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Abstract Linear tool paths, orG01codes, are themostwidely
used form of tool paths for NC machining. Because of the
inborn tangent discontinuity, it is difficult to realize the
machining with both high speed and high quality along the
G01 codes. To solve this problem, a local corner transition
algorithm combined with global motion planning strategy
is proposed. Very different from recent corner transition
studies in which the transition path and feedrate are planned
separately, this work uses a one-step strategy to generate
the transition trajectory. Besides, the more reasonable axial
acceleration limits are considered in this algorithm, since
the acceleration performances of individual axes in con-
ventional machine tools may be significantly different. To
enhance the machining efficiency, a modified corner tran-
sition strategy with more free transition space is proposed.
The feasibility and efficiency of the proposed algorithm are
verified by simulations and experiments.

Keywords Interpolation · Linear tool path · Corner
transition · Axial acceleration · NC machines

1 Introduction

In NC technology, the interpolation has been studied exten-
sively because the productivity and machining precision can
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be improved by developing advanced interpolation algo-
rithms. Recently, following the development of modern
CAD technology, the interpolation algorithms of parametric
spline path are widely studied, such as the real-time methods
[1–3] and the off line optimization methods [4–8]. Smooth
and fast motion is expected to be obtained by using these
algorithms. However, the output of NC codes in parametric
format is not popular in most CAD/CAM software. More-
over, the problems of accurate computation of curve lengths
[9] and suppression of feed fluctuations [10] are difficult
yet must be solved. Therefore, it is worthwhile to further
improve the performance of G01 interpolation. The main
difficulty of G01 interpolation is caused by the tangency
discontinuities at the command points, which result in low
motion speed and poor machining quality.

There exist two major approaches for G01 interpolation:
the corner transition methods and the global curve fitting
methods. The corner transition or corner smoothing meth-
ods change the tool path around the corner points locally,
allowing smooth transition at the corner points. The global
curve fitting methods fit the whole G01 tool path with cer-
tain parametric curve and then design the feedrate along
the parametric curve, refer to [11–14]. Due to the locality
of planning process, the corner transition methods are easy
to implement and hence are more widely used in practical
CNC machining, and is also the focus of this paper.

In corner transition methods, by employing certain para-
metric curves to blend adjacent linear segments, higher
feedrate can be allowed when the tool passes through the
corner points. Zhang et al. [15] applied cubic polynomial
spline to blend linear segments. Zhao et al. [16] applied B-
spline curve with five control points as the transition curve
and obtained curvature-continuous blended path. In [17],
circular arc was used to blend linear segments and con-
tour error model was induced to control the contour error in
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real-time. Sencer et al. [18] used quartic B-splines to blend
adjacent straight lines and optimized the curvature of the
transition path to deliver short cycle time. Sun et al. [19] pro-
posed a dynamic B-spline transition scheme for short line
segments and also optimized the transition curve to reduce
machining time. Fan et al. [20] used quartic Bezier curve to
smooth the tool path and achieved G3 continuity. The gen-
eral seven-phase jerk-limited look-ahead algorithms were
applied in all the above papers to realize the feedrate update,
except [20] in which a 15-phase jounce-limited scheme
was used, and [18] in which a jerk-limited S-acceleration
scheme was adapted.

Although smooth feedrate can be obtained with the above
methods, the following drawbacks still exist in these meth-
ods. Firstly, the calculation of curve lengths is indispensable
in these methods while the accurate computation of curve
lengths is difficult. Secondly, in these interpolation algo-
rithms, only tangential kinematics limits are considered for
look-ahead feedrate planning. According to Dong et al. [21],
the individual axes of a conventional machine tool may
have significantly different dynamic performance character-
istics. Hence considering tangential kinematics limits may
result in either infeasible acceleration demands or overly
conservative planning decisions. Thirdly, these interpolation
algorithms adopt a two steps process, by first generating the
geometric path and then the feedrate along the path, which
complicates the solution process and is not time-optimal.

In Sencer et al. [22] and Zhang et al. [23], one-step cor-
ner trajectory planning algorithms were proposed. In [22],
the FIR (finite impulse response) filtering technology was
used, where the optimality of the feedrate planning was not
considered. In [23], the error tolerance was not fully used
and the designed feedrate was also not optimal.

The purpose of this paper is to give a corner transition
strategy and its corresponding motion planning algorithm to
minimize the total machining time in certain sense. Differ-
ent from most recent corner transition studies where transi-
tion path and feedrate are planned separately, this work uses
a one-step transition trajectory generation strategy where the
transition trajectory is a parametric quadratic curve in the
time parameter, and is guaranteed to be time-optimal in cer-
tain sense. Besides, the reasonable axial acceleration limits
are considered in this algorithm. Also, a new corner tran-
sition model is proposed to fully use the corner tolerance.
The transition path is a time parameterized quadratic curve
that is determined by the maximal axial accelerations and
the maximal error tolerance.

The paper is organized as follows. In Section 2, the
corner transition model is presented. In Section 3, the min-
imum time motion algorithm is introduced, which includes
the corner classification and treatment, the transition tra-
jectory construction within different type corners, and the
total interpolation flow with look-ahead scheme. Section 4
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Fig. 1 Kinematic description of the corner transition

presents the simulations and experiments. The conclusions
are drawn in Section 5.

2 Design of corner transition trajectory

2.1 Constant acceleration transition

According to Fig. 1, for a given constant acceleration vec-
tor a, the corner transition velocity satisfies the following
relation

veee − vses = aT , (1)

where T denotes the corner transition time, vs denotes the
starting velocity of the transition trajectory along the veloc-
ity direction es , and ve denotes the ending velocity along
the velocity direction ee, and ‖es‖ = 1, ‖ee‖ = 1. The
acceleration vector a can be written as

a = aeee − ases (2)

with as > 0 and ae > 0. Then we have

vs = asT , ve = aeT . (3)

In Fig. 2, let P be the corner point, S the start point of
the transition trajectory, E the end point, and Q an arbitrary
point on the trajectory. Then the trajectory is

(Q − P) = (S − P) + vstes + 1

2
at2. (4)

Let ls = |SP| and le = |PE|. Then P − S = lses and E −
P = leee. We have

lses + leee = vsT es + 1

2
aT 2. (5)

From the above equation, we can obtain

ls = 1

2
T 2as, le = 1

2
T 2ae. (6)

S

P E

Q

Fig. 2 The transition trajectory of the corner
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Define a relative motion trajectory as C (t) = Q (t) − P,
then

C (t) = −ases
(T − t)2

2
+ aeee

t2

2
. (7)

2.2 Acceleration direction and transition time

We will show how to determine the optimal acceleration
vector a. According to Eq. 2, the direction of acceleration a
should between ee and (−es), that is, inside the angle∠SPE
in Fig. 2. With the acceleration direction, the acceleration
amplitude can be determined by

aB = min

(
Ax

cos (θx)
,

Ay

cos
(
θy

)
)

,

where Ax and Ay are the maximum accelerations along x

axis and y axis, respectively. θx and θy are the corresponding
angles of ea w.r.t ex and ey respectively.

To optimize the machine performance, the amplitude
and direction of corner acceleration should be determined
appropriately. Here we consider two optimization indexes.
One is to minimize the transition time T . Another is to
maximize the minimum value of vs and ve.

For the problem of minimum transition time T , assume
that the total transition length of the corner is a constant, i.e.,

lc = ls + le = 1

2
T 2 (ae + as) .

Then the minimum of corner transition time T can be
realized by maximizing the following function.

max J = a × (ee + es) . (8)

Since the acceleration vector a can be expressed as a
linear combination of

(
Axex, Ayey

)
, the optimal accelera-

tion can be found at the vertex of the feasible acceleration
polygon, see Fig. 3a–d.

However, the local optimal of corner trajectory does not
indicate that the global trajectory is also optimal. Actu-
ally, in some conditions local optimality of corner trajectory
may make things worse. See Fig. 3d, based on Eq. 8 the
optimized acceleration should satisfy

a//ee or a//es .

The corresponding velocity becomes vs = 0 or ve = 0,
which means full stop at the corner point.

For the problem of maximizing the minimum value of vs

and ve, the objective function is

max (min (vs, ve)) . (9)

Based on Eq. 3, the optimization function can be written as

max (min (‖a × ee‖ , ‖a × es‖)) .

Define a = αee − βes where α > 0, β > 0. Then the
optimization function can be further written as

max (min (β, α)) ,

Fig. 3 Optimal acceleration
vector determined by Eq. 8
[24, 25]

a b

c d
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Fig. 4 Optimal acceleration
variables α, β determined by
Eq. 9 [24]

where the variables α, β are limited by the acceleration
constraints as follows

|(αee − βes) · ex | ≤ Ax,
∣∣(αee − βes) · ey

∣∣ ≤ Ay. (10)

From constraints (10), the feasible search region of α, β

is surrounded by a polygon (e.g. parallelogram for 2 axis
problem), then the optimal values of α, β can be found: (i)
At some vertex of the polygon, e.g. point p on Fig. 4a. (ii)
On an edge of the polygon under the condition α = β, see
point p on Fig. 4b. In case (ii), since α = β, the bisector
direction of ee and (−es) is the acceleration direction, we
have

ea = ee − es

‖ee − es‖ , (11)

where ea denotes the acceleration direction.
We now consider the optimization of the motion plan-

ning. For motion planning of a free path, the optimal
solution is obtained while along the motion at least one
of the axis accelerations reaches its maximum. To satisfy
this condition, a criterion is proposed in the following to
determine the acceleration direction.

As shown in Fig. 3, the feasible acceleration space con-
structed by the acceleration limits is a polygon (e.g., rectan-
gle for a two-axis problem). If one of the polygon vertexes
fall within the corner region, then the acceleration deter-
mined by Eq. 8 is selected, else the acceleration determined
by Eq. 9 is selected.

The transition time calculation is shown in Fig. 5. For
transition trajectory (4), if we assume the trajectory travels

sv
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Fig. 5 Transition time calculation

through a given fixed pointM at time t1 and set t2 = T − t1,
then we have

(M − P) = −lses + vst1es + 1

2
at12,

= leee − vet2ee + 1

2
at22. (12)

Here we rewrite (M − P) as (M − P) = Meee−Mses . Then

t1 =
√
2Me

ae

, t2 =
√
2Ms

as

, (13)

and the total transition time at the corner region is

T =
√
2Me

ae

+
√
2Ms

as

. (14)

In Eq. 14, the acceleration vector has been determined
in this section, and the only unknown variable M will be
determined in the next section.

2.3 Control of the contouring error

As shown in Fig. 6, the corner transition algorithm intro-
duces a geometric error around the corner that should be
limited by the geometric error tolerance εB . To fully use
the machine performance, we expect the maximum offset ε

of the transition trajectory to approach εB while satisfying
ε ≤ εB . Actually, the maximum offset ε of the transition tra-
jectory is the distance (denoted by d) from the corner point
P to the transition trajectory Q(t), which is an extremum of
C2(t). Since C2(t) is a quartic polynomial w.r.t time t , here
we need to ensure the following result.

P

M
a
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ee

sθ

Fig. 6 The maximum offset of the corner transition trajectory
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Theorem 1 Function C2(t) has one and only one extremum
in interval [0, T ], which means the nearest distance pointM
on trajectory Q(t) is unique.

Proof Define f (t) = 2C (t) · C′ (t), we have

f (t) = 2
(
−ases

(T −t)2

2 + aeee
t2

2

)
· (ases (T −t) + aeeet)

= T 3as
2
(

−(
1 − t

T

)3 +
(

ae

as

)2(
t
T

)3
+ ee · es

(
ae

as

) (
t
T

) (
1 − t

T

) (
2 t

T
− 1

) )
.

Define x = t
T

, λ = ae

as
and μ = es · ee, then 0 ≤ x ≤ 1,

0 < λ < ∞ and −1 < μ < 1. Function f (t) becomes

f(x) = T 3as
2
(
−(1−x)3+λ2x3+μλx(1−x)(2x −1)

)
.

(15)

Let f (x) = T 3as
2g (x), then the extreme points of

function C(t)2 can be determined by solving the equation
g (x) = 0.

Since we have

g (x)=−1+(3−μλ)x+3 (μλ−1)x2+
(
1−2μλ+λ2

)
x3,

(16)

there exist

g (0) = −1 < 0 and g (1) = λ2 > 0, (17)

which means function g (x) has at least one zero for x ∈
[0, 1].

We further have

g′(x) = (3− μλ) + 6(μλ − 1)x + 3(1− 2μλ + λ2)x2, (18)

g′′(x) = 6 (μλ − 1) + 6(1 − 2μλ + λ2)x. (19)

Then there exist

g′ (0) = (3 − μλ) , g′ (1) = λ (3λ − μ) (20)

and

g′′ (0) = 6 (μλ − 1) , g′′ (1) = 6λ (λ − μ) . (21)

The problem will be discussed in three cases.

Case 1: μλ ≥ 1.

In this case, first we have λ > 1 and 0 < μ < 1. Then we
have

g′ (1) > 0, g′′ (0) > 0, g′′ (1) > 0.

Since g′′ (x) is a linear function w.r.t x, we always have

g′′ (x) > 0 for x ∈ [0, 1] .

Now if g′ (0) ≥ 0, we know function g (x) is mono-
tonely increasing and then based on Eq. 17, function g (x)

has a unique zero in interval [0, 1] (see the red line in
Fig. 7a). Else we have g′ (0) < 0, the corresponding g (x)

decreases first and then increases in [0, 1] (see blue dash
line in Fig. 7a). And the zero of function g (x) is also unique
in interval [0, 1].

Case 2: μλ < 1 and λ ≤ μ.

In this case, we have

g′ (0) > 0, g′′ (0) < 0, g′′ (1) ≤ 0.

Since the symmetry axis of quadratic function (18) is

xo = 1 − μλ

1 − 2μλ + λ2
.

Based on μλ < 1 and λ ≤ μ, we have xo ≥ 1. Then the
function g′ (x) is monotonely decreasing in interval [0, 1].

Now if g′ (1) ≥ 0, function g (x) is monotonely increas-
ing and has unique zero in interval [0, 1] (see the red line in
Fig. 7b). Else g′ (1) < 0, the corresponding g (x) increases
first and then decreases in [0, 1] (see blue dash line in
Fig. 7b). And the zero of function g (x) is also unique in
interval [0, 1].

Case 3: μλ < 1 and λ > μ.

In this case, we have

g′ (0) > 0, g′ (1) > 0, g′′ (0) < 0, g′′ (1) > 0.

And we know the symmetric axis xo of quadratic function
(19) satisfies

0 < xs < 1.

Fig. 7 The profiles of g (x)

in Case 1 (a), Case2 (b) and
Case 3 (c)

( )g x

x

( )0g

( )1g

0 1

( )g x

x

( )0g

( )1g

0 1

( )g x

x

( )0g

( )1g

0 1

a b c



946 Int J Adv Manuf Technol (2017) 89:941–956

The minimum of quadratic function (18) has the follow-
ing formula.

3 − μλ − 3(μλ − 1)2

1 − 2μλ + λ2
.

And it is easy to check

3 − μλ − 3(μλ − 1)2

1 − 2μλ + λ2
> 0.

It means we have g′ (x) > 0 for x ∈ [0, 1]. So the zero of
function g (x) is unique in interval [0, 1] (see Fig. 7c).

Hence, function C(t)2 has one and only one extremum in
interval [0, T ].

Theorem 2 We have two more properties about the nearest
distance:

(i). The nearest distance d is a quadratic and monotonely
increasing function w.r.t the transition time T .

(ii). The nearest direction (denoted by eε) from the corner
point P to the trajectory Q(t) is a constant, which
means it is independent of time T .

Proof Based on Theorem 1, we name the unique zero point
of g (x) in [0, 1] as xε. Then according to Eq. 7, the nearest
distance point on trajectory C becomes

C (xε) = T 2

(
−ases

(1 − xε)
2

2
+ aeee

xε
2

2

)
. (22)

Then the nearest distance is

d = √
C (xε) · C (xε) = T 2

∥∥∥∥∥−ases
(1 − xε)

2

2
+ aeee

xε
2

2

∥∥∥∥∥
2

.

Hence, the property (i) is proven.
In Eq. 22, it is easy to verify that the direction of C (xε)

is a constant. So the property (ii) is proven.

Based on Theorem 1, the common used numerical algo-
rithms (such as bisection method) can be applied to cal-
culate the nearest distance point C (xε) and the nearest
distance direction eε.

2.4 Re-adjustment of corner transition trajectory

In this section, we present an adjustment method for corner
transition trajectory to satisfy the maximum feedrate limit
and the limited line segment length.

Define feedrate as vfeed (t) = ‖v (t)‖. For the feedrate
limit of transition trajectory

vfeed (t) ≤ vB, t ∈ [0, T ] , (23)

we have the following theorem.

Theorem 3 The feedrate constraint vfeed (t) ≤ vB is
equivalent to constraints vs ≤ vB and ve ≤ vB .

Proof The velocity of transition trajectory at time t satisfies
vt = vses + at. Then we have

‖vt‖2 = vt · vt = t2 (a · a) + 2vst (a · es) + vs
2 (24)

and d‖vt‖2
dt = 2a · vt . Since ‖vt‖2 is a quadratic function and

a · a > 0, and the minimum velocity is obtained at a · vt =
0, the corresponding time is t = − vs(a·es )

(a·a) . The maximum
velocity can be found at t = 0 or t = T . Hence, the feedrate
constraint vfeed (t) ≤ vB along the transition trajectory can
be ensured by vs ≤ vB and ve ≤ vB .

For a certain corner, the acceleration direction ea is deter-
mined in Section 2.2, and based on Theorem 2, the nearest
distance direction eε is a constant, written as

eε = εeee − εses

with εe > 0, εs > 0.
Then we define

Ca =
√
2εe

ae

+
√
2εs

as

which is a constant. Hence we get the transition time

T = √
εCa, (25)

the terminal transition velocities

vs = asCa

√
ε, ve = aeCa

√
ε, (26)

and the transition lengths

ls = 1

2
asεCa

2, le = 1

2
aeεCa

2. (27)

The adjustment conditions can be summarized as the
velocity condition and length condition, where the velocity
condition is induced by the look-ahead scheme and the max-
imum feedrate limit, the length condition is induced by the
limited segment length.

For the velocity re-adjustment (take ve as example), we
expect the adjusted velocity to be equal to a new value,
denoted by venew. According to Eq. 26, both the recalcu-
lated aB and ε can realize the requirement. However, from
Eq. 25, shrinking aB leads to increasing of T . Hence, the
new velocity is generated by applying the new maximum
offset

εv = ε

(
venew

ve

)2

. (28)

Similarly, the new transition length lenew can be gener-
ated by using the recalculated

εl = lenew

le
ε. (29)
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Fig. 8 a A typical corner.
b Transition trajectories based
on the standard model (blue dot
line) and the modified model
(red line)

2 Bε

P

O O

P

a b

Above all, the final applied maximum offset is deter-
mined by

εf inal = min {εv, εl, εB} . (30)

Combined with the known P, es , ee, a, eε and εf inal , the
transition trajectory of the corner can be determined.

3 Minimum time motion strategy

Based on the developed corner transition algorithm in
Section 2, a minimum time motion planning algorithm is
proposed in this section.

3.1 A modified corner transition model

According to Eqs. 25 and 26, we know that the transi-
tion time and velocity can be improved by stretching the
maximum offset ε. In the standard transition model, the
maximum offset ε w.r.t point P should satisfy ε ≤ εB . We
give a modified model where the corner point of the transi-
tion trajectory is moved from point P to point O (Fig. 8a).
This means the maximum offset of the modified transition
model is larger than 2εB in some situations.

A numerical experiment is presented to test the effective-
ness of the modified transition model. For a given corner,
the standard transition model and the newly proposed model
are applied. To be fair, both acceleration directions are set
as the direction of corner bisector and the corner length is
fixed which is exactly equal to the transition length of the
modified model.

Then for the modified transition model, the maximum
offset point is shown in Fig. 8a and the maximum offset
equals to εO = εB‖ee×eb‖ + εB , where, εO > 2εB , eb denotes
the direction of corner bisector.

The transition trajectories for a typical corner based on
the two models are plotted in Fig. 8b respectively. In this
figure, the red line denotes the modified transition trajectory
which has larger offset than the standard transition trajec-
tory drawn by blue dot line. The pink circle-lines are the
additional linear trajectories to ensure the two models travel
the same corner length. And the acceleration along the linear
path is calculated by

aline = min

(
Ax

|eline · ex | ,
Ay∣∣eline · ey

∣∣
)

,

where eline is the direction of certain linear path.

Fig. 9 Performance comparison
between the standard model and
the modified model
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Fig. 10 Performance test of the
modified model

a b

An experiment with variable corner angle is implemented
to show the variations of the transition time and veloc-
ity for the two models under the same corner length. The
variation range of the angle is set from 5 degree to 175
degree. The default experiment conditions are: cornering
tolerance = 0.1 mm, axis acceleration = 1000 mm/s2, no
feedrate limit. The results are shown in Fig. 9. Based on
the experiment data of Fig. 9, up to 28.4 % machining time
can be saved by using the modified transition model, and
the average time saved is 14.2 %. The maximum transition
velocity improvement is 34.8 % and the mean improvement
is 4.4 %.

Then the performance of the modified model w.r.t. the
variables of corner angle and cornering tolerance is tested
as shown in Fig. 10. From Fig. 10, we find the sensitivity
of transition time w.r.t cornering tolerance increases signif-
icantly as the corner angle approaches to zero. Conversely,
the sensitivity of transition velocity w.r.t cornering tolerance
increases significantly as the corner angle approaches to 180
degree.

Two more tests are implemented. In the first test, the
default conditions are: axis acceleration aB = 1000 mm/s2,
no feedrate limit. We let the tolerance varies from
0.0001 mm to 1 mm and under each tolerance we col-
lect the data of time saved when the corner angle varies
from 5 degree to 175 degree. The collected data is drawn

in Fig. 11a. Similarly, in the second test εB = 0.1 mm is
set as default and the acceleration varies from 0 mm/s2 to
5000 mm/s2. The collected data are drawn in Fig. 11b. From
Fig. 11, we find that the performance improvement of the
modified model compared with the standard model is not
influenced by the cornering tolerance and the acceleration.

3.2 Corner classification and treatment

In this paper, corners are classified as inner corner, outer
corner, start corner and end corner (or possible flat angle
corner). See Fig. 12, the shadow region denotes the work-
piece, where the dotted lines are the offset with error bound
as the height. An inner corner is shown in Fig. 12a. An out
corner is shown in Fig. 12b. In order to be time-optimal, it is
easy to see that for the inner corner shown in Fig. 12a, using
O as the support point of the transition trajectory is the best
choice. Similarly, in Fig. 12b,Q is the best support point for
the outer corner.

We use Fig. 13a to illustrate the planned trajectory. The
tool path has one inner corner and one outer corner. By
using the modified transition model, the trajectory for each
separate corner can be generated.

A transition trajectory is needed to link the two none
collinear trajectories. To do this, a pair of auxiliary corners
is introduced as shown in Fig. 13a. By trisecting the line

Fig. 11 Performance of the
modified model compared with
the standard model
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Fig. 12 Description of the
typical corners

a b

segment MN, we obtain the desired auxiliary corners Ps and
Pe. By applying the corner transition algorithm in Section 2,
the link trajectory can be generated as shown in Fig. 13b.
Generally, the length of path segment is much longer than
the given offset ε. So the angles of the constructed addi-
tional corners are relatively obtuse and no significant fee-
drate loss is caused by this modification (more details can
be found in Fig. 14).

The modified transition model is time-optimal under the
assumption that the length of each line segment is long
enough and the transition feedrate is less than the fee-
drate limit. In the contrary case, we will shrink the offset
ε to make the connection possible, and thus obtain an
approximate optimal algorithm. We use the following sim-
ple criterion to modify the parameter ε. For a given corner,
the modified transition model is applied only when the
following conditions are satisfied, otherwise the standard
transition model will be used for this corner.

1. The corner length conditions The left corner length
should longer than

Ll ≥ asCa
2εB

(
1 + as

aline

)
. (31)

a

b

Fig. 13 Trajectory transition from inner corner to outer corner

The right corner length should longer than

Lr ≥ aeCa
2εB

(
1 + ae

aline

)
. (32)

In Eqs. (31) and (32), aline is the acceleration value
along the corresponding linear segment.

2. The velocity conditions

asCa

√
εB ≤ vB, aeCa

√
εB ≤ vB. (33)

3. The corner angle condition. Referring to Fig. 9a, the
corner angle should be larger than π/3. This is because
the performance difference between the standard model
and the modified model is small when the corner angle
is less than π/3.

The tool path shown in Fig. 14 is applied to test the pro-
posed strategy. The cornering tolerance is set to be 0.8 mm
and the feedrate limit is set to be F = 200 mm/s. Accel-
eration limits are Ax = 1000 mm/s2, Ay = 1500 mm/s2.
The trajectories generated by the pure standard model and
the pure modified model are compared. Figure 14b lists

a

b

Fig. 14 Application of the conditional corner pair



950 Int J Adv Manuf Technol (2017) 89:941–956

the feedrate curves for the two models. As shown in the
figures, corners A and D satisfy the above criteria, so the
feedrates of cornerA andD are larger than the standard one.
The lengths of AB and BC are too short, and the shrinked
transition offset makes the performance of the modified
model almost the same with that of the standard model, or
even worse. Therefore, from these figures, we can see that
the proposed adaptive transition model selection (ATMS)
method is effective. The performance improvement of this
method is 1.86 % compared with the pure standard tran-
sition model (PSTM) and 1.4 % compared with the pure
modified transition model (PMTM) for this example. In
Section 4, more experiments will be executed to show the
effectiveness of the criteria.

3.3 Minimum time motion construction

Since the transition velocity of each corner is calculated
separately, to ensure the continuous of the feedrate along
the whole tool path, the look-ahead scheme with feedrate
update is needed, which is a standard procedure [23, 24].

For instance, in Fig. 15, if

ve (i) > vs (i + 1) andL (i) <

(
ve

2 (i) − vs
2 (i + 1)

)
2a

, (34)

which means that the line segment is too short to decrease
the feedrate, then the velocity of corner i is changed to

venew(i) =
√
2d(i)ave(i)−aT (i +1)vs(i +1)ve(i)+ve(i)vs

2(i +1)

ve(i)+ aT (i)
.

(35)

In summary, we outline the proposed algorithm as fol-
lows. Suppose that the error tolerance εB , the feedrate limit
vB , the maximum axis acceleration

{
Ax, Ay

}
, the inter-

polation period Ts , and the tool path with corner points
P1, . . . ,Pn are given.

– Step 1: For each corner point Pi , compute the optimal
acceleration ai with the method given in Section 2.2 and
the maximal offset point Mi with the method given in
Section 2.3.

– Step 2: Use the procedure given in Sections 3.1 and 3.2
to determine the transition (modified or standard) model
and the support point Si . Then vis, vie can be computed
with (3), lis , lie can be computed with (6). Adjust the

( )1sv i +

( )ev i ( )d i

( )L i
( )el i

( )1sl i +

a
( )mt i

( )+1mt i

Fig. 15 Velocity reachability between two adjacent corners

above values using the method in Section 2.4 if it is
needed.

– Step 3: Perform the look-ahead loop to adjust the
parameters vis, vie, lis , lie to make the feedrates reach-
able at any line segment PiPi+1.

– Step 4: Compute the interpolation points. Based on
the data from Step 1 and 2, the analytic trajectories
along the line segments and corner transition segments
can be calculated. Then we move along the analytic
trajectories in sequence, and in the meantime out-
put the interpolation points p(Ts),p(2Ts), . . . ,p(kTs)

every interpolation period Ts .

We finally remark that the feedrate curves generated with
the above algorithm can be smoothed with the method given
in [27] to avoid jumps of the acceleration.

4 Simulation and experimental validations

The proposed corner transition algorithm is tested through
simulations and experiments. The simulation test is performed
by using a simple planar contour to illustrate the effect of
corner transition trajectory. The experiments are executed
on a typical 3-axis CNC machine tool whose axis acceler-
ation performances are significantly different. Finally, the
time-optimality of the proposed algorithm is tested by com-
paring the machining times with the known time optimal
algorithm [7].

4.1 Simulation results

A simple polygon contour shown in Fig. 16 is used. The start
and end positions are set at point (20, −10). There are 13
corners, of which four are inner corners and seven are outer

Fig. 16 A simple polygon contour and its blended motion trajectory
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Fig. 17 The scheduled feedrate curves

corners. The feedrate limit is 200 mm/s, the error tolerance
of the corner is 0.25 mm, the acceleration limits of x and y

axes are 2000 mm/s2 and 2500 mm/s2 respectively.
By verifying the model selection conditions (31)–(33),

10 of the corners can be transited by using the modified
model and the rest are transited by using the standard model.
The blended motion trajectory of this contour is shown in
Fig. 16 with the corresponding feedrate curve (red line) and
axis acceleration profiles shown in Figs. 17 and 18c respec-
tively. Based on the proposed algorithm, the total motion
time is 1.518 s compared with 1.564 s of the pure standard
transition model (PSTM) algorithm and 1.526 s of the pure
modified transition model (PMTM) algorithm.

Then based on the proposed ATMS algorithm, we test the
trajectory performance under different corner tolerances.
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Fig. 18 Acceleration profiles of the scheduled feedrate by the pure
standard model (a), the pure modified model (b) and the proposed
adaptive model (c), respectively
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Fig. 19 Corner trajectories under different error tolerances

Here, we adjust the feedrate limit to 100 mm/s. Figure 19
shows the transition trajectories under different corner toler-
ances for a given corner. Figure 20 shows the corresponding
feedrate curves around the corner. In Fig. 20, the PSTM
algorithm with corner tolerance ε = 0.005 mm is applied
as reference. The chart in Fig. 20 shows as the corner toler-
ance shrinks, the corner velocity of the trajectory decreases
accordingly. Benefit from the modified corner model, the
ATMS algorithm can obtain larger corner velocity than
the PSTM algorithm. For the tolerance settings 0.1 mm,
0.05 mm, 0.01 mm, 0.005 mm and 0.005 mm(PSTM), the
corresponding interpolation times are 1.98, 2.021, 2.077,
2.09, and 2.103 s, respectively.
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Fig. 20 Corner feedrates under different error tolerances
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Fig. 21 Experimental setup
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4.2 Experimental results

A gantry-type three-axis machine tool is retrofitted to imple-
ment the algorithm verification. The system architecture for
experiment is illustrated in Fig. 21. The codes of the corner
transition algorithm, the feedrate update with look-ahead
and the interpolation point generation are performed on a
personal PC with Intel i5 2.6 GHz CPU, 8GB SDRAM and
Matlab environment. A dSpace real-time controller board
(DS1103) equipped with an adaptive sliding model control
core is utilized to execute the closed loop tracking mission.
Digital control signals generated by pulse width modula-
tor technology are used to drive the servo motors. Position
feedback of each axis is sampled through an encoder with
resolution of 0.0026 mm for x and y axes. The interpolation
period for the experiment is 1 ms.

The feedrate setting of the machine is 100 mm/s. The
dynamic performances are significantly different for indi-
vidual axes of this machine. As shown in Fig. 21, the motion
inertia along the x direction is larger than that along the y

and z directions. The acceleration settings are 500mm/s2

for x axis and 1000 mm/s2 for y axis respectively. Real-
time look-ahead routine is not considered in this experiment,
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Fig. 22 Experimental tool path

the tested trajectories are all generated offline in a Matlab
environment.

In this subsection, a plane cat shape linear profile (as
shown in Fig. 22) is applied as test object. The error toler-
ance of the corner is 0.1 mm. The number of linear segments
is 131 with the segment lengths varying from 2.82 mm
to 30.43 mm, and the total length of the cat profile is
1654.13 mm.

Besides the proposed algorithm, the common used
point–point motion and constant feedrate motion are also
employed for comparison. Figure 23a shows the scheduled
feedrate of the point–point motion strategy with the cor-
responding acceleration profiles shown in Fig. 23b. The
scheduled motion satisfies the feedrate and acceleration lim-
its. However, since the motion must fully stop at every
corner, the 33.05 sec of the motion time is very long. In con-
trast, the constant feedrate motion (Fig. 24a blue dot line)
has the shortest motion time which is 16.715 sec, however
large violations of acceleration limit exist in this strategy
as shown in Fig. 24b and c. Here by using the corner tran-
sition strategy, continuous quadratic curve is calculated for
each corner within the cornering tolerance, which increases
the passing feedrate at each corner point significantly. Then

a

b

Fig. 23 Profiles of point to point motion
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Fig. 24 Comparison between the scheduled and constant feed profiles

combined with the look-ahead process, the scheduled fee-
drate curve of the proposed algorithm is generated and
shown in Fig. 24a by red line. The corresponding accelera-
tion profile is shown in Fig. 24b and c and none acceleration
limit is violated. The final motion time in the proposed algo-
rithm is 19.271 sec which is 15.3 % longer than that of the
constant feedrate motion and 41.7 % shorter than that of the
point to point motion.

The motion performance of the scheduled feedrate pro-
files are tested. The contour error profiles of real motions are
shown in Fig. 25. In addition, a detailed description of the
motion error is shown in Fig. 26. For the constant feedrate
motion, large tracking errors occur frequently since every
large acceleration output is denied by the drives. The motion
error is acceptable for the point to point motion, however the
motion efficiency is poor. For the proposed algorithm, the
error tolerance and machine performance are considered in
the feedrate planning. So a proper balance is found. On one
side, the drive performance is fully used and high feedrate is
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Fig. 25 Contour error profiles of the point to point, constant and
proposed algorithms
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Fig. 26 Detailed description of the motion error

achieved. On the other side, the motion error is controllable
by adjusting the feedrate properly. The statistical data of
this experiment are listed in Table 1. Since the use of corner
transition, the literal record of contour error of the proposed
algorithm is relative poor than the point to point algorithm.

Among all the three algorithms, the proposed algo-
rithm can achieve highest productivity while satisfying the
requirement of error tolerance. Finally, the detailed trajecto-
ries at two corner points are given in Fig. 26.

To further demonstrate the performance of the proposed
algorithm, we compare our method with that in [16, 26]. In
the compared algorithm, each path corner is blended by a
quintic Bezier curve under the corner tolerance setting. Then
based on the constructed parametric path, a jerk-limited S-
shape feedrate scheduling is applied. Here we name the
compared algorithm as Bezier-Jerk Alg for short. Then
Bezier-Acc Alg is used to represent the compared algorithm
without jerk limit.

Considering the machine setup in Fig. 21, the experiment
settings of the Bezier-Jerk Alg are: the feedrate 100 mm/s,
the acceleration 500 mm/s2, the jerk 5000 mm/s3. The
feedrate comparisons are plotted in Fig. 27. The partial
enlarged drawing of Fig. 27 shows the propose ATMS algo-
rithm and PSTM algorithm can apply to larger acceleration
than the Bezier-Acc algorithm because of the applied axial
limits not the tangential limits. Hence, the local maximum
feedrate of our algorithms reach 67.22 mm/s, which is
larger than 61.21 mm/s of the Bezier-Acc algorithm. Then
at the local corner, because of the new transition model,
the transition velocity 34.37 mm/s of the ATMS algorithm
is larger than the 23.6 mm/s of the PSTM algorithm and
the 19.79 mm/s of the Bezier-Acc algorithm. In total, the
interpolation time in the ATMS algorithm is 19.27 s, which
is 88 % of the time in Bezier-Acc algorithm and 70 % of
the time in Bezier-Jerk algorithm. Figure 28 presents the
contour error profiles of each algorithm. Because of the
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Table 1 Statistical data
of the experiment Algorithm Motion time (s) Tracking error (mm) Contour error (mm)

X axis Y axis

Max Mean Max Mean Max Mean

P2P 33.05 0.0817 0.0109 0.049 0.0124 0.0604 0.008

Constant 16.715 6.4897 0.2147 0.9874 0.0375 3.4489 0.14

Proposed 19.271 0.0890 0.0127 0.0671 0.0117 0.1654 0.0396

Fig. 27 Feedrate comparisons
of the Bezier-Jerk, Bezier-Acc,
PSTM and ATMS algorithms

Fig. 28 Contour error profiles
of the Bezier-Jerk, Bezier-Acc,
PSTM and ATMS algorithms
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Table 2 Statistical data
of a further experiment Algorithm Motion time(s) Tracking error(mm) Contour error(mm)

X axis Y axis

Max Mean Max Mean Max Mean

Bezier-Jerk Alg 27.367 0.0930 0.0131 0.0598 0.0122 0.1049 0.0144

Bezier-Acc Alg 21.776 0.1307 0.0187 0.1062 0.020 0.1246 0.0165

Our ATMS Alg 19.271 0.0890 0.0127 0.0671 0.0117 0.1654 0.0396
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corner tolerance setting, the local maximum contour errors
of all the four algorithms are comparable and our PSTM
algorithm is the best. Table 2 lists the details of these tests.

In summary, among all the four algorithms the proposed
ATMS algorithm can achieve highest productivity while the
contour error is controllable.

4.3 Test the time-optimality of the proposed algorithm

In this section, we use an example to illustrate the near
time-optimality of the proposed approach. The tool path is
an analytical curve shown in Fig. 29 with the parametric
equation:⎧⎪⎪⎨
⎪⎪⎩

x = 25
(
cos (2πas) − cos(2πbs)3

)
,

y = 25
(
sin (2πcs) − sin(2πds)3

)
,

z = −1,
a = 2, b = 1, c = 2, d = 1.

The error tolerance is set to 0.1 mm. The feedrate set-
ting of the machine is 100 mm/s. The acceleration settings
are 500 mm/s2 for x axis and 1000 mm/s2 for y axis
respectively.

The method proposed in [7] is used to compute the
time-optimal feedrate for the tool path. The tool path is dis-
cretized into 2000 segments by sampling the curve with
s = 0 : 1/2000 : 1. Then, the algorithm proposed in [7]
is used with these sample points to compute the optimal
machining time which is 3.659 s.
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Fig. 30 Feedrate curves

Then the 2000 segments are treated as G01 codes and the
method proposed in this paper is used to compute the inter-
polation points and the machining time is 3.763 s, which is
close to that given by the method in [7]. The computation
time with our algorithm is 0.94 sec in Matlab, and the fee-
drate curve computed with our method compared with the
time optimal feedrate curve is shown in Fig. 30.

5 Conclusions and further work

In this paper, a near minimum time motion planning algo-
rithm is presented for fast and accurate interpolation of lin-
ear tool paths. The discontinuous path corners are smoothed
using the proposed local corner transition model. Then the
presented global motion planning algorithm is applied to
realize the continuous minimum time motion along the
whole tool path.

Compared to the previous work, the proposed algorithm
has the following advantages: (1). It is a one-step transi-
tion trajectory generation algorithm compared with the most
studied two steps algorithms. Since the trajectories are time
parameterized, the interpolation points can be computed
easily. (2). The more reasonable axial acceleration limits
are used instead of the tangential acceleration limit. (3). A
new corner transition strategy is applied to minimize the
machining time. Finally, a NC machine with distinct axis
acceleration performances is used to test the newly pro-
posed algorithm to verify the feasibility and efficiency of
the proposed algorithm.

Future work will focus on two key issues. First, since
the acceleration jumps cannot be realized by the actual
physical actuator, limited acceleration change rate will be
investigated in the newly proposed approach. Second, more
detailed servo dynamics, such as the velocity-dependent
acceleration phenomena in the newly proposed approach
will be considered.
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