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Abstract The selection ofmachining parameters inmilling thin-
walled plates affects deformation, quality, and productivity of the
machined parts. This paper presents an optimization procedure to
determineandvalidatetheoptimummachiningparameters inmill-
ing thin-walledplates.The regressionmodels for cutting forceand
surface roughness are developed as objective functions according
to experimental results. Besides, the influences of machining pa-
rameters on cutting force and surface roughness are also investi-
gated. The objectives under investigation in this study are cutting
force, surface roughness, and material removal rate subjected to
constraints conditions. As the effects of milling parameters on
optimization objectives are conflicting in nature, the multi-
objective optimization problem in thin-walled plates milling is
proposed. A non-dominated sorting genetic algorithm (NSGA-
II) is then adopted to solve thismulti-objective optimization prob-
lem. The optimized combinations of machining parameters are
achieved by the Pareto optimal solutions, and these solutions are
verified by the chatter stability.

Keywords Thin-walled plates .Machining parameters .

Optimization . NSGA-II

1 Introduction

The thin-walled plates are widely used in the field of aero-
space owing to their physical performances, such as less

weight and more structure strength. However, deformation is
easy to appear because of their low rigidity in machining pro-
cess. Ensuringmachining quality and improvingmetal remov-
al rate of the machined thin-walled plates in the practical
manufacturing engineering are in the limelight nowadays.
As cutting parameters are one of the main factors that affect
the milling process, cutting parameters optimization is per-
formed to determine optimal milling parameters to satisfy var-
ious industrial demands. The emphasis is to achieve optimal
machining parameters for meeting different industrial de-
mands simultaneously in an effective way.

Balancing of machining parameters to achieve optimal
combination has been the endeavor of many researchers.
Initially, efforts are focused on optimizing parameters for
one single objective (e.g., cutting forces, tool wear, and ma-
chining efficiency). Oktem et al. [1] resorted to genetic algo-
rithm and neural networks to get the optimal parameters for
surface roughness in milling mold faces. Vijayakumar et al.
[2] obtained the multipass turning parameters to minimizing
the unit production cost by means of ant colony system.
Natarajan et al. [3] determined optimal parameters for longer
tool life by genetic algorithm and particle swarm method.
However, due to the complex nature of the machining pro-
cesses, often optimization problems have several contradicto-
ry objectives to be optimized simultaneously. That optimizing
one objective causes the other objectives to be poor and makes
the selection of optimal parameters become difficult.
Researchers deduced different optimal parameters to satisfy
different industrial demands. Multi-objective optimization
methodologies have demonstrated their usefulness in finding
well-distributed Pareto optimal solutions and have been wide-
ly used in various problem-solving tasks. Yang and Natarajan
[4] performed simultaneous optimization of tool wear and
material removal rate to obtain optimal machining parameters.
Mohinder et al. [5] optimized the cutting speed and surface
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roughness simultaneously, which provided a guide for opera-
tor. Govindan and Joshi [6] investigated the effects of milling
parameters in order to maximize milling efficiency and mini-
mize tool wear rate. Yan and Li [7] optimized milling param-
eters in terms of cutting energy, cutting quality, and production
rate.

Traditional methods used for optimizing machining param-
eters include calculus method [8], Lagrange method [9], goal
programming method [10], sequential quadratic programming
method [11], and so on. The main disadvantage of these tra-
ditional approaches lies in the fact that the solutions are liable
to get trapped into local minima. To solve this problem, vari-
ous evolutionary optimizations [12] are presented for global
solutions, such as genetic algorithm, ant colony optimization,
and particle swarm optimization. These evolutionary tech-
niques are good at optimizing machining parameters.
Particle swarm optimization is developed by Bharathi and
Baskar [13] to find the optimal machining parameters. It is
observed that this method is capable of selecting appropriate
parameters. Baskar et al. [14] adopted ant colony optimization
to optimize surface grinding process. Genetic algorithm [15],
which has favorable robustness and global searching ability, is
widely applied in multi-objective optimization problems to
capture a number of solutions simultaneously. Bouacha et al.
[16] took composite desirability function, Gray-Taguchi
method, and genetic algorithm asmulti-objective optimization
method to acquire the optimal solutions of the performance
characteristics. They found that genetic algorithm seemed to
be the most advantageous approach. Sreeram et al. [17] used
genetic algorithm to optimize tool life and production cost in
micro end milling, and this method yielded better results than
those presented in the previous literature. Regression cutting
force model coupled with genetic algorithm was developed by
Subramanian et al. [18] to establish optimum end mill process
parameter. Adam Khan et al. [19] employed an orthogonal
design and analysis of variance to determine effective milling
parameters on tool life based on genetic algorithm.

Among the multi-objective optimization approaches en-
hanced from genetic algorithm, non-dominated sorting genet-
ic algorithm (NSGA-II) is one of the most widely used
methods for generating the Pareto frontier based on combina-
tion of suitable variables [20]. According to Ref. [4], the non-
dominated set obtained from NSGA-II outperformed that ob-
tained frommulti-objective differential evolution algorithm in
the context of number of solutions and ratio of non-dominated
individuals. Chen [21] proposed an improved NSGA-II by
extending the non-dominance concept to constraint space in
order to deal with multiple constraints in the milling process. It
is observed that this approach makes the optimization process
more approximate to application, more economical and effec-
tive in searching for the Pareto front.

Although many studies have been done in optimization of
milling parameters, fewer surveys are performed with

consideration of deformation, surface quality, and machining
efficiency simultaneously in milling thin-walled plates.
Moreover, most of the previous papers use weight factors to
solve multi-objective optimization problems. Since no single
solution can be considered as the best answer in a multi-
objective optimization problem. A successful achievement
of optimization objective in one field does not mean that this
optimization objective is suitable for all other fields. Thus, it is
very important to find a wide range of Pareto-optimal front as
possible, from which decision makers can choose the one that
suits their demands.

This paper focuses on optimizing machining parameters in
milling thin-walled plates based on NSGA-II. Simultaneous
optimization of cutting force, surface roughness, and material
removal rate in thin-walled parts machining process are car-
ried out practically in this study.Milling tests are conducted on
a vertical machining center. According to the experimental
results, the regression equations of cutting force and surface
roughness are established with parameters of spindle speed,
feed per tooth, and milling depth. Then, different optimization
objectives are proposed, and a group of optimum combina-
tions of milling parameters that meet these optimization ob-
jectives are selected by NSGA-II. Finally, milling stability is
used to verify whether the optimized milling parameters can
be directly applied to actual manufacturing.

2 Experimental procedure

In this work, a series of cutting tests of milling thin-walled
plates have been conducted to develop statistical models of
cutting force and surface roughness by means of regression
analysis. These models are applied in the procedure of
searching for optimal machining parameters. Considering that
this paper focuses on optimizing the machining parameters,
only the experimental conditions and results are listed in this
paper.

The parts are machined on ME650 three-dimensional ver-
tical machining center. The cutter used in experiments is a
four-flute flat-end milling cutter (diameter 16 mm and helix
angle 30°), which is made of solid carbide and coated with
TiSiN. A rectangular thin-walled plate with size of
120 × 100 × 6 mm is selected as the workpiece. The work-
piece selected for the experiments is die steel NAK80, the
hardness of which is HRC 43-46. The physical properties
are shown in Table 1. A Kistler 9123C dynamometer is used
to measure the cutting force, as shown in Fig. 1. The cutting
forces and surface roughness are measured at each milling
test. Surface roughness of the machined part is achieved by
a portable profilometer MarSurf PS1.

The milling process involves various milling parameters
such as spindle speed, feed per tooth, and axial depth of cut.
In the process of milling thin-walled part, the radial depth of
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cut ae is fixed to 1 mm in this study. The tested parameters
including spindle speed n, feed per tooth f, and axial depth of
cut ap are employed to build experimental tables. The Taguchi
method is used to design the cutting tests considering that the
Taguchi method can realize the optimal and robust operation
under different environment with high efficiency. Table 2
shows the milling parameters and their levels employed in
the milling experiment. The three parameters with every three
levels constitute the L 27 orthogonal array, as shown in
Table 3. It also lists the experimental results of the cutting
force Fa, surface roughness Ra, and material removal rate M.
In this table, the cutting force Fa refers to the mean value in
each milling process.

3 Statistical model for optimization

Regression analysis is a method for investigating functional
relationships between input and output parameters. It focuses
on exploratory data analysis rather than statistical theory, so it
is suitable for manufacturing output parameters estimation. In
this study, input parameters include spindle speed, feed per
tooth, and axial depth of cut. The experimental results of cut-
ting force and surface roughness are applied to establish sta-
tistical model by regression analysis method. The statistical
models of cutting force and surface roughness should include
all factors and their interactions. Also, these models are re-
duced by eliminating terms with no significant effect on the
responses. Thus, the regression equations between cutting

force, surface roughness, and input parameters, i.e., spindle
speed, feed per tooth, and axial depth of cut, can be modeled
based on second-order polynomial equation as given in the
following:

Y ¼ α0þ
Xk

i¼1

αiXiþ
Xk

i≤ j

αi jXiXj ð1Þ

where αi and αij represent the coefficients, Xi is the input
parameter. All the unknown coefficients are determined using
regression with the aid of Matlab software.

3.1 Cutting force model

Cutting force has a direct effect on cutting heat and can cause
vibration. Moreover, the cutting force not only affects the
machining deformation and the machined surface quality but
also is a vital parameter in optimizing the milling process. The
cutting force model based on regression method is developed
according to the measured results in Table 3 and the model is
given as follows:

Fa ¼ −52:07−0:006nþ 381:01 f þ 80:35apþ 0:0243n⋅ f
−13:333 f ⋅apþ 0:0116n⋅ap−784:44 f 2 þ 9:8765ap2

ð2Þ

The acquired cutting forcemodel cannot be directly applied in
the process of analysis and estimation. It is necessary to further
confirm the statistical regularity of the model. The regression
equation needs to be verified by the normality assumption [22].
F calibration is adopted to test the reliability of the regression
equation. The closer determination coefficient R2 is to 1, the
higher the reference value of the regression equation is.

The R2 value of the second-order polynomial model for
cutting force is 98.64 %, which is close to 1. It shows that
the regression equation is highly significant at a 95 % confi-
dence value. Figure 2 displays the normal probability plot of
residuals for cutting force. Obviously, the residuals are located
on a straight line, which means the errors are well distributed.
Hence, the cutting force model can provide an excellent ex-
planation between the input parameters and cutting force
values.

Thin-walled plate

Cutter

Dynamometer

Fig. 1 Milling experiment setup

Table 1 Physical properties of NAK80

Tensile
(MPa)

Elongation
(%)

Contraction
(%)

Yield
(MPa)

Modulus of
elasticity
(GPa)

1319 14.6 51.2 1186 199

Table 2 Cutting parameters and their levels

Levels Milling parameters

Spindle speed
(n, r/min)

Feed per tooth
(f, mm)

Axial depth of
cut (ap, mm)

1 1600 0.15 0.4

2 2100 0.20 0.55

3 2600 0.25 0.7
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3.2 Surface roughness model

Surface roughness is an important criterion for machining
quality evaluation. It is the description of surface geometry
and texture. In addition, it directly affects the wear resistance

and fatigue strength of the machined part. The formation
mechanism of surface roughness is quite complicated and
mainly depends on milling parameters. In this paper, the sur-
face roughness model and the cutting force model have the
same regression equation form. Thus, the regressionmodel for
surface roughness is described as:

Ra ¼ −1:2445þ 0:0005nþ 0:3691 f þ 3:738ap−0:001n⋅ f
þ2:8889 f ⋅ap−0:0008n⋅apþ 4:0222 f 2−0:4864ap2

ð3Þ

Similarly, the regression equation also needs to be verified
by F calibration. The fitting coefficient R2 of the regression
equation is 98.82 %, verifying the high reliability of the re-
gression equation. Figure 3 displays the normal probability
plot of residuals for surface roughness. It is observed that the
residuals are located on a straight line, which means the errors
are well distributed. On this account, we conclude that the
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Fig. 2 Normal probability plot of residuals for cutting force, N

Table 3 Experimental conditions
and results No. Experimental conditions Experimental results

Spindle speed
(n, r/min)

Feed per tooth
(f, mm)

Axial depth of
cut (ap, mm)

Cutting force
(Fa, N)

Roughness
(Ra, μm)

Removal rate
(M, mm3/min)

1 1600 0.15 0.4 27.3 0.532 384

2 1600 0.15 0.55 42.7 0.853 503

3 1600 0.15 0.7 58.5 1.215 672

4 1600 0.2 0.4 33.2 0.587 512

5 1600 0.2 0.55 52.8 0.912 704

6 1600 0.2 0.7 70.2 1.316 896

7 1600 0.25 0.4 39.2 0.671 640

8 1600 0.25 0.55 54.6 1.030 880

9 1600 0.25 0.7 69.8 1.487 1120

10 2100 0.15 0.4 35.3 0.498 504

11 2100 0.15 0.55 49.6 0.834 693

12 2100 0.15 0.7 68.5 1.042 882

13 2100 0.2 0.4 39.7 0.566 672

14 2100 0.2 0.55 56.5 0.878 924

15 2100 0.2 0.7 73.4 1.195 1176

16 2100 0.25 0.4 43.9 0.627 840

17 2100 0.25 0.55 58.3 0.902 1155

18 2100 0.25 0.7 73.6 1.268 1470

19 2600 0.15 0.4 38.5 0.468 624

20 2600 0.15 0.55 52.7 0.815 858

21 2600 0.15 0.7 72.3 0.926 1092

22 2600 0.2 0.4 43.6 0.487 832

23 2600 0.2 0.55 61.3 0.773 1144

24 2600 0.2 0.7 82.3 1.026 1456

25 2600 0.25 0.4 48.9 0.568 1040

26 2600 0.25 0.55 71.4 0.869 1430

27 2600 0.25 0.7 85.6 1.056 1820
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surface roughness model reflects the relationship between the
milling parameters and surface roughness values fairly well.

In order to validate the abovementioned regression
models, a series of random milling experiments are con-
ducted, shown in Table 4. The comparison of the pre-
dicted and measured values of cutting force and surface
roughness is presented in Fig. 4. It can be seen from
Fig. 4 that the predicted values are in well agreement
with the experimental data, which further verifies the
high reliability of these regression models. Therefore,
the two models can be used for optimizing the machin-
ing parameters.

3.3 Material removal rate

Material removal rate needs to be considered when determin-
ing the machining parameters because the higher efficiency is
of great significance in such operations. Material removal rate
is defined as the volume of material that is removed from the
part per unit time, and it is a function of the milling parame-
ters, which is expressed as:

M ¼ n⋅ f ⋅Z⋅ap⋅ae ð4Þ

where Z is the tooth number. The material removal rates under
different milling conditions are shown in Table 3.

3.4 Influence of milling parameters on cutting force
and surface roughness

Based on these regression models, a further explanation is
made for the influence of milling parameters.

Figure 5 illustrates the main effects for cutting force.
Obviously, it is observed from Fig. 5a that there is an increase
of cutting force with increase of milling parameters. However,
the influence of each machining parameters on cutting force is
different. That is to say, the axial depth of cut has a larger
effect on the cutting force than the other two factors.
Figure 5b shows the interaction effect of spindle speed and
axial depth of cut on the cutting force while Fig. 5c depicts the
interaction effect of spindle speed and feed per tooth on the
cutting force. It can be seen that smaller cutting force can be
obtained with the combination of higher spindle speed and
smaller axial depth of cut or the combination of higher feed
per tooth and smaller axial depth of cut.

Figure 6a indicates that an increase of feed per tooth or
axial depth of cut leads to the increase of surface roughness
while the increase of spindle speed results in a slightly de-
crease of surface roughness. The same conclusion can also
be drawn from Fig. 6b, c. Besides, the axial depth of cut
affects surface roughness more than feed per tooth.
Figure 6b shows the surface roughness in relation to feed
per tooth and axial depth of cut when spindle speed is
2000 r/min. And from Fig. 6c, we can deduce that the higher

0 1 2 3 4 5 6
40

50

60

70

80

Predicted
Measured

0 1 2 3 4 5 6
0.4

0.6

0.8

1

1.2

1.4

1.6

Predicted

Measured

Conditions no.

Conditions no.

(a) Cutting force

(b) Surface roughness

C
ut

tin
g

fo
rc

e
(N

)
Su

rf
ac

e
ro

ug
hn

es
s

(µ
m

)
Fig. 4 Comparison between the predicted and measured values

Table 4 Experimental conditions of validation tests

No. Spindle speed
(n, r/min)

Feed per tooth
(f, mm)

Axial depth of
cut (ap, mm)

1 1500 0.15 0.6

2 1700 0.18 0.7

3 2000 0.2 0.8

4 4200 0.3 0.4

5 3000 0.25 0.5
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Fig. 3 Normal probability plot of residuals for surface roughness, μm
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the spindle speed is and the smaller the milling depth is, the
lower the surface roughness will be.

4 Results of multi-objective optimization

Genetic algorithm is a powerful tool for optimization of
complicated problems in terms of biological heredity and
evolutionary mechanism. Enhanced from single objective
optimization genetic algorithm, many multi-objective op-
timization approaches are proposed. Among these ap-
proaches, NSGA-II is most widely used to optimize the
machining parameters. The algorithm adopts non-

dominated sorting approach, crowded distance estimation
procedure, and simple crowded comparison operator to
find a set of evenly distributed solutions to a simultaneous
optimization problem [23]. In this study, the simultaneous
optimization of cutting force, surface roughness, and ma-
terial removal rate is performed using NSGA-II. A set of
optimal solutions called Pareto optimal fronts would be
obtained that in general, any of these solutions has no
predominance to another [23]. Figure 7 shows the flow
chart of NSGA-II algorithm. Generally, the main steps of
the NSGA-II are given as follows.

Step 1: Randomly initialize the parent population based on
the problem range and constraint.
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Step 2: Rank the population using non-domination criteria.
The individuals in population are selected based on
rank and crowding distance.

Step 3: Apply the genetic operators of selection, crossover,
and mutation to generate offspring population and
validate the offspring population.

Step 4: Offspring population and current generation popula-
tion are combined and the individuals of the next
generation are set by selection.

Step 5: The termination principle is that the current evolu-
tionary generation exceeds the maximum evolution-
ary generation. Record the candidate Pareto optimal
set if it meets the termination principle. Otherwise,
return to Step 2.

4.1 Mathematical equations for the optimization

Machining the thin-walled plates has attracted great attention
due to their poor machinability. During the milling process,
we need to control the deformation, guarantee the surface
roughness, and improve the machining efficiency. Thus, the

minimal cutting force, optimal surface quality, and best mill-
ing efficiency are the desired objectives of this work.

4.1.1 Minimal cutting force

In thin-walled plates milling, the cutting force is directly re-
lated to the deformation. That is to say, smaller deformation
can be achieved by reducing the cutting force. In order to
minimize the deformation in the production process, the cut-
ting force should be as small as possible. The mathematical
equation of cutting force is given by Eq. 2.

4.1.2 Optimal surface quality

Surface quality has a great influence on the part functionality.
Surface roughness affects the properties of fatigue strength,
friction coefficient, and wear rate. As the purpose of this paper
is to acquire better surface roughness of the thin-walled plates,
the optimal surface quality is set as the minimal surface rough-
ness. Its mathematical equation is expressed in Eq. 3.

4.1.3 Best milling efficiency

The milling efficiency is directly related to material removal
rate. It can achieve the best milling efficiency by getting the
maximal material removal rate. The mathematical relation be-
tween material removal rate and machining variables is given
in Eq. 4.

4.1.4 Constraint conditions of optimization

The machining parameters should be designed on the basis of
operation constraints. These constraints need to combine var-
ious considerations, such as the scope of spindle speed, the
availability of feed rate. In this paper, the constraint condition
of spindle speed n is from 1000 to 3000 r/min. The range of
feed per tooth f is from 0.1 to 0.3 mm. The scope of axial depth
of cut ap is between 0.3 and 1 mm.

4.2 Optimization objectives

In production process, the major goal is to fabricate high qual-
ity thin-walled parts with high efficiency. That is, the main
problem is to obtain the minimum deformation, best milling
efficiency, and optimal surface quality concerning the indus-
trial demands. Thus, the minimal cutting force, the minimal
surface roughness, and the maximal material removal rate are
the optimization objectives. The objective functions are given
as follows:

Objective 1ð Þ ¼ min Fa½ �
Objective 2ð Þ ¼ min Ra½ �
Objective 3ð Þ ¼ max M½ �

8<
: ð5Þ

Yes

Start

Generate a population for n, f, ap

gen>Max gen

Calculate the objective functions values
of parent and offspring

Determine individuals scores

Update Pareto optimal front

Selection & crossover & mutation

Extract non-dominated solution set

End

No

Initialize population gen=0

gen=gen+1

Fig. 7 Flow chart of machining parameters optimization algorithm with
NSGA-II
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Objective (1) and Objective (2) are the minimum while
Objective (3) is the maximum. Regarding the fact that it is
convenient to calculate the minimal values based on NSGA-
II, the objective functions could be rewritten in the following
form:

Objective ¼ min Fa;Ra; 1=M½ �

s:t: ¼
n ¼ 1000∼3000r=min
f ¼ 0:1∼0:3mm
ap ¼ 0:3∼1mm

8<
:

8>><
>>:

ð6Þ

In this work, these optimization objectives should satisfy
the following criteria:

Fa≤50N;Ra≤1:3μm;M ≥1000mm3=min ð7Þ

4.3 Results and discussion

In the optimization procedure, the population size is taken as
200 and the evolutionary generation is adopted as 500.
Crossover and mutation probabilities are set to 0.9 and 0.1.
After optimization, the Pareto-optimal front obtained by
NSGA-II is shown in Fig. 8.

All the points in Fig. 8 denote an optimal combination
of machining parameters that has no predominance to
each other. Any one of them is an acceptable solution,
and none of the solutions in the non-dominated set can
be said to be absolutely better than any other. The choice
of optimum combination of milling parameters over the
other depends on the desired machining criterion of the
thin-walled plate.

As it is depicted in Fig. 8, it is clear that surface rough-
ness Ra value decreases with the increase of cutting force
Fa value, and material removal rate M increases with sur-
face roughness Ra and cutting force Fa increasing. The
Pareto optimal solutions in region A are good to reduce
cutting force, in the meanwhile, not increase surface
roughness. In addition, it can be seen from Fig. 8b that
the solutions in region B can get optimal cutting force and
material removal rate. Similarly, the Pareto optimal solu-
tions in region C are relevant to reduce surface roughness
and increase material removal rate. For the purpose of
acquiring large material removal rate as well as high qual-
ity parts, the intersection sets of the regions A and B are
selected in the Pareto optimal solutions. Besides, these
solutions are selected after comprehensive consideration
of machining quality and milling efficiency. For instance,
some optimum combinations of machining parameters for
milling thin-walled plate are presented in Table 5. These
solutions can well ensure the machining quality and effi-
ciency in thin-walled plates milling.

As mentioned in Section 4.1.4, the constraint condi-
tion of spindle speed is from 1000 to 3000 r/min, the
range of feed per tooth is from 0.1 to 0.3 mm, the scope
of axial depth of cut is between 0.3 and 1 mm.
According to Table 5, the optimized spindle speeds are
about 2800 r/min, close to upper limit 3000 r/min, opti-
mized feeds per tooth are in the region of 0.24 mm,
close to upper limit 0.3 mm, optimized milling depth
are about 0.4 mm, close to lower limit 0.3 mm. Hence,
it can be asserted that the acquired optimal solutions
concentrate upon higher spindle speed, higher feed per
tooth, and lower milling depth, which is in accord with
the analysis in Section 3.4.
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5 Optimization results verification considering
chatter stability

During the optimization, constraint conditions do not include
chatter stability for the reason that it will be very complex to
perform optimization if the chatter stability is directly taken as
the constraint. However, chatter may occur if the optimized
parameters are directly applied to machining operations.
Hence, it is necessary to further verify the solutions in the light
of machining stability.

The dynamic model of the thin-walled plates can be re-
duced to a single-degree freedom system [24], shown in
Fig. 9. The dynamic equation of the cutter-workpiece system
is described as:

my€y tð Þ þ cyy tð Þ þ kyy tð Þ ¼ Fy tð Þ ð8Þ

where my, cy, and ky represent the modal mass, modal
damping, and modal stiffness of the dynamic system, respec-
tively. y(t) is vibrational displacement in the Y direction. Fy(t)
is the cutting force in the Y direction.

According to Altintas’s regenerative chatter theory [25],
the cutting force in the Y direction can be expressed as

Fy tð Þ ¼ Z
4π

apktcαyyΔy ð9Þ

where Z is the tooth number, ap is axial depth of cut, ktc is
tangential force coefficient, αyy is the directional dynamic
milling coefficient in the Y direction, and Δy is the vibration
displacement in the Y direction.

Eq. 8 can be rewritten as:

Fy tð Þf geiωct ¼ 1

2
apktc 1−e−iωcT

� �
αyy Gyy iωcð Þ½ � Fy tð Þf geiωct

ð10Þ

where ωc is chatter frequency, T is tooth passing period,
Gyy(iωc) is frequency response function of the dynamic system
in the Y direction.

By solving Eq. 10, the eigenvalues Λ = ΛR + iΛI are deter-
mined. And then the critical depth of cut aplim and correspond-
ing spindle speed n for the stability lobes are obtained as:

aplim ¼ −
2πΛR 1þ κ‐2

� �
Zktc

n ¼ 60ωc
1þ 2kð Þ−2arctanκð Þ

8>><
>>:

ð11Þ

where κ is the ratio of imaginary and real parts of the eigen-
values Λ, k is the number of stability lobes.

The stiffness and damping of the wall will be dropping as
more material is removed. The dynamic behavior of the wall
depends on the position of the tool. The variation in the dy-
namics of the wall due to material removal can not be
neglected, which leads us to a three-dimensional lobe diagram
construction. First of all, we need to identify the modal pa-
rameters in the first tool position and acquire the two-
dimensional stability lobe. The wall is divided into several
zones at the same height, and impact tests are conducted in
each zone to obtain corresponding dynamics. It is assumed
that the variation of dynamic parameters resulting from mate-
rial removal is neglected in each zone. Hence, the more zones
the wall is divided into, the more accurate the acquired modal
parameters are. In this study, the thin-walled plate is divided
into four zones, shown in Fig. 10. Then, repeat the previous
step and plot two-dimensional stability limits in all tool posi-
tions. Finally, these acquired two-dimensional stability limits
are analyzed and then the three-dimensional stability lobe di-
agram is determined, shown in Fig. 11.

X

Y

O

Workpiece

Milling
cutter

cyky

Feed direction

Fig. 9 Dynamic model of the system

Table 5 Pareto front of optimum
combinations No. Spindle speed

(n, r/min)
Feed per tooth
(f, mm)

Axial depth of cut
(ap, mm)

Cutting force
(Fa, N)

Roughness
(Ra, μm)

Removal rate
(M, mm3/min)

1 2816 0.2474 0.4363 43.971 1.169 1215

2 2835 0.2442 0.3982 39.365 1.059 1103

3 2811 0.2475 0.4098 40.814 1.085 1140

4 2832 0.2427 0.4282 42.811 1.154 1175

5 2819 0.2461 0.3917 38.639 1.032 1086
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The curved surface in Fig. 11 is the boundary between
chatter-free operations and unstable process. It is observed
from Fig. 11 that the critical milling depths at the same spindle
speed gradually decreases with the increment of tool position.
In Table 5, we have concluded that the optimum spindle
speeds, feeds per tooth, and milling depths are about 2800 r/
min, 0.24 mm, and 0.4 mm, respectively. According to the
three-dimensional stability lobes, when the spindle speed is
2800 r/min, the corresponding critical milling depth in zone 4
is minimal. And its value is 0.6 mm, larger than the optimized
milling depth 0.4 mm. It is well known that chatter stability is
not dependent on feed rate [25]. Hence, the acquired optimum
combinations of machining parameters can be applied to ma-
chining operations, which can not cause chatter. After consid-
ering the milling stability, the optimized milling parameters

can be used to manufacture thin-walled plates for optimal
milling quality and efficiency simultaneously.

5.1 Conclusions

1. In this paper, an attempt has been made to solve multi-
objective optimization problem in milling thin-walled
plates by using NSGA-II. Three conflicting objectives,
namely cutting force, surface roughness, and material re-
moval rate, have been considered for optimization simul-
taneously. As a consequence, the optimum combinations
of machining parameters and output objectives are ac-
quired. Besides, the optimized milling parameters have
been verified by the milling stability.

2. Cutting force and surface roughness behaviors are inves-
tigated in milling thin-walled plates. The second-order
polynomial models for cutting force and surface rough-
ness are developed for optimization.

3. The influences of machining parameters on cutting force
and surface roughness are analyzed. It is found that both
cutting force and surface roughness increase with the in-
creasing of feed per tooth and milling depth. However, the
increase of spindle speed has opposing effects on these
two output objectives. That is, as spindle speed increases,
cutting force increases while surface roughness decreases.

4. The proposed method provides an applicable range wide
range of solutions for decision maker, which helps to
guarantee the high quality of the machined thin-walled
plates as well as improve milling efficiency.
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