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Abstract The paper aims to present the application of wave-
let packet transformation for feature extraction from the sig-
nals acquired during friction stir welding of aluminum alloy.
One of the challenges encountered while implementing wave-
let packet transformation is the selection of an appropriate
mother wavelet function. In this study, a new method is pro-
posed for the selection of an appropriate mother wavelet func-
tion based on the ratio of energy of the signal to the entropy of
the decomposed wavelet packets. Main spindle motor and
feed motor current signals are acquired during 65 welding
experiments designed through full factorial method by vary-
ing three process parameters in four levels. Features obtained
from wavelet packet transformation along with process pa-
rameters are fed to two artificial neural network models:
multi-layer feed-forward neural network model trained with
back propagation algorithm and radial basis function neural
network model for the prediction of ultimate tensile strength
and yield strength of the welds. The prediction performance of
the former model is found to be superior to the later model for
both ultimate tensile strength and yield strength.

Keywords Friction stir welding .Weld quality monitoring .

Wavelet packet analysis . Neural networkmodeling . Strength
prediction .Mother wavelet selection

1 Introduction

The scope of recent welding industries is not limited to fabri-
cate conventional commodities using conventional processes
as different processes have been evolved for welding of dif-
ferent materials. The process of friction stir welding (FSW)
since its invention offered more flexibility to use various
difficult-to-weld materials to find its application in different
industries such as railways, automation, aviation, etc. In to-
day’s automated manufacturing environment, quality of out-
put from every sub-process added towards the final quality
index of the product in the production chain and welding is
certainly a momentous sub-process in many manufacturing
industries. As FSW found its extensive use in different indus-
trial applications, consequently, different methods are in de-
mand for precise prediction of weld quality at different
welding conditions.

Direct and indirect techniques are available for weld qual-
ity measurement. Direct methods include visual inspection
and vision sensing. Indirect techniques involve measurement
of some signals to establish correlation with the weld quality.
The process of FSW closely resembles to the forming process
[1], where different forces play influencing role to govern the
process for desired output. Forces associated with FSW pro-
cess were investigated by Boldsaikhan et al. [2] to correlate
with the weld quality. Discrete Fourier transformation was
used to analyze the force signals for detection of defects in
the weld and to develop a method for monitoring the weld
quality. Trummera et al. [3] studied the effect of clamping
force on the joint strength in FSW process. Yang et al. [4]
and Fleming et al. [5] used force signals for detection of gap
in FSW process. The effect of different process parameters in
FSW was investigated through force signals by Cavaliere
et al. [6]. Trimble et al. [7] studied the effect of different pin
profiles in the process outcome in FSW process by measuring
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force signals during the process. A combined wavelet packet
and Hilbert-Huang transform was proposed by Das et al. [8]
for monitoring of FSW process using real-time force signals.
Defect assessment along with weld strength modeling was
achieved, and it was concluded that the proposed approach
was effective in FSW process.

Apart from force signals, acoustic emission signals are also
found important in monitoring of FSW process. Subramaniam
et al. [9] investigated the effect of tool pin profile on joint
strength in FSW process through acoustic emission signal
analysis. Discrete Fourier transformation was used as a signal
processing tool for analyzing the acoustic emission signals.
Wavelet transformation was used as a signal processing tool
by Chen et al. [10] for the monitoring of FSW process.
Acoustic emission signals were recorded during experiment
and a methodology for detection of gap was proposed. Zeng
et al. [11] correlated the information contained in acoustic
emission signal to the tool wear in FSW process and investi-
gated the effect of it on the weld quality.

The aforementioned survey of available researchwork con-
veyed the message that force signals were mostly used in
monitoring of FSW process which is followed by acoustic
emission signals. In general, force is considered as one of
the most significant variables in the FSW process. But, the
limitation with this method is the cost associated with the
system for acquiring force signals. Apart from this, the signals
are often found to be corrupted with noise [4] which needs to
be filtered before presenting to the monitoring algorithm. In
case of acoustic emission signals also, chances of the signal
getting corrupted with noise pursued. In other manufacturing
processes, researchers have reported to use other signals such
as current and voltage for monitoring of the process. Pal et al.
[12] captured the current and voltage signatures of the arc
during pulsed metal inert gas welding and correlated the in-
formation to predict the weld quality. An extensive review
work by Sick [13] stated the research efforts in the field of
turning operation where different signals were measured and
analyzed for the prediction of tool wear, built-up edge forma-
tion, and surface condition of the workpiece during turning.
Tool wear measurement and classification using artificial in-
telligence in boring operation were presented by Liu et al. [14]
using the features extracted from cutting force signals.

It has been proven that current sensor is an effective sensor
for monitoring of other welding and manufacturing processes
[12, 15–18]. It is also inexpensive compared to force and
acoustic emission sensors. The chances of getting noisy signal
are less, and it can be used without altering an existing setup/
machine. Das et al. [19] reported that current signals can be
effectively implemented in monitoring of FSW process.
Current signals are analyzed in time domain, and root mean
square values of signals were computed to develop regression
models to correlate with weld quality. In FSW process, the
joint strength is the combined effect of tool rotational speed

and welding speed. Therefore, current signals of both spindle
and feed motors can be used to develop precise monitoring
method in FSW process.

In FSW process, the physics is not yet fully understood
which lead to lack in precise mathematical formulation of
the process. Other modeling technique such as finite element
modeling is also capable of predicting the strength of the joint.
But difficulty arises in the assumptions of the process made
during modeling which may not be feasible during the actual
welding process. Apart from this, data-driven models can be a
more suitable alternate to develop models for the prediction of
the weld quality. Lakshminarayanan et al. [20] considered tool
rotational speed, welding speed, and plunge force as the pro-
cess parameters to develop a multi-layer feed-forward neural
network trained with back propagation algorithm for the pre-
diction of weld joint strength in FSW process. Prediction of
hardness values of the friction stir welded joints had been
attempted by Buffa et al. [21] using artificial neural network
trained with back propagation algorithm. Shojaeefard et al.
[22] also developed neural network models for the prediction
of ultimate tensile strength (UTS) and hardness distribution in
FSW process. Similar reported works are found in [23–25].
The survey fetched the information that artificial neural net-
work models are one of the most popular methods for data-
driven modeling. Advantages with these models are no pre-
cise mathematical formulation is required for the process.

The research work presented herewith will explore the ap-
plication of wavelet packet transformation for efficacious ex-
traction of features from current signatures of main spindle
motor and feed motor as this signal processing technique of-
fers more fertility and flexibility. A new method is presented
for the selection of the best mother wavelet function by com-
puting the ratio between the energy of the signal and entropy
of the decomposed wavelet packet. Principal component anal-
ysis is the data reduction method implemented to select the
most relevant features among all the features extracted from
the signals. Selected signal features along with the process
parameters namely tool rotational speed, welding speed, and
shoulder diameter are presented to the developed neural net-
work models for the prediction of UTS and yield strength of
the joints.

2 Experimental work

AA1100 aluminum alloy pla tes wi th dimension
160 × 110 × 6 mm are friction stir welded in butt joint con-
figuration. The two plates are hold tightly together with a
specially designed fixture to avoid any mismatch or misalign-
ment during the welding process. In this study, a straight cy-
lindrical tool made of SS316 material is used for the welding
process. The shoulder diameter of the tool is varied in four
levels with the pin length and diameter fixed at 5.7 and 6 mm,
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respectively. Tensile specimens are prepared as per ASTM
E8M standard dimensions and tested in universal testing ma-
chine (Make: INSTRON, Model: 8801) at a constant cross-
head speed of 1 mm/min. The chemical properties and me-
chanical properties of base material are listed in Table 1.

Avertical milling machine is adapted to perform FSW pro-
cess [26]. The main spindle motor is rotated by a 5.5-kW
three-phase induction motor. The traversing of the tool is
achieved by a three-phase induction feed motor with a rated
power of 0.75 kW. Current signals from the main spindle
motor and feed motor are acquired using two Hall effect cur-
rent transducers. All the signals are acquired using a high-
speed data acquisition system at a sampling rate of 10 kHz.
A schematic representation of the process is shown in Fig. 1.

2.1 Procedure

In FSW process, rotational speed and welding speed are
the two most influencing process parameters [1]. Apart
from these two, the shoulder diameter of the tool also
plays a significant role in heat generation in FSW process
which is essential for better plasticization of the material

which yields better mixing for good welds [27]. Thus,
these three process parameters are considered for investi-
gation. A full factorial design method is implemented to
obtain the design matrix to carry out the experiments. All
the parameters are varied in four levels. It is obvious that
an increase in level increases the number of experimental
runs in the power of factor in full factorial design method
which increases the experimental cost. A total of 43, i.e.,
64, experimental runs are obtained in the design matrix.
All the experiments are performed randomly to reduce
bias or experimental error. Table 2 listed the experimental
runs with measured responses. One experiment (Exp. No.
33) is repeated which is chosen randomly. The objective
of repeating an experiment is to test the repeatability of
the welding process under the current welding environ-
ment. Repeated experiment would bring the effect of un-
controllable parameters during the FSW process in the
outcome of the process in terms of UTS (or yield
strength) of the joints. UTS of the repeated experiment
(Exp. No. 65) reveals a difference of 4.98 MPa than
Exp. No. 33 (refer to Table 1). This difference in the
UTS is a clear indication of the effect of some uncontrol-
lable parameters other than controllable process parame-
ters (which are the same for both the two experiments
Exp. Nos. 33 and 65) on the outcome of the process.
This finding is further strengthened by the real-time sig-
nals acquired during the welding process as discussed in
the later paragraph of this article.

Current signatures from the main spindle motor and feed
motor are acquired during the experiments. Sensor scale is set
at 10 mV = 1 A for the acquisition of the main spindle motor
current signal and 100 mV = 1 A for the acquisition of feed

Table 1 Mechanical properties and chemical composition of AA1100

Mechanical properties Chemical composition (weight %)

Al, 99.3

UTS (MPa) = 119.8 Si, 0.2

Yield strength (MPa) = 106 Zn, 0.2

Percentage elongation, 17.1 Fe, 0.2

Cu, 0.1

Fig. 1 a Schematic representation of the process. b Setup used for the welding experiment
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Table 2 Design matrix with
responses Exp. no. Process parameters UTS (MPa) Yield strength (MPa)

Rotational speed
(rev/min)

Welding speed
(mm/min)

Shoulder
diameter (mm)

1 600 36 16 94.05 54.32

2 600 36 20 85.87 46.45

3 600 36 24 78.56 43.47

4 600 36 28 65.69 43.10

5 600 63 16 88.42 59.30

6 600 63 20 84.64 43.87

7 600 63 24 88.12 43.85

8 600 63 28 71.88 43.37

9 600 98 16 82.45 63.43

10 600 98 20 85.24 46.04

11 600 98 24 73.60 46.16

12 600 98 28 67.55 40.51

13 600 132 16 95.89 55.58

14 600 132 20 81.89 45.97

15 600 132 24 81.95 44.03

16 600 132 28 84.09 43.23

17 815 36 16 92.00 50.93

18 815 36 20 77.34 48.11

19 815 36 24 85.48 48.18

20 815 36 28 80.33 46.36

21 815 63 16 94.63 53.51

22 815 63 20 78.22 48.56

23 815 63 24 83.13 54.25

24 815 63 28 78.48 42.39

25 815 98 16 73.87 57.23

26 815 98 20 77.90 48.93

27 815 98 24 87.86 42.29

28 815 98 28 65.74 45.24

29 815 132 16 88.05 59.85

30 815 132 20 75.15 49.14

31 815 132 24 92.62 48.19

32 815 132 28 77.83 46.95

33 1100 36 16 74.54 55.11

34 1100 36 20 83.45 44.86

35 1100 36 24 76.30 49.87

36 1100 36 28 51.15 36.79

37 1100 63 16 91.86 51.2

38 1100 63 20 82.69 43.07

39 1100 63 24 89.91 45.98

40 1100 63 28 76.12 43.5

41 1100 98 16 81.41 52.81

42 1100 98 20 77.86 41.27

43 1100 98 24 75.35 45.86

44 1100 98 28 79.28 45.98

45 1100 132 16 95.95 55.35

46 1100 132 20 77.55 48.07

47 1100 132 24 63.91 44.06

714 Int J Adv Manuf Technol (2017) 89:711–725



motor current signal. Magnified view of the current signals
from the main spindle motor and feed motor acquired during
Exp. No. 33 and Exp. No. 65 is shown in Fig. 2. It is to note
that these two experiments are carried out under the same
setting of process parameter, although a difference in magni-
tude of these signals confirms the process variability under the
same operating condition. Moreover, UTS and yield strength
of the joints from these two experiments also have a consid-
erable difference (refer to Table 2). This provides salient in-
formation that any prediction mechanism based only on pro-
cess parameters may not yield satisfactory results. The change
in the signals is a clear indication that signals are carrying
some valuable information regarding the process.

2.2 Observations

The variation of UTS and yield strength with the process
parameters is investigated keeping two parameters fixed at
a time. Figure 3a shows the variation of UTS with rota-
tional speed of the tool. It is observed that with the in-
crease in the rotational speed, UTS values increase up to a
certain speed and decrease further. A similar trend in the
UTS values is also observed with shoulder diameter
(Fig. 3c). But, with the welding speed (shown in
Fig. 3b), similar conclusive remarks cannot be drawn. In
FSW process, the rotational speed of the tool is mainly
responsible for the generation of heat for plasticization of

Table 2 (continued)
Exp. no. Process parameters UTS (MPa) Yield strength (MPa)

Rotational speed
(rev/min)

Welding speed
(mm/min)

Shoulder
diameter (mm)

48 1100 132 28 77.86 41.26

49 1500 36 16 88.42 47.95

50 1500 36 20 64.95 49.77

51 1500 36 24 92.22 54.46

52 1500 36 28 81.08 36.91

53 1500 63 16 92.59 53.72

54 1500 63 20 81.65 41.26

55 1500 63 24 88.92 44.39

56 1500 63 28 68.57 40.63

57 1500 98 16 71.38 60.13

58 1500 98 20 77.17 43.07

59 1500 98 24 87.12 45.37

60 1500 98 28 81.81 38.46

61 1500 132 16 80.29 59.72

62 1500 132 20 83.93 48.09

63 1500 132 24 59.12 43.88

64 1500 132 28 83.64 42.68

65a 1100 36 16 69.56 56.44

a Repeated experiment for Exp. No. 33

Fig. 2 Magnified view of a the main spindle motor current signal b feed motor current signal
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the material. Also, the frictional heat generation improves
with increase of shoulder diameter. With the increase in
these two parameters, heat input to the material increases,
resulting in high temperature and high strain rates due to
severe mixing of the materials. This may result in grain

growth in the material structure which deteriorates the
strength of the joints [28]. This is evident from Fig. 3a,
c, which demonstrates the case of weld quality deteriora-
tion with increase in tool rotational speed and shoulder
diameter, respectively. The variation of yield strength with

Fig. 3 Variation of UTS with a
rotational speed, bwelding speed,
and c shoulder diameter

Fig. 4 Variation of yield strength
with a rotational speed, bwelding
speed, and c shoulder diameter
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the process parameters is depicted in Fig. 4. Like UTS,
the yield strength of the joints does not seem to follow
any distinctive trend with the process parameters except
with the rotational speed of the tool. Here, with the in-
crease in the rotational speed of the tool, yield strength
values follow a decreasing trend up to a certain speed and
dramatically increase as the speed increases. Increase in
the welding speed of the tool has no effects on the trend
and is obvious from Fig. 4b. Similar trends in the varia-
tion of these mechanical properties of the joint are also
found in literature [29, 30].

3 Wavelet transform as a tool for signal analysis

Fourier transformation (FT) is the most widely used tech-
nique for processing of signals. The limitation with FT is
that it only retrieves global frequency content of the sig-
nal, thus is not suitable for non-stationary signals. On the
other hand, wavelet analysis has been proven to be a more
flexible and robust method for processing of non-
stationary signals due to the characteristics of the wavelet
basis function as irregular, asymmetric, and of finite time
length [31]. Wavelet transform (WT) of a signal is a func-
tion of two parameters namely time and scale, the latter
being a key point of the WT. Moreover, WT works with a
scaled window, allowing more freedom in the visibility of
the entire frequency content, unlike the windowed FT
which suffers from limited window size.

Wavelet packet analysis is a generalization of wavelet
transformation that offers a richer range of possibilities
for signal analysis. In wavelet packet analysis, a signal is
split into two parts: approximation and detail. The ap-
proximation and detail are both again split into second-
level approximation and detail, and the process is repeat-
ed to the desired number of level of decomposition.
Wavelet packets are particular linear combinations of
wavelets. They form the bases that retain the orthogonal-
ity, smoothness, and location properties of their parent
wavelets [32]. Wavelet packet atoms are waveforms
indexed by three naturally interpreted parameters: posi-
tion, scale, and frequency. In the orthogonal wavelet de-
composition procedure, the generic steps split the ap-
proximation coefficients into two parts. After splitting a
vector of approximation coefficients and a vector of de-
tail coefficients, both at a coarser scale, the information
lost between two successive approximations is captured
in the detail coefficients. Then, the next step consists of
splitting the new approximation coefficient vector; suc-
cessive details are never reanalyzed. In the corresponding
wavelet packet situation, each detail coefficient vector is
also decomposed into two parts using the same approach
as in approximation vector splitting.

In wavelet packet analysis, a signal x(t) can be represented
as the sum of orthogonal wavelet packet function Wp , k , l at
different scales, oscillations, and localizations.

x tð Þ ¼
X
p

X
k

X
l

Cp;k;lWp;k;l tð Þ ð1Þ

where Cp , k , l is the wavelet packet coefficients, which can be
obtained by the following equation:

Cp;k;l ¼
Zþ∞

−∞

x tð ÞWp;k;l tð Þdt ð2Þ

and Wp , k , l generated from the base function

Wp;k;l tð Þ ¼ 2
p

.
2
Wk 2pt−1ð Þ ð3Þ

where indices p, k, and i are the scale, oscillation, and the time
l o c a l i z a t i o n p a r a m e t e r s , r e s p e c t i v e l y
([(p, l) ϵ Z2 and k=0, 1, 2,……2p − 1]). In general, wavelet
functions are defined by

W2k tð Þ ¼ 2
1

.
2X

l

hlWk 2t−lð Þ ð4Þ

W2kþ1 tð Þ ¼ 2
1

.
2X

l

glWk 2t−lð Þ ð5Þ

where hl and gl are the low pass and high pass filters.
W0(t) =ϕ(t) is the scaling function and W1(t) =ψ(t) is the
wavelet function, respectively. The discrete filters hl and
gl are quadrature mirror filters associated with scaling
function and wavelet function, respectively.

Although wavelet transform offers richness in the field
of signal processing, it too suffers from few operating
limitations. First is the selection of optimal level for de-
composition, and second is the selection of proper mother
wavelet function for the decomposition of the signals. The
published literature shows that mostly, researchers chose
the mother wavelet functions either based on previous
experience or randomly [33–40]. Therefore, in this study,
an attempt has been made to formulate a method for se-
lection of an appropriate mother wavelet function as de-
scribed in section 3.2.

3.1 Method for finding optimum level of decomposition

In this research, wavelet packet analysis is performed by
using MATLAB R2013b built-in functions. A schematic
of wavelet packet tree up to the second-level decomposi-
tion is shown in Fig. 5 where node W00 represents the
original signal and W20 to W23 represent the four
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frequency bands obtained after the second level of decom-
position. The decomposition can be continued down to
the final level where only one element remains in each
basis vector. The maximum possible level in case of bi-
nary wavelet decomposition is given by

j≥ log2N ð6Þ
where N is the sampling frequency of the analyzed signal
and j is the decomposition level. So, for the present case,
j ≥ 14 since sampling frequency of the signals is 10 kHz.
Since this number is very high, the computational time
required will be very high to decompose up to this level
which is not favorable for any monitoring system.

There are many methods available for the selection of
optimum level of decomposition like best on desired fre-
quency band(s), viewing the decomposition signals at dif-
ferent levels, and minimum entropy energy criterion. In
this research, minimum entropy energy criterion is used to
obtain the best decomposition level. According to entropy
criterion, a splitting is only of interest if the entropy of the
parent packet is more than the total of the child packets.
For computing the entropy values of each packet in the
wavelet packet tree, the Shannon entropy method is used.
Shannon entropy of a signal S can be computed by the
following equation:

E Sð Þ ¼ −
XN
k¼1

Sk2log Sk2
� � ð7Þ

where E (S) is the Shannon entropy of the signal S and Sk
is the kth value of the signal. The entropies of all the
packets at different levels are calculated using the
abovementioned equation. If the entropy value at node
W20 is more than the total entropy of nodes W30 and
W31, then only the splitting would be interesting and de-
composition is preceded. Otherwise, not that level can be
treated as optimum level of decomposition. In this work,
for the main spindle motor current signal, optimum level
of decomposition is found to be 6 and that for feed motor
current signal is 7.

3.2 Method for finding the best mother wavelet function

In the family of wavelet, there are many wavelet functions
available like Haar, Daubechies, Symlet, Coiflet, etc. known
asmother wavelet functions. All these functions have different
characteristics and to analyze any signal, specific selection of
mother wavelet needs to be made for effective extraction of
useful features from the signals. However, the selection of
mother wavelet functions also affects the extracted features.
In this study, a new method is proposed to obtain the suitable
mother wavelet. The method proposed is based on a ratio of
energy of the signal to the entropy of different wavelet packets
as expressed in Eq. (8).

Ratioi ¼ E
En

� �
i

ð8Þ

Where i represents the family of the wavelet functions se-
lected for the analysis, E represents the energy of the original
signal, and En represents the entropy of the decomposed
wavelet packets using the selected mother wavelet functions.
For obtaining the entropy of the wavelet packet, the Shannon
entropy criterion as expressed in Eq. 7 is chosen in the present
study.

Energy of a signal represents the information carried by the
signal. Entropy of the decomposed wavelet packets at a par-
ticular level of decomposition reflects the amount of disorder
in the signal which can be viewed as a measure of uncertainty
regarding the information contained in the signal. Hence,
wavelet function which fetches lower entropy values at select-
ed level of decomposition should be preferred. The proposed
ratio will represent the process information retained by signals
as it deals with the original signal information in terms of
energy and minimum entropy which reflects the uncertainty
in the original signal. For the selection of suitable mother
wavelet function, the one with high ratio should be consid-
ered. Here, for both the main spindle motor and feed motor
current signal, this ratio is calculated using 44 different mother
wavelet functions for each signal. The mother wavelet func-
tion with the maximum ratio of energy to entropy is

Fig. 5 Wavelet tree after the
second level of decomposition
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considered as the best mother wavelet. All the acquired signals
against each experiment are tested using the proposed method
for finding the appropriate mother wavelet function. Figure 6
represents the ratio of different wavelet functions for the main
spindle motor and feed motor current signal against Exp. No.
45 which is the case of maximum UTS value. From the anal-
ysis, it is found that symlet19 and db20 are the best mother
wavelets for the main spindle motor and feed motor current
signals, respectively.

The result obtained using the proposed method is com-
pared with two existing methods namely root mean square
difference (RMSD) between the original signal and the recon-
structed signal from the wavelet packet tree [32] and correla-
tion coefficient between the wavelet packet coefficients and
monitored quantity [31]. The wavelet with the least RMSD
and high correlation coefficient among the considered wavelet
functions is considered as the best mother wavelet. Figure 7
shows the RMSD of the main spindle motor and feed motor
current signal, respectively. Interestingly, this analysis also
provides the same result as symlet19 and db20 to be the best
mother wavelets for the main spindle and feed motor current
signals, respectively. Figure 8 represents the results of the
method based on correlation coefficient between the average
RMS values of the wavelet coefficients and UTS of the joints.

The two methods selected for the comparison of the results
from the proposed method although give the same results but
suffer from few limitations. The method based on RMSD [32]
of the original and the reconstructed signal is actually
performing a noise reduction in the original signal. Once the
original signal is decomposed, it is filtered through the wave-
let filters. Here, the chances of losing valuable process infor-
mation are high. It is suggested that the mother wavelet func-
tion which gives the least RMSD is suitable for decomposi-
tion. But it does not guarantee that the selectedmother wavelet
function can effectively extract the signal information which
contains the valuable information of process variations. The

selected mother wavelet can be a better candidate for noise
elimination from the original signal.

The other method used for the comparison suggests finding
a correlation coefficient [31] between the average root mean
square values of the wavelet packets with the parameter that is
monitored using the signal information. Here, the value of the
parameter monitored depends on the accuracy of the measure-
ment procedure adapted. This is not suitable for approaches
which concentration is to extract information contained in a
signal. The selection from this approach depends on the accu-
racy of measurement of the parameter being monitored and
can be hindered due tomany external factors. Hence, selection
of mother wavelet based on this approach may contain redun-
dancy in the information extracted from signal. On the other
hand, the proposed method based on the ration of the energy
of the original signal to the entropy of the decomposed wave-
let packet does not suffer from the abovementioned limita-
tions. It purely depends on signal information which can de-
tect characteristics of the process being monitored with sig-
nals. Thus, the proposed method can be a suitable alternate
approach for the selection of mother wavelet function for ef-
fective decomposition of signals.

Mother wavelet function in wavelet analysis bears different
characteristics which will affect the decomposition process.
Thus, it is essential to precisely select the wavelet function
in order to obtain a suitable decomposition. The decomposed
wavelet packets at a particular level of decomposition carry
the information retained by original signal. Hence, first, the
optimum level needs to be selected. In this study, the Shannon
entropy criterion is used for this purpose. Once the optimum
level is found, each signal is decomposed to the optimum level
of decomposition with different mother wavelet functions and
the ratio against each signal is computed using Eq. 8. This is
repeated for each acquired signal and an array consisting of
ratios for each signal is obtained for each mother wavelet
function. From this array, the mother wavelet function which

Fig. 6 Variation of computed ratio with mother wavelets for the main spindle motor current signal and feed motor current signal
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yield maximum ratio is considered as the best mother wavelet.
Then, the signals are decomposed to the optimum level using
the best mother wavelet function. For the present study,
Symlet 19 and Daubechies 20 are the best mother wavelet
functions obtained for the main spindle motor current signal
and feed motor current signal respectively.

4 Effective selection of signal features

Wavelet packet coefficients are extracted using the wavelet
packet analysis for each signal and a list is obtained containing
the signal features. From the wavelet packet analysis, a total of
192 (64 for the main spindle motor current and 128 for feed
motor current) features are obtained. But it is very difficult to
handle such a large number of features and it is not essential
too, that all these features would be equally effective for
modeling the weld quality. Moreover, multiple features may
contain same information. To extract the most appropriate
features for both the signals, data reduction method is essen-
tial. In this research, principal component analysis (PCA) is
chosen as data reduction technique and to find out most eligi-
ble features from the available 192 features.

Principal component analysis (PCA) is mathematically de-
fined [41] as an orthogonal linear transformation that trans-
forms a number of (possibly) correlated variables into a
(smaller) number of uncorrelated variables called principal

components. The first principal component accounts for the
greatest statistical variability and second greatest variance rep-
resented by the second component respectively and so on.
PCA is theoretically the representation of the optimum trans-
form for the given data in least square terms. The idea of PCA
lies in calculating the eigenvectors and eigenvalues of the
covariance matrix of the data and is efficiently calculated by
singular value decomposition. These eigenvectors describe an
orthonormal basis that is effectively a rotation of the original
Cartesian basis. Each principal component is a linear combi-
nation of the original variables. All the principal components
are orthogonal to each other, so there is no redundant infor-
mation. The principal components as a whole form an orthog-
onal basis for the space of the data [42].

The percentage variability explained by the first ten com-
ponents for the main spindle motor and feed motor current
signals are shown in Fig. 9. It is observed that, in case of main
spindle motor current signal features, first five components
account for the 99.87 % variability of the entire data set
whereas the percentage variability of the rest of the dataset is
only 0.13 %. So, first five components are chosen as the fea-
tures for the case of main spindle motor current signal. In case
of feed motor current signal, out of first 14 components, first
four components represent 99.81 % of total variability leaving
the rest for the other components. Thus, first four components
are judged to be effective feature space to represent the infor-
mation contained in the feed motor current signal and are

Fig. 7 Variation of computed root mean square difference values withmother wavelet functions for the main spindle motor current signal and feedmotor
current signal

Fig. 8 Variation of correlation coefficient with mother wavelet functions for the main spindle motor current signal and feed motor current signal
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treated as the features for further analysis. Thus, a total of nine
signal features are extracted from the main spindle motor and
feed motor current signals for further analysis.

5 Artificial neural network model

The details of the ANN modeling are well documented in the
literature and interested reader can refer to the technical article
[41]. In the presented research work, two types of neural net-
works are developed for modeling of UTS and yield strength
of the welds. One is the standard multi-layer neural network
(MLNN) with back propagation training algorithm, common-
ly known as back propagation neural network (BPNN) and the
other one is radial basis function neural network. In this work,
out of 65 data sets, 48 are used as training, 10 are used as
validation, and remaining 7 are used as the testing data sets.

The data sets are chosen randomly. The input space of the
developed models contain 12 inputs among which three are
process parameters and rest nine are the extracted signal
features.

5.1 Weld quality modeling using back propagation neural
network

Two BPNN models are developed for the prediction of UTS
and yield strength of the welded joints. The developed BPNN
models in this study contain single hidden layer, in which the
number of hidden neurons are varied in between 5 to 39 in
steps of 1. Learning rate (η) and momentum coefficient (α) for
weight updation are varied in between 0.1 to 1 and 0.01 to 1 in
steps of 0.04, respectively. Initial weight values are chosen
randomly between ±0.9 and the bias values at the output layer
is taken as 0 and that for input and hidden layers as 1.0. All the
inputs and output variables are normalized between 0.1 and
0.9 which ensures that the back propagation algorithm does
not drive some of the connection weights to infinity and thus
slow down the training [42]. The activation functions for both
the hidden and output layer neurons are log-sigmoid. The
optimum number of hidden neuron is selected based on the
minimum of the sum of training and validation MSE.

The variation of MSE with the number of hidden neurons
in case of BPNN model for the UTS is shown in Fig. 10a. It
can be seen that against hidden neuron number 19 minimum
MSE is observed. Thus, 19 numbers of hidden neurons are
considered as the optimal number for modeling of UTS. With
this optimum number of hidden neurons, optimum learning
rate and momentum coefficients are obtained. The variation of

Fig. 9 Percentage contribution of principle components for wavelet
packet features of the main spindle motor and feed motor current signals

Fig. 10 Variation of MSE of
BPNN model for UTS with a
number of hidden neurons, b
learning rate, and c momentum
coefficient
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MSE with learning rate and momentum coefficient is shown
in Fig. 10b, c, respectively. From these two figures, optimum
learning rate and momentum coefficient are found out to be
0.62 and 0.53, respectively. Thus, the optimum network struc-
ture of the developed BPNN model for UTS comes out to be
12-19-1 with η = 0.62 and α = 0.53. Similar procedure has
been applied to find the optimum network structure and pa-
rameters for yield strength prediction. OptimumBPNNmodel
for yield strength is found to be 12-21-1 with η = 0.62 and
α = 0.61. The comparison of predicted UTS and yield strength
with actual UTS and yield strength is shown as scatter plot in
Fig. 11a–b, respectively. Prediction statistics for UTS and
yield strength is tabulated in Tables 3 and 4, respectively.
Absolute average percentage error for the testing cases for
UTS and yield strength are 5.87 and 4.93, respectively.
These results (Fig. 11 and Tables 3 and 4) indicate that
BPNN model can be effectively used for prediction of UTS
and yield strength.

5.2 Weld quality modeling using radial basis function
neural network

To compare the prediction performance of BPNN model, one
more neural network model is developed known as radial

basis function neural network (RBFNN). In the current study,
the Gaussian function is used as radial basis function and the
activation function for the output neurons are chosen as sig-
moid function. Initial centers and spread of the Gaussian func-
tion are chosen randomly and updated through supervised
learning scheme. The details of supervise learning algorithm
for RBFNN can be found elsewhere [43]. In finding the opti-
mal network parameters for this model, different combina-
tions of number of hidden neurons, learning rate for weight
updation, center updation, and the Gaussian function spread
updation are tried and based on the minimum of sum of train-
ing and validation, MSE criterion optimum parameters are
obtained. Two different RBFNN models are developed like
in BPNN, for modeling of UTS and yield strength. Numbers
of hidden neurons are varied in between 5 to 40 in steps of 1.
Learning rate for updating weights is varied in between 0.1 to
1 in steps of 0.04. Learning rate for center and spread updation
is varied in between 0.01 to 1 in steps of 0.4.

The variation of MSE with number of hidden neurons,
learning rate for weight, and center and spread updation is
shown in Fig. 12a–d for the modeling of UTS. Based on
the minimum MSE criterion, optimum number of hidden
neurons for UTS prediction is found to be 15 and for yield
strength prediction 18, respectively. The optimal network

Fig. 11 Scatter diagram for
BPNN model for a UTS
prediction and b yield strength
prediction

Table 3 Comparison between BPNN and RBFNN predicted outputs
for testing cases for UTS

Exp.
no.

Actual UTS
(MPa)

BPNN model RBFNN model

Predicted UTS
(MPa)

% error Predicted UTS
(MPa)

% error

39 89.91 91.94 −2.25 74.76 16.84

59 87.12 86.99 0.14 61.77 29.09

2 85.87 71.99 16.16 75.71 11.83

29 88.05 101.51 −15.28 77.15 12.37

27 87.86 91.67 −4.33 78.95 10.13

55 88.92 90.13 −1.32 57.55 35.27

49 88.42 89.87 −1.64 72.45 18.05

Absolute average percentage error 5.87 19.08

Table 4 Comparison between BPNN and RBFNN predicted outputs
for testing cases for yield strength

Exp.
no.

Actual yield
strength
(MPa)

BPNN model RBFNN model

Predicted yield
strength (MPa)

% error Predicted yield
strength (MPa)

% error

39 45.98 40.93 10.97 41.81 9.06

56 40.63 39.80 2.02 37.91 6.69

2 46.45 45.40 2.24 43.19 7.01

30 49.14 52.25 −6.34 48.88 0.52

18 48.11 44.96 6.53 42.24 12.18

60 38.46 38.32 0.35 39.18 −1.88
52 36.91 34.66 6.07 38.06 −3.12

Absolute average percentage error 4.93 5.78
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structure for UTS modeling is found to be 12-15-1 with
0.9, 0.05 and 0.05 to be the optimum learning rates for
weight and center and spread updation, respectively. For
the prediction of yield strength, 12-18-1 with 0.9, 0.05,
and 0.05 are found to be the optimum learning rates for
weight and center and spread updation, respectively.
Scatter plots for the comparison of predicted versus actual
values of UTS and yield strength are shown in Fig. 13a–b.
It is observed from the figures that RBFNN prediction of
UTS is inferior as compared to yield strength prediction.
Average absolute prediction error for the testing cases for
UTS and yield strength are 19.08 and 5.78 %, respective-
ly. It can be seen that RBFNN prediction is also better for
yield strength than UTS of the joints. However, the pre-
diction performance of RBFNN model is inferior to that
of BPNN model for both the UTS and yield strength.

The research output of the proposed work demonstrates an
avenue to implement real-time monitoring of weld quality in
FSW process. Once the model is trained and tested, the same
can be used to predict weld quality for any unknown condition
and process variation by feeding process parameter and mo-
tors signals. The proposed technique is simple but reasonably
accurate, and it can be implemented without changing the
existing setup. This approach can be a better alternative to
the existing methods currently being practiced for the qualita-
tive assessment of welded joints.

6 Conclusions

Application of wavelet packet analysis for efficacious extrac-
tion of features from current signals from main spindle and

Fig. 12 Variation of MSE for
RBFNN model for UTS with a
number of hidden neurons, b
learning rate for weight updation,
c learning rate for center updation,
and d learning rate for spread
updation

Fig. 13 Scatter diagram for
RBFNN model for a UTS
prediction and b yield strength
prediction
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feed motor are presented. A new method for selecting the best
mother wavelet is presented and compared with two existing
methods. This new method computes the ratio between the
energy and entropy of the signal. The results of the proposed
method are found to be in exact agreement with the results of
the existingmethod. Themother wavelet function correspond-
ing to the maximum ratio value is chosen to be the best among
44 different wavelet functions considered in this study. For the
selection of suitable level of decomposition, the Shannon en-
tropy criterion is used. For the main spindle motor current
analysis, symlet19 is found to be the suitable mother wavelet
function with an optimum level of decomposition of 6.
Whereas, for feed motor current, db20 is the suitable mother
wavelet function with 7 being the optimum level of decompo-
sition. Using wavelet packet analysis, a total of 192 features
are computed and it is reduced to 9 most effective features
using principle component analysis. The selected relevant fea-
tures along with tool rotational speed, welding speed, and
shoulder diameter are fed to two developed neural network
models: multi-layer feed-forward neural network trained with
back propagation algorithm and radial basis function neural
network for the prediction of ultimate tensile strength and
yield strength. Both the developed models achieve a better
prediction in case of yield strength than modeling of ultimate
tensile strength of the joints. However, among these two
models, accuracy of BPNN model is found to be better than
RBFNN for prediction of both ultimate tensile strength and
yield strength.
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