conditions, the correspond-
ingly stable regions are 0–0.072 m and 0–0.074 m, re-
spectively, while the unstable regions are 0.072–0.10 m
and 0.074–0.10 m.

In the comparison of the ranges of stable domain and chat-
ter domain between simulation and experiment shown in

Table 2, two results are in good agreement. Thus, the correct-
ness of the proposed method can be verified.

4.2 Case study II: thin platemilling with various boundary
conditions

After the validation of the proposed method, in this case, a thin-
walled plate with three different boundary conditions are studied
to explain the capacity of presentedmethod for handling various
boundary conditions. The cases where the method is applied to
more non-classical boundary conditions can be found in Ref.
[30]. For the sake of brevity, a counterclockwise notation
starting from x = 0 is utilized to identify the boundary conditions
of the plate. For example, the symbol “CSFC” represents a plate
with the clamped edge (C) at x = 0, simply supported (S) at
y = W, free (F) at x = L, and clamped (C) at y = 0. As shown
in Fig. 12, the plate with FCFF, CCFF, and CCCF are modeled.
Both stiffness coefficients (k,r and k,t in Eq. (6)) of the free edge
are zero, and the coefficients of the clamped edge are 1 × 109.

Figure 13 shows the three-dimensional FRFs (Fig. 13a) and
the first two order mode shapes (Fig. 13b, c) of these three
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different workpieces. As shown in Fig. 13a, due to the symmetry
of the constraint, the FRF is also symmetric about the line
x = 0.05 m. Since the deformation of the first mode shape along
the tool path remains unchanged, the first order FRF is also
invariable along the position. However, due to the torsional de-
formation of the second mode, there is a node in the middle area
of the tool path and the FRF of this node also changes according
to the modal shape. The relationship between the FRFs and the
mode shapes can also be found in Fig. 13b and c. However, it
should be mentioned that with more edges clamped, the ampli-
tude of the FRF is reduced while the natural frequency improves
a lot.

Figure 14 gives the three-dimensional SLDs of these three
plates considering only the first order mode (single mode) and

the first two modes (multi-modes). For the FCFF plate, it is
clear that the single mode SLD is almost the same as the multi-
modes SLD in these three boundary conditions, which means
the SLD is mainly determined by the first mode. However,
there are also some regions where the limited axial depth is
mildly influenced by the second mode. For example, the
multi-modes’ limited axial depth is smaller than that of single
mode at the two ends of the tool path. This is because the
FRFs of these two positions have a similar magnitude, which
means both the first mode and second mode play a similar
importance in determining the SLD. However, when the cutter
moves to the central position, due to the existence of a node of
the second mode, the influence of the second mode is near
nonexistent. A similar phenomenon can also be found in the
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middle region of the CCCF plate. However, for the CCFF
plate, due to its asymmetric constraint, the first modal shape
varies a lot along the tool path, which causes a great change in
the FRF of the first mode. Correspondingly, the second mode
mostly influences the limited axial depth in the left part of the
tool path. A more clear difference can be found in the case of
the half-clamped plate (Fig. 8). Therefore, for the plate with
symmetric boundary condition, the first-order modal parame-
ters can be used to predict the stability, while the accuracy for
asymmetric plate is greatly affected.

5 Conclusions

In thin-walled workpiece milling process, the dynamic char-
acteristics of the cutting system is time varying, which is
caused by two key factors. One is that the relative space loca-
tion between cutter and workpiece is time varying. The other
is that the material is removed during the machining process.
Focusing on the time-varying space position between cutter
and workpiece, in this paper, a comprehensive time-space
discretization method (STDM) is proposed to investigate this
effect on the time-varying dynamic characteristics of thin-
walled component milling process, as well as multi-modes
stability prediction. The experimental results verify the accu-
racy of the method. It is also found that with the motion of the
cutter, the first and second modes show different influence on
determining the stability of the workpiece milling. The addi-
tional advantage of the STDM presented here is that it can
easily handle various boundary conditions of the component,
which is particularly useful in practical applications, such as
monolithic component milling and blade milling.
Additionally, the STDM can also provide an introduction to
develop a software for identifying the time-varying modal
parameters and predicting stability lobes, which is more effec-
tive than FEM.
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