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Abstract Laser metal deposition (LMD) is an advanced ad-
ditive manufacturing (AM) process used to build or repair
metal parts layer by layer for a range of different applica-
tions. Any presence of deposition defects in the part pro-
duced causes change in the mechanical properties and might
cause failure to the part. Corrective remedies to fix these
defects will increase the machining time and costs. In this
work, a novel defects monitoring system was proposed to
detect and classify defects in real time using an acoustic
emission (AE) sensor and an unsupervised pattern recogni-
tion analysis (K-means clustering) in conjunction with a
principal component analysis (PCA). A time domain and
frequency domain relevant descriptors were used in the clas-
sification process to improve the characterization of the de-
fects sources. The methodology was found to be efficient in
distinguishing two types of signals that represent two kinds
of defects, which are cracks and porosities. A cluster analy-
sis of AE data is achieved and the resulting clusters corre-
lated with the defects sources during laser metal deposition.
It was found that cracks and pores that occur during LMD
can be detected using an AE sensor. Pores produce acoustic
emission events with high energy, shorter decay time, and
less amplitude when compared to cracks. Specifically, the
signal energy is a crucial feature in identifying the AE defect
source mechanisms. The frequency is not significant; it has a
little contribution to the classification solution.
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1 Introduction

In general, additive manufacturing is extensively used
even though monitoring and detection of defects during
AM still require a better understanding. One of the diffi-
culties in using an adaptive control and LMD monitoring
system is the accurate detection of defects as being
formed during the metal deposition. The purpose of mon-
itoring laser metal deposition process is to prevent and
detect damage of produced part for any deposition path
and part design. In the LMD process, particular changes
in the acoustic emission signal indicate the present of
defects, these changes must be carefully considered to
ensure the effectiveness of the control system. AE has
the advantage of real-time, continuous monitoring of
LMD. The central goal of such a system is to indicate
the occurrence of defects events, but classifying the type
of defect is also necessary for the better use of the system
and suggestion of corrective remedies.

Laser metal deposition (LMD) is one of the powder-
based laser deposition additive manufacturing techniques
such as laser cladding (LC) [2, 3], laser direct casting
(LDC) [4, 5], direct metal deposition (DLD) [6], directed
light fabrication (DLF) [7–9], laser forming (Lasform)
[10], shape deposition manufacturing (SDM) [11], laser
engineered net shaping (LENS) [12, 13], free form laser
consolidation (LC) [14, 15], and many others. The main
process parameters of LMD—laser power, travel velocity,
and powder flow rate—control the geometry accuracy and
the mechanical properties of the finished part by
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determining the size of the molten pool, the part deforma-
tion, and the microstructure of the deposited layers. They
affect the temperature profile and cooling rate in the mol-
ten pool, as well as the thermal cycles at each location of
the fabricated part [1].

The acoustic emission sensor is a piezoelectric trans-
ducer that generates an electrical charge as a response to
the elastic waves emitted from sources inside a material as
a result of the sudden release of energy. The AE technique
is one of the most powerful monitoring technologies; it
has been used for monitoring in many manufacturing pro-
cesses such as cutting operations [16–18] and the welding
processes. Jolly [1] monitored the crack growth in stain-
less steel welds. It was found that a maximum AE rate is
directly related to the number of cracks in the weld defect
zone. This work is considered to be the first most signif-
icant milestone in the application of the AE technique for
monitoring the welding process [2]. A.S.Sun. Rostek [3]
in 1990 used computer-aided acoustic pattern recognition
to demonstrate the monitoring capabilities of acoustic sig-
nals. Duley and Mao [4] studied the laser welding process
of aluminum 1100 using acoustic emission. They found
that a keyhole could be identified by specific AE frequen-
cy components and correlate the AE with laser penetration
and surface condition. Grad et al. [5] in 1996 developed a
monitoring method using different statistical parameters to
assess process stability.

Bohemen [6] demonstrated that martensite formation dur-
ing gas tungsten arc (GTA) welding of steel 42CrMo4 can
be monitored by means of AE. It was shown that a particular
relation exists between the root mean square (RMS) value of
the measured AE and the volume rate of the martensite
formation during GTA welding. Recently, Grad et al. [7]
examined the acoustic waves generated during short circuit

gas metal arc welding process. It was found that the acoustic
method can be used to assess welding process stability and
to detect the severe discrepancies in arc behavior.

Yang [9] recently used an acoustic emission (AE) sen-
sor to identify damage detection in metallic materials.
Results suggested a strong correlation between AE fea-
tures, i.e., RMS value of the reconstructed acoustic emis-
sion signal, and surface burn, residual stress value, as well
as hardness of steels. Diego-Vallejo [8] in his work found
that the focus position, as an important parameter in the
laser material interactions, changes the dynamics and geo-
metric profile of the machined surface and also the statis-
tical properties of measured AE signal.

However, more research needs to be done regarding
using the acoustic emission sensor in monitoring laser
metal deposition. In this paper, the defects type
distinguishing of the LMD and its corresponding key fea-
tures are investigated by clustering the AE signals. The
acoustic emission (AE) technique is suitable to examine
the defects sources during LMD because it contains rich
defect-related information such as crack and pore forma-
tion, nucleation, and propagation. Information on defects
development is difficult to obtain by only using the AE
waveform in a time-space, as a non-stationary process,
thus other features such as amplitude, energy, rise time,
count, and frequency are extracted to qualitatively analyze
defects mechanisms.

The purpose of the present work is first to detect laser
metal deposition defects as formed layer by layer to take
the necessary correction action such as machining and
remitting, and second to develop a reliable method of
analysis of AE data during LMD when several AE
sources are activated to categorize the defects into clusters
based on the defect type.

Fig. 1 Experimental setup showing the LMD system and AE data acquisition system
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2 Experiments and data collection

Figure 1 shows a schematic diagram of the experimental set-
up. The YAG laser was attached to a five-axis vertical com-
puter numerical control machine that is used for post-process
machining after LMD. Picoscope 2205A works as a dual-
channel oscilloscope to capture the AE signal and stream it
to a computer for further analysis; the oscilloscope measures
the change in the acoustic emission signal over time and helps
in displaying the signal as a waveform in a graph. An acoustic
emission sensor (Kistler 8152B211) captured a high-
frequency signal. The bandwidth of the AE sensor was 100
to 1000 kHz. The raw signals were first fed through the data
acquisition system and then processed and recorded using
Matlab software.

A powder feeder system is used to deliver the atomized
powder to the melt pool by means of argon gas. Argon gas
is also used as a shielding gas; it flows through channels in the
nozzle of laser deposition head to reduce oxidation of the
deposit. During the laser metal deposition process, porosities
and cracks can be formed as a result of lack of fusion, shield
gas trapping, and the difference in thermal coefficients of the

deposited material and the substrate. The acoustic emission
signal was recorded during a laser deposition process in an
oxidized environment and contaminated powder to induce
pores and cracks as a result of thermal coefficient difference.
The material of the substrate was tool steel. Cracks and poros-
ities were simulated by mixing the mainly Ti-6Al-4V powder
with H13 tool steel powder. Table 1 shows the chemical com-
position and the thermal properties of both powders. The two
powder particles as illustrated in Fig. 2 are non-uniform in
shape and size andmay contain internal voids which can cause
deposition defects when they are mixed. Table 1 displays the
chemical composition and the thermal properties of both
powders.

Figure 3 illustrates the main steps in the developed proce-
dure which is used to analyze the AE data. A layer is created
by injecting the metal powder into a laser beam which is used
to melt the surface of a substrate and create a small molten
pool and generate a deposit. The AE sensor is attached to a
substrate to transform the energy released by the laser deposi-
tion into acoustic emission signal. The total length of the de-
position is 15 mm and was performed with standard parame-
ters for depositing titanium powder as shown in Table 2.

(a) Ti-6Al-4V Metal Powder (b) H13 Metal Powder 

Fig. 2 a, b Optical image of the
metal powders used in the
deposition process

Table 1 The composition and
thermal properties of titanium and
tool steel metallic powders (mass
%)

Ti-6Al-4V H13

Iron, Fe <0.25 Balance

Chromium, Cr – 4.75–5.5

Molybdenum, Mo – 1.1–1.75

Silicon, Si – 0.80–1.20

Vanadium, V 3.50–4.50 0.80–1.20

Carbon, C <0.08 0.32–0.45

Nickel, Ni – 0.3

Manganese, Mn – 0.20–0.50

Titanium, Ti Balance –

Aluminum, Al 5.50–6.50 –

Thermal expansion (°K−1) 11 × 10−6 to 15 × 10−6 13 × 10−6 to 16 × 10−6

Thermal conductivity (W/mK) 8 28.6
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The formation of porosities and cracks leads to gener-
ate an acoustic emission signal, an elastic wave that
travels from the source toward a sensor, moving through
the substrate until it arrives at the acoustic emission sen-
sor. In response, the sensor produces an electrical signal,
which is passed to the electronic equipment for further
processing and detection of a defect. Since the LMD is
an additive process and it deposits metals layer by layer,
the AE signal was recorded for each layer and analyzed to
extract any useful information from the AE events.

EventsFig. 4 AE raw signal acquired
during the LMD process

Table 2 Laser metal
deposition process
parameters

Parameter Value

Laser power 1000 W

Powder feed rate 10 g/min

Table velocity 300 mm/min

Length of track 15 mm

Layer thickness About 0.5 mm

Layer width About 2.5 mm

Fig. 3 Step-by-step operations
used to perform the acoustic
emission analyses
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Figure 4 shows an AE signal acquired during the
LMD process in the presence of defects; the spikes in
the signal are events which have features different from
the rest of the AE signal. The AE event is counted when
the amplitude of the signal is higher than a preset thresh-
old which is the background noise preceded and follow-
ed by a signal with amplitude lower than the threshold
for a certain period.

Different defect mechanisms can produce a similar
waveform and amplitude; it is not sufficient to use a par-
ticular feature to represent the events. Therefore, seven AE
signal features (Table 3) were employed in the clustering
analysis to overcome this problem. Representing the AE

signal with enough features is critical to collect as much
information as possible about the emitting source, especial-
ly when there is little literature regarding the use of AE
technique in monitoring LMD process that can be used as
a reference in AE feature selection. The AE signal can be
represented in the frequency domain using fast Fourier
transform (FFT) or in the time domain using peak ampli-
tude, kurtosis, energy, the number of counts, duration, and
rise time. Figure 5 shows some of the time-dependent
features.

Among all the features, the signal amplitude alone
was measured in real time by the data acquisition sys-
tem. All the other descriptors were calculated from the

Table 3 Time domain and frequency domain AE signal features

Feature Definition

Peak amplitude It is the greatest measured voltage in an AE event

Kurtosis It is a measure of whether the data of an AE event are peaked or flat compared to a normal distribution.

Kurtosis ¼ ∑N
i¼1 xi− x̅

� � 2=N
σ4−3 (1)

where N is the number of samples (xi) in an AE signal, σ is the standard deviation, and x is the mean.

Energy Since the domain of the AE event signal is discrete, the energy of the signal is given by

Energy ¼ ∑
N

i¼1
xið Þ2 (2)

Number of counts It is the number of pulses emitted by the AE event.

Duration It is the time difference between the first and last threshold crossings.

Rise time It is the time interval between the first threshold crossing and the AE event peak.

Peak amplitude frequency It is a characterization of the magnitude and frequency of an AE event using fast Fourier transform

Fig. 5 Time-dependent AE event
features
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waveforms at the end of deposited layer because they are
very dependent on the amplitude threshold used to detect

the arrival time and the end of an AE signal. In this
work, all these features were used in a multi-parameter
statistical analysis and clustering analysis. No AE noise
associated with the operation of the laser system or the
CNC system were observed. Also, it was found in this
study that the noise level is much smaller than the sig-
nals of interest. Also, a frequency filtering was used
which allows the passing of only those signals falling
within a selected bandwidth (100 kHz to 1 MHz).

Table 4 Standardized of the AE signal features

Event number Rise time Peak amplitude Duration Kurtosis Number of counts Energy Frequency

1 −0.8632828 −0.7341107 −0.68626 −1.44472 −0.75435274 −0.42589 −1.27045
2 −0.1261721 −0.6508765 −0.60598 −1.25783 −0.6648721 −0.42121 −0.28512
3 −0.6931803 −0.6231318 −0.62959 −0.34811 −0.6786384 −0.42337 −0.16714
4 −0.0694712 −0.5398975 −0.51153 −0.52405 −0.5478591 −0.41726 −0.57824
5 −0.2584740 −0.4844081 −0.55876 0.728254 −0.5960409 −0.4176 1.576003

6 −0.2962745 −0.5121528 −0.28959 −0.16773 −0.2174693 −0.41689 0.226959

7 −0.5797787 −0.5676423 −0.53514 0.00428 −0.5547422 −0.42265 0.843153

8 2.803370 2.0958524 2.3407 −1.1222 2.2535706 2.41352 0.053381

9 −0.1072718 −0.6786212 −0.53987 −0.14773 −0.5409760 −0.42517 1.349834

10 −0.5608784 −0.7063660 −0.64376 −1.04886 −0.6924046 −0.42553 −0.08978
11 −0.3151748 0.3201892 −0.02042 0.449555 −0.0109757 −0.31195 1.354937

12 −0.3340751 −0.4844081 −0.68626 1.881232 −0.7612358 −0.42228 −0.71316
13 2.1796615 2.0958524 1.953476 −0.93525 1.9231809 1.795566 −0.14501
14 −0.1828729 −0.5121528 −0.29903 0.510621 −0.2381187 −0.41256 0.799576

15 −0.5041776 −0.3734291 −0.33681 0.103122 −0.3138330 −0.40788 −0.4526
16 1.8583568 2.0958524 1.967643 −1.38266 1.7029210 2.668412 −0.04808
17 −0.1639726 −0.6231318 −0.23292 0.998504 −0.1142225 −0.42121 1.881284

18 0.0628306 0.9860629 0.267636 2.358211 0.3882451 −0.26322 0.568001

19 −0.8632828 −0.6786212 −0.74765 0.445735 −0.8438333 −0.42517 −0.77585
20 −0.7309809 −0.734110 −0.7382 −0.56879 −0.8300670 −0.42589 −0.82462
21 −0.5986790 0.1259761 −0.17625 0.437646 −0.1555213 −0.35378 −0.48302
22 −0.1828729 0.1814655 0.02208 0.054488 0.0785047 −0.33756 −0.34344
23 −0.5797787 −0.4566633 −0.1007 1.929897 −0.0109757 −0.38877 0.603812

24 −0.5608784 −0.234705 −0.28487 −0.16722 −0.2587681 −0.39165 1.376322

25 −0.0316707 0.1814655 −0.09598 1.216332 −0.0316251 −0.36316 −0.00579
26 −0.4852773 −0.6231318 −0.28487 −0.57514 −0.1761706 −0.42337 −0.00107
27 −0.2017732 −0.4566633 −0.41237 1.534873 −0.3620149 −0.4212 −2.1943
28 −0.4852773 −0.7063660 −0.51626 −0.96409 −0.5203266 −0.42445 −2.15717
29 0.0817309 −0.6786212 −0.42653 −1.13012 −0.3757811 −0.42517 1.515988

30 0.8755425 1.9293840 0.65486 1.466014 0.8218817 0.066326 −0.03145
31 2.7277695 2.0958524 2.760979 −1.11484 2.8042202 2.811349 −2.23613
32 −0.6931803 −0.734110 −0.69098 0.127625 −0.7612358 −0.42589 0.776849

33 −0.6931803 −0.7063660 −0.72403 0.144849 −0.8094177 −0.42553 0.102579

34 −0.5608784 −0.4566633 −0.23764 −0.33667 −0.1899369 −0.40212 0.40919

35 2.066259 2.0958524 2.765701 −1.07521 2.7835709 2.630087 −0.15449
36 −0.8632828 −0.6786212 −0.67209 −0.25692 −0.7337033 −0.42517 0.082367

37 −0.0694712 0.4311682 −0.04875 0.176898 −0.0109757 −0.2917 -0.56332

Table 5 Eigenvalues of the seven AE signal features

Eigenvalue 4.9119 1.0895 0.8222 0.0826 0.0559 0.0377 0.0002

Proportion 0.702 0.156 0.117 0.012 0.008 0.005 0.000

Cumulative 0.702 0.857 0.975 0.987 0.995 1.000 1.000
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3 Results and discussion

3.1 Principal component analysis

Principal component analysis (PCA) was used here for the
sake of dimensionality reduction, and the results of the
clustering analysis cannot be visualized in their original
dimension (seven-dimensional data set). PCA is a statisti-
cal technique which utilizes an orthogonal transformation
to convert a set of correlated variables into a set of values
linearly uncorrelated known as principal components.
PCA is used to approximate the data matrix of features
to reduce the number of related dimensions. This can be
done by finding the directions that explain the maximum
variation in the data set and then project into a subspace
with lower dimensions. The seven features calculated

from AE events are the components of the n input pattern
vectors Zi (i = 1, 2, …, n).

Z ¼
zt1
zt2
⋮
ztn

2
664

3
775 ¼

z11 z21 … zm1
z12 z22 … zmn
⋮
z1n

⋮
z2n

⋱
…

⋮
zmn

2
664

3
775 ð3Þ

where n is the number of events and m is the number of
features. The data are first standardized by subtracting the
mean from the dataset for each column then dividing by the
column standard deviation (the mean is equal to zero, and the
standard deviation is equal to one). Table 4 shows the stan-
dardization of the AE signal features.

Then covariance matrix can be calculated by

CovZ ¼ E ZZT� � ð4Þ

ZT is the transpose matrix of matrix Z. The eigenvectors
and corresponding eigenvalues were computed.

CovZ α ¼ βα ð5Þ

where α is the eigenvector and β is the eigenvalue for each
principal component (see Table 2).

As the covariance matrix is a symmetric matrix and
has an orthogonal basis, the data can be represented in
terms of only a few basis vectors of the orthogonal basis
in which the data set has the most significant amounts of
variance (Table 5).

Fig. 6 Time-dependent AE event
features

Table 6 Average silhouette width for different number of clusters

Number of clusters Average silhouette width

2 0.8727

3 0.4201

4 0.4957

5 0.4902

6 0.4641

7 0.4949

8 0.4416

9 0.4163

10 0.4294

11 0.4117
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As can be seen in Fig. 6 and Table 5, the first two
principal components are explaining 85.7 % of the vari-
ance, and these principal components will be used to re-
duce the dimension of the set of features from seven di-
mensions to just two dimensions for better visualization.

The k eigenvectors with the largest eigenvalues were cho-
sen to construct eigenvector matrix YT. In the last step, the
data was transformed onto the new subspace via the equation

W ¼ Z YT ð6Þ

which represents the new coordinates of the n patterns
in the orthogonal coordinate system defined by the ei-
genvectors. The reduced dimension will not be used in
the clustering analysis to obtain the most accurate clus-
tering results.

3.2 Clustering analysis

It is not easy to discriminate precisely the AE signal as-
sociated with each defect source from the waveform of
the signal; thus, it is useful to use clustering analysis.
Clustering analysis is a machine learning technique which
groups the AE events based on their features to create
clusters in such a way that the AE events inside a cluster
are similar to each other, and also dissimilar from events
in other clusters. In this work, the K-means clustering
algorithm was used to group the AE events into homoge-
neous subgroups (clusters). A silhouette width value was
used to find the optimal number of clusters.

The K-means clustering algorithm aims to minimize
within-cluster distances between all the vectors of a
cluster and its center and maximize the distances be-
tween the centers of all clusters. The clustering algo-
rithm requires the number of clusters k to be known
and specified in advance; thus, the silhouette width
was used for a range of clusters from two clusters to
ten clusters. The number of clusters with the maximum
average silhouette width was used to group the AE
events into subgroups reflecting the number of defects.
The K-means algorithm can then be described as
follows:

1. Specify the maximum number of clusters (r).
2. Assume the number of clusters k from 1 to r and randomly

initialize each cluster center Ci, where i is from 1 to k
3. Calculate the Euclidean distance between the vector and

the centers of the clusters and then assign each input vec-
tor (or pattern) to the nearest cluster.

Fig. 7 Silhouette width value for the events in the two clusters

Table 7 Cluster centers

Feature Cluster

1 2

Rise time (ms) 0.4513268 2.080529

Peak amplitude (V) 1.8124335 8.8001

Duration (ms) 1.636167 8.2521209

Kurtosis 6.7799735 3.6725249

Number of counts 132.29273 517.29255

Energy (dB) 615.14928 290,869.4423

Frequency (kHz) 25.098233 19.090999
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4. Recalculate the location of the cluster center according to
the nearest mean.

5. Repeat steps 2 and 3 until there are no changes in these
center locations.

6. Calculate the maximum average silhouette width.
7. Repeat steps from 2 to 6 for all possible number of clus-

ters.
The greater the silhouette value, the better the clus-

tering results [19, 20]. The optimal value of k is

determined according to the maximum of the silhou-
ette width defined as

s kð Þ ¼ 1

n

X n

l¼1

min b l; kð Þ−a lð Þð Þ
max a lð Þ;min b l; kð Þð Þð Þ ð7Þ

where a(l) is the average distance between l-th event and all
other events in the same cluster, and b(l, k) is the minimum of
the average distances between the l-th event and all the events
in each other cluster. The silhouette width values range from
−1 to 1. If the silhouette width value for an event is about zero,
it means that the event could be assigned to another
cluster. If the silhouette width value is close to −1, it
means that the event needs to be assigned to another
cluster. If the silhouette width values are close to 1, it
means that the event is well clustered. A clustering can
be evaluated by the average silhouette width s(k) of
individual events.

The largest average silhouette width, over different K,
indicates the best number of clusters. As can be seen in
Table 6, the greatest average silhouette width is 0.8727,
which means that k = 2 is the optimum number of clus-
ters. Figure 7 shows the silhouette width values for the
individual AE events in clusters one and two; most of the
silhouette width values are close to 1, which means that
the AE events are well clustered.

Table 7 shows the final clusters centers; the final clus-
ter centers are calculated as the mean for each feature
within each final cluster, and the final cluster centers re-
veal the characteristics of each detected defect. The de-
fects represented by cluster two tend to have more energy,
longer duration, slower rise time, larger number of counts,
higher amplitude, are close to the normal distribution with
flatter and light tail distribution, and have less frequency
compared to the defects which are represented by cluster
one. Table 8 shows the cluster membership and the dis-
tance between each AE event and the center of the cluster.
The size of cluster one is 32, which means 86.5 of the AE
events; cluster two contains five AE events (15.5 % of the
AE events).

Here, the principal component analysis (PCA) was used for
dimensionality reduction to visualize the results of the cluster-
ing analysis. Even though the principal component analysis
showed that two principal components are explaining 85.7 %
of the variance, the third principal component was used for the
better representation of the AE events; the distribution of the
AE events between the two clusters can be seen in Fig. 8. It is
worth mentioning that the second and the third principal

Table 8 Cluster
membership Event number Cluster Distance

1 1 2.263
2 1 1.581
3 1 0.838
4 1 1.054
5 1 1.635
6 1 0.453
7 1 0.886
8 2 0.814
9 1 1.404
10 1 1.378
11 1 1.538
12 1 1.956
13 2 0.830
14 1 0.847
15 1 0.559
16 2 1.041
17 1 2.032
18 1 2.805
19 1 1.248
20 1 1.425
21 1 0.851
22 1 0.910
23 1 1.899
24 1 1.366
25 1 1.281
26 1 0.844
27 1 2.657
28 1 2.551
29 1 2.024
30 1 3.287
31 2 1.930
32 1 1.015
33 1 0.764
34 1 0.688
35 2 0.783
36 1 0.891
37 1 1.139
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components alone are poorly representing the cluster distribu-
tion since they only explain 27.3 % of the variance in the
original data.

Table 9 presents the analysis of variance (ANOVA) of
the cluster centers. As can be seen, most of the means of
clustering features differ significantly across the two
clusters because the null hypothesis (means are equal)
is rejected in a case at significance level ≤0.05. The
frequency is not significant, which means that it has little
contribution to the cluster solution. The features with
large F value provide the greatest separation between

clusters. As the F value increases, the importance of
feature increases; this is also illustrated in Fig. 9. The
dissimilarities in the events features between the two
types of clusters lead to the conclusion that the AE
source mechanisms are not the same in both clusters.

3.3 Defects types and optical microscopy study

After preparing the surface of deposited metal, the cracks
and pores were observed using an optical microscope; the
number of cracks to the number of pores strongly

(a) Three Principal Components contain 97.5 

% of Variance

(b) First and Third Principal Components

contain 81.9 % of Variance

(c) First and Second Principal Component 

contain 85.7 % of Variance

(d) Second and Third Principal Components

contain 27.3 % of Variance

Fig. 8 a–d Principal component projection and clusters distribution for the AE events

Table 9 Analysis of variance
(ANOVA) of the cluster centers
and features importance

Cluster Error F Significance Importance

Mean
square

df Mean
square

df

Rise time 31.307 1 0.134 35 233.503 0.000 3

Peak amplitude 25.395 1 0.303 35 83.809 0.000 5

Duration 32.137 1 0.110 35 291.130 0.000 2

Kurtosis 7.330 1 0.819 35 8.949 0.005 6

Number of counts 30.410 1 0.160 35 190.403 0.000 4

Energy 35.369 1 0.018 35 1960.776 0.000 1

Frequency 1.481 1 0.986 35 1.501 0.229 7
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correlated with the number of events in cluster two to the
number of events in cluster one. Also from the literature
[10, 22], the waveform and the features of the acoustic
emission signal created by cracks is similar to the events
in cluster two.

The first type of observed defects is pores that have
a spherical form and appear in random locations not
associated with the microstructure as shown in
Fig. 10a. The possible sources of these porosities are

surface powder contamination [21], gases trapped within
the powder particles due to the difference in the powder
sizes, and an oxidation effect since the oxygen level
was high because the chamber was not used to stimu-
late defect formation in this research. In fact, surface
oxides may most likely remain in the solid state in the
melting pool and, as such, upset the wetting mecha-
nisms that melted the powder and induce voids. The
waveform from cluster one (Fig. 10b) is quite different

(a) Events in cluster one have less energy (b) Events in cluster one have shorter duration 

(c) Events in cluster one have faster rise time 
(d) Events in cluster one have less number of 

counts 

(e) Events in cluster one  have smaller amplitude (f) Events in cluster one is peaked distribution 

(g) Events in cluster one have larger frequency 

Fig. 9 a–g Comparing the features of the AE events in clusters one and two

Int J Adv Manuf Technol (2017) 90:561–574 571



from the waveform from cluster two (Fig. 11b), with
shorter decay time and less amplitude.

Figure 11a displays a crack caused by thermal stress. The
temperature gradient of the deposited layer is large in the
direction of thickness during laser deposition process, and
the thermal expansion coefficients of the two deposition

materials are different, which results in the thermal stress at
the combining surface of deposition, thus the cracks are
formed. It also occurs with powder contamination in the pow-
der feeder [21]. The waveform from cluster one is quite dif-
ferent from the waveform from cluster two, with shorter decay
time and less amplitude.

(a) Optical Image of Gas Porosity

(b) Sample of Waveform Signal from Cluster One 

Fig. 10 a, b Optical image of a transverse cross-sectioned laser deposit showing a gas porosity and a waveform sample from cluster one
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4 Conclusions

The AE signal was collected during the LMD in an oxidized
environment with mixed metal powders to stimulate all pos-
sible types of defects. Several defects mechanisms were acti-
vated and detected by the AE sensor. K-Means clustering
method was implemented to analyze the AE signals and iden-
tify defect source mechanisms. Principal components analysis
was used to facilitate the visualization of the clusters in 2D and
3D plots.

The clustering results successfully distinguish two
main defects types and their signal characteristics. The

number of clusters to be created does not have to be spec-
ified in advance; they only depend on the number of de-
fects being created. Porosities produce the AE signals
with shorter decay time and less amplitude. The cracks
trigger the AE signals with short durations and high am-
plitudes. The signal energy is a crucial feature in identi-
fying the AE defect source mechanisms.

The validation of the proposed methodology has been
carried out using an optical microscope; it showed the
correlation between the number of acoustic events and
the number of defects determined by post-test optical mi-
croscopy. The numbers of signal events in each cluster are

(a) Optical Image of Showing a Crack  

(b) Sample of Waveform Signal from Cluster Two

Fig. 11 a, b Optical image of a transverse cross-sectioned laser deposit showing a crack and a waveform sample from cluster two
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in agreement with the rough estimations of the associated
numbers of defects.
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