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Abstract This paper presents the multi-objective opti-
mization problem (MOP) of minimizing collation delays
and the makespan in mail-order pharmacy automation
(MOPA) systems. MOPA is a high-throughput make-
to-order (MTO) manufacturing system designed to han-
dle thousands of prescription orders every day. Prescrip-
tion orders are highly customized, and most of them
consist of multiple medications that need to be col-
lated before packaging and shipping. The completion
time difference between the first and the last medica-
tions within the same order is defined as the order
collation delay. This research mainly investigates the
effects of machine flexibility and the proportion of multi-
medication orders on the total collation delays. To solve
this NP-hard problem, a genetic algorithm with a min-max
Pareto objective function is used. The GA performance
is compared to two industry heuristics: the longest pro-
cessing time (LPT) and the least total workload (LTW).
Experimental results indicate that a fully dedicated machine
environment has 80 % more total collation delays as com-
pared to a fully flexible machine environment and 25 %
more total collation delays as compared to a multi-purpose
machine environment. Experimental results also indicate
that the GA can achieve the optimal makespan in most
cases, while minimizing the total collation delays by 96 %
when compared to LPT and LTW.
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1 Introduction

As customer expectations for faster delivery and higher cus-
tomization of products grow, many companies are changing
their production strategy from make-to-stock (MTS) to
make-to-order (MTO) [19]. MTO is the manufacturing sys-
tem where all functions within the enterprise, from sales
to product delivery, are triggered by the receipt of the cus-
tomer order [16]. AlthoughMTO systems provide high level
of product customization and maintain continuous customer
involvement, they are usually characterized by long lead
times [6]. Several research streams have addressed prod-
uct lead time minimization, in particular the manufacturing
lead time, from different perspectives to optimize related
processes and factors [25]. This research studies the order
collation process, which significantly affects the throughput
and the lead time of the MTO system.

Orders collation refers to the process where items within
the same order are combined before packaging and ship-
ping. Orders are usually associated with multiple items, and
these items may be processed on different machines. When
the first item is processed, it is usually sent to a collation
process or a station where it awaits the remaining jobs from
the same order. The design of the collation process or sta-
tion depends mainly on the manufacturing environment and
the material handling system used. The completion time
difference between the first and the last item within the
same order is defined as the order collation delay. Gener-
ally, large collation delays contribute to a reduced system
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throughput, and may cause deadlocks to the material han-
dling system. However, considering collation delays as a
sole objective may contribute into a larger makespan. There-
fore, both objectives must be considered in this scheduling
problem.

This type of scheduling problems is formally defined
in the literature as the order scheduling problem [10]. An
order can be described as a set of jobs that is requested
from one customer. Jobs within one order all have to be
processed before the order can be packaged and shipped.
In this type of scheduling model, the completion time of
orders needs to be considered as a performance measure
rather than the completion time of jobs [10]. This is related
to the fact that higher costs are incurred if the order compo-
nents are delivered separately. The order scheduling model
can be found in many industrial applications other than
MTO systems. Examples on applications include assemble-
to-order (ATO) systems [23] and auto repair shops [27]. The
problem studied in this research is motivated by a mail-
order pharmacy automation (MOPA) system, which is a
MTO high-throughput manufacturing system designed to
handle thousands of prescription orders every day. Prescrip-
tion orders received are highly customized and most of them
contain more than one medication. For a multi-medication
prescription order, the first dispensed medication is sent to a
waiting station (collation loop), where it waits for the other
medications within the same order to be dispensed. There
are two main components in MOPA systems. The first com-
ponent is the auto-dispenser, which is an electro-mechanical
device that stores, counts, and dispenses medications. Each
dispenser is assigned one type of medication, and cannot be
used for other medications due to patient safety concerns.
The second component is the robotic dispensing system
(RDS) which contains up to 80 dispensers and utilizes a
robotic arm to hold the vial while the medication is being
dispensed. A high-throughput MOPA system consists of
several RDS units that can produce thousands of prescrip-
tions daily. In this research, we have considered the RDS
units as parallel machines.

The machine environment in order scheduling models
can be fully dedicated, which implies that each machine
is only capable of processing one type of job, or flexible,
which indicates that machines can process more than one
type of job [10]. Flexible machines can either be fully flex-
ible, which means they are capable of processing all types
of jobs, or multi-purpose, which implies they are only capa-
ble of processing a specific subset of jobs. It is evident that
the multi-purpose case lies between the fully flexible and
the fully dedicated cases. Each job in this system can only
be processed on specific set of eligible machines, which
is called the job’s processing set [8]. Due to these assign-
ment restrictions, it is expected that this environment’s

performance will be less efficient than the fully flexible
environment in terms of collation delays and the makespan.
This research will study the effect of process flexibility on
both the makespan and the total collation delays.

Previous research on the order scheduling model in
MOPA systems has considered the RDS units to be fully
flexible [13–15, 17]. However, because the RDS units are
only capable of processing specific medications accord-
ing to the auto-dispensers assigned to them, this problem
becomes a multi-purpose machines scheduling problem.
This paper will study the effect of the machine process-
ing flexibility on both the makespan and the total collation
delays. A classical optimization approach based on the min-
max Pareto solution is used to combine both objectives into
a single one, and a genetic algorithm is used to solve it.
Results were compared to two heuristics: the longest pro-
cessing time (LPT) and the least total workload (LTW).
The remainder of this paper is organized as follows: Litera-
ture review is presented in Section 2; Methodology used to
approach this MOP is illustrated in Section 3; Experimental
results are discussed in Section 4; followed by conclusions
and future work in Section 5.

2 Literature review

The order scheduling problem was first introduced by Julien
andMagazine (1990) [7]. This type of problem can be found
in many industry applications such as MTO manufacturing
companies [7], pharmaceutical companies [7], automotive
repair shops [27], and the multi-site order scheduling prob-
lems (MSOS) [5]. All these applications are similar in how
jobs arrive in the system; however, they can be differenti-
ated by the amount of flexibility their machines have. In
this paper, we have expanded the classification found in the
literature of the order scheduling problem [10] as shown
in Fig. 1. This problem can be classified according to the
machines processing flexibility to fully dedicated, where
machines are only capable of processing one type of jobs,
and flexible, where machines can process more than one
type of jobs. Flexible machines can either be fully flexible,
which makes them capable of processing all types of jobs,
or multi-purpose, which makes them capable of processing
a specific subset of jobs. In the real world, where process-
ing restrictions and constraints are involved [18], it is more
likely that the machine environment will follow the gen-
eral multi-purpose case rather than the fully dedicated or the
fully flexible cases.

Order scheduling with fully dedicated machines is con-
sidered the least complicated, because jobs assignment
to machines is more restricted [26]. Problems with such
characteristics have received considerable attention in the
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Fig. 1 Classification of the
order scheduling problem on
parallel machines

literature. It was proven that this problem is NP-hard when
minimizing total completion times given that the number
of machines m ≥ 3 [9]. Therefore, several heuristics have
been proposed to solve this problem [9, 12, 24]. It was
shown that the weighted earliest completion time (WECT)
is the most recommended rule for industry use, because it
is simple to implement, produces good results, and requires
a small amount of memory [12]. For the fully flexible case,
it was proven that this problem is NP-hard given that the
number of machines m ≥ 2 [11]. Generally, heuristics
integrated with the shortest processing time (SPT) dispatch-
ing rule are known to yield better results [2]. For the fully
flexible machine environment, weighted shortest total pro-
cessing time (WSTP)-based heuristics outperformed other
heuristics in terms of solution quality and speed [12].

While order scheduling in fully dedicated and fully flex-
ible machine environments has been studied extensively in
the literature [12], the general case has not received much
attention [10]. Multi-purpose parallel machine scheduling in
general has been addressed under different names, such as
“scheduling with processing sets” or “scheduling with eligi-
bility constraints” [8]. Some authors prefer to use unrelated
machines approach through setting the processing speed
of ineligible machines very small. In this type of schedul-
ing problems, each job has a predefined set of eligible
machines called the job’s processing set. The most general
case of the multi-purpose machine scheduling problem is
when the processing sets are arbitrary, which implies that
each job processing set Mj can be an arbitrary subset of
M , which is the set of all machines. This case is com-
mon when products with special characteristics are assigned
to specific machines. Heuristics developed for solving the
multi-purpose machine scheduling problem are usually the
combination of two well-known dispatching rules: (i) least
flexible job (LFJ) and (ii) least flexible machine (LFM)

[18]. The effect of machine processing flexibility on the
makespan of the system has been studied in [21]. They
have shown that a small amount of processing flexibility is
enough to achieve the performance of the identical paral-
lel machines. They have also compared several heuristics
and shown that the least average workload (LAW) and the
least total workload (LTW) provide better results than other
heuristics, such as the LPT. The order scheduling problem
on multi-purpose machines has been studied in [26], where
total completion time of orders has been considered as an
objective function. Lower bound for the objective function
was developed when the type splitting property is included,
and several heuristics were proposed.

Multi-objective optimization has been receiving consid-
erable attention in the literature in the past years [3]. This
is related to the fact that solutions in real-world problems
are evaluated based on multiple objectives. A few papers
in the literature have addressed the multi-objective order
scheduling problem. A non-dominated sorting algorithm-
II (NSGA-II) was employed to solve a MSOS problem
with three objective functions to minimize total tardiness,
throughput time, and idle time; experimental results showed
that the proposed model provided superior solutions com-
pared to current industrial solutions [5]. The problem of
minimizing collation delays in MOPA systems has been
introduced in [13]. It was shown that this parameter signif-
icantly affects the throughput of the MOPA system, and it
should be minimized when scheduling prescription orders
[14]. An adaptive parallel tabu search (APTS) algorithm
was proposed to solve this problem using the ε-constraint
approach. The proposed algorithm outperformed the longest
processing time (LPT) rule by 90–99 % and tabu search by
13–33 % in terms of collation delays [15]. This problem
has been also studied in [17]. An NSGA-II was used and
compared to other heuristics such as the vector evaluated
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genetic algorithm (VEGA) and the multi-objective genetic
algorithm (MOGA). It was shown that NSGA-II provides
the best frontier and the most stable behavior in large job
size problems. For the previous research on this problem in
MOPA systems, an assumption was made that the machines
are fully flexible. However, because the RDS units can only
fill a specific set of medications according to the auto-
dispensers assigned to them, machines in this scheduling
model should be considered as multi-purpose.

3 Methodology

This research mainly investigates the effect of machine flex-
ibility and the proportion of multi-medication orders on
the total collation delays in the system. A multi-purpose
machines environment, illustrated in Section 3.1, is adapted
since the machines are subjected to eligibility constraints.
The mathematical model developed for this problem is
presented in Section 3.3. A min-max Pareto method, intro-
duced in Section 3.4, is used to combine both objectives
into a single one. The GA used in this problem is pre-
sented in Section 3.5, while LPT and LTW are illustrated in
Section 3.6.

3.1 Multi-purpose machines approach

In this model, we have n medication jobs {j1, . . . , jn} and
K parallel machines {m1, . . . , mK}. Each medication job
belongs to a prescription order i and has a predefined set
of eligible machines, which is called the job’s processing
set. There are two types of orders: single medication orders
and multi-medication orders. Medications that belong to
multi-medication orders have to wait in a collation station
until remaining medications within the same order are dis-
pensed. It is assumed that there is no idle time, breakdown
time, or setup time. Machines can process only one job
at a time with no pre-emption allowed. The objective of
this scheduling problem is to build a schedule that mini-
mizes the makespan as well as the total collation delays
of orders.

The makespan, denoted as Cmax, can be defined as the
completion time of the last job leaving the system, and it
depends on two factors: the number of jobs assigned to each
machine and the processing times of these jobs. Let cij be
the completion time of job j from order i. The schedule
makespan can then be expressed as

Cmax = max{c11, c12, . . . , cij } (1)

The order collation delay, which is defined as the com-
pletion time difference between dispensing the first and

Table 1 Eligibility matrix A

Job m1 m2 m3

1 1 0 1

2 0 1 0

3 0 1 0

4 1 1 1

the last medication within one prescription order, can be
mathematically expressed as

�i = Li − Ei (2)

where Ei and Li are the completion times of the first and
the last dispensed medications within the same order i.

To capture the multi-purpose machine environment, eli-
gibility matrix A has been defined. In the real system,
this matrix is defined through assigning dispensers to the
RDS units. This process should be optimized based on the
demand forecasting and the RDS unit planogram design.
In this research, this matrix will be arbitrarily defined. An
example of the eligibility matrix A is given in Table 1. As
the table indicates, the value in this matrix is 1 if the job can
be processed on this machine, 0 otherwise.

3.2 Notations

The list of notations used in this problem is presented in
Table 2.

3.3 Mathematical model

The mathematical model developed for the problem is sim-
ilar to the time indexed model in [20]. It was modified
to capture the order scheduling problem on multi-purpose
machine environment through adding the required con-
straints. In this model, it is assumed that there is no
setup time, breakdown time, or idle time. Eligibility matrix
A, which defines the processing sets of the machines, is
assumed to be given as well. Time is considered as integer
units and is given in seconds in subsequent sections.

minCmax (3)

min
I∑

i

(Li − Ei) (4)

s.t.

K∑

m=1

T∑

t=1

xijmt = 1 ∀i, j (5)
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Table 2 List of notations
Indexes Description

i Order index, i ∈ {1, 2, . . . , I }
j Job index, j ∈ {1, 2, . . . , ni}
m Machine index, m ∈ {1, 2, . . . , K}
t Position index, t, u ∈ {1, 2, . . . , T }
Data Description

aij 1 if job j from order i can be processed on machine m, 0 otherwise

ni Number of jobs in order i

pij Processing time of job j from order i

I Number of orders

K Number of machines

M A very large number

Variables Description

cij Completion time of job j from order i

sijmt Starting time of job j from order i in position t on machine m

xijmt 1 if job j from order i is processed in position t of machine m, 0 otherwise

Cmax Schedule makespan

Ei Earliest completion time of order i

Li Latest completion time of order i

�i Order collation delay

I∑

i=1

J∑

j=1

xijmt � 1 ∀m, t (6)

xijmt − aijm � 0 ∀i, j, m, t (7)

sijm1 = 0 ∀i, j,m (8)

sijm(t+1) −
I∑

i=1

J∑

j=1

t∑

t=1

pij · xijmt = 0 ∀i, j, m, t (9)

cij − xijmt · (sijmt + pij ) = 0 ∀i, j, m, t (10)

I∑

i=1

J∑

j=1

T∑

t=1

pij · xijmt − Cmax � 0 ∀m (11)

cij − Li � 0 ∀i, j (12)

Ei − cij � 0 ∀i, j (13)

ymt , cij , Ei, Li � 0 ∀i, j, m, t (14)

xijmt ∈ {0, 1} ∀i, j, m, t (15)

Equation 3 is the objective function for minimizing the
makespan, while Eq. 4 is the objective function for mini-
mizing the total collation delays. Equation 5 ensures that
all jobs are assigned to one position on one machine only,

while Eq. 6 ensures that each position contains at most
one job. Equation 7 guarantees that jobs are processed only
on machines from their processing set. Equation 8 defines
the starting time of the first position of each machine,
while Eq. 9 specifies the starting time for jobs processed on
other positions. Equation 10 establishes the completion time
of each job. Equation 11 defines the schedule makespan.
Equation 12 states the latest completion time of order i,
meanwhile Eq. 13 specifies the earliest completion time of
the order.

3.4 Min-max Pareto Approach

The min-max approach is a classical multi-objective opti-
mization technique used to combine multiple objectives into
a single one [1]. The goal is to choose a single best com-
prise solution through minimizing deviations from reference

Table 3 The list of GA parameters used

Population size 10 · n

Number of iterations 10 · n

Mutation method 2-opt swap

Mutation rate 0.05

Crossover method 2-point crossover

Crossover rate 1.0

Parent selection method Binary selection
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Fig. 2 GA crossover and
mutation operators

values. To illustrate this concept, consider a problem with
two objective functions f1 and f2. The deviations can be
defined as z1 = f1 − fmin

1 and z2 = f2 − fmin
2 , and the

min-max objective function can be defined as

min{max{z1, z2}} (16)

Because the makespan and the collation delays usually
have different ranges of values, it is preferred to normalize
deviations as

zi = fi − fmin
i

fmax
i − fmin

i

(17)

For each new population in the genetic algorithm, the min-
imum and the maximum values are calculated from the

solutions, and the objective function for each solution is
calculated accordingly.

3.5 Genetic algorithm

A common method to design the chromosome in the par-
allel machines scheduling problem is to form an array that
contains the jobs to be processed by each machine [22]. The
array size isK ·T and each cell represents a gene in the chro-
mosome. The gene position represents the processing order
of the job on the machine. In the first step, an initial popu-
lation is created through randomly assigning jobs to eligible
machines. Solutions are then evaluated using the min-max
Pareto solution approach, and a binary selection process is
conducted to select parents.

Table 4 Experimental results for different amounts of machine flexibility

CPLEX LPT LTW GA

(2 hours limit)

Fp(%) Job C∗
max Cmax � Cmax � Cmax � Cmax � CT

size

0 12 79 79 31 79 58 79 58 79.0 31.0 6.1

24 140 140 30 140 222 140 222 140.0 30.8 30.7

48 352 352 78 352 1044 352 1044 352.0 78.0 224.4

96 728 728 335 728 4989 728 4989 728.0 267.0 1969.5

120 771 771 780 771 8256 771 8256 771.0 335.6 3612.8

50 12 62 62 3 89 115 78 103 62.0 3.0 6.3

24 123 123 2 136 234 125 268 123.0 4.4 35.2

48 245 245 49 246 988 252 1203 245.0 26.8 283.5

96 493 502 198 493 4264 496 4088 494.8 200.8 2351.1

120 620 635 347 620 6293 624 6375 631.4 281.2 4571.3

100 12 61 61 2 61 73 61 73 61.0 2.0 6.2

24 123 123 3 123 238 123 238 123.0 2.8 51.4

48 245 248 56 245 1002 245 1002 245.0 23.8 434.4

96 493 497 369 493 4223 493 4233 493.0 147.4 3667.3

120 620 624 464 620 6280 620 6280 620.0 189.8 4736.4

(2018) 99 73 83–:Int J Adv Manuf Technol78



12 24 48 96 120
0

200

400

600

800

Number of Jobs

O
pt
im

al
M
ak
es
pa
n
(s
)

0% Flexibility
100% Flexibility

Fig. 3 Relationship between machine flexibility and the makespan

A two-point crossover operator is applied in this GA to
produce offspring. Because the crossover process may result
in corrupted offspring (repeated and missing jobs), a repair
process was designed to transfer duplicate jobs from one
child to the other. A job swap mutation is applied to the
offspring in the next step to improve the diversity of the
population. In this method, a job is swapped with another
job either from the same or different machine. However, this
process is constrained by the processing assignment restric-
tions to ensure the feasibility of the solution produced. The
GA parameters, summarized in Table 3, were tuned using
design of experiment concepts (n refers to the total num-
ber of the jobs in the problem). Figure 2 illustrates the
chromosome design as well as the crossover and mutation
operators.

Algorithm 1 Genetic algorithm

1. Create initial population P0

2. Evaluate objective function for each solution in P0

3. Binary selection to select parents
4. Two point crossover followed by repair process
5. Constrained mutation process to create offspring
6. Create new population. Go back to Step 2 if stopping
criteria is not satisfied, else return best value.

3.6 LPT and LTW

Two popular heuristics are used to benchmark the effective-
ness of the GA. The first heuristic is the longest processing
time (LPT), which prioritizes the jobs in the list according to
the length of their processing time. LPT is known to perform

well in parallel identical machine environments and has a

lower bound of
∑n

j=1 pj

m
. This algorithm can be summarized

in the following steps:

1. Pick the job with the longest processing time.
2. Assign the job to the first available eligible machine.
3. Repeat until all jobs are assigned.

The second heuristic is the least total workload (LTW),
which considers the current and the unassigned workload
of each machine [21]. LTW chooses a machine first and
then assigns a job, unlike LPT, which picks a job and
then a machine. Let Wm represent the unassigned workload
of machine m, and Sm represent the current workload of
machine m. This algorithm can then be summarized in the
following steps:

1. Find machine m with minimum Sm + Wm.
2. List all jobs that can be processed on machine m.
3. Pick the job with the LPT and assign it to machine m.
4. Repeat until all jobs are assigned.

4 Experimental results and analysis

The objective of this analysis is to understand how machine
flexibility and multi-medication orders proportion affect the
system performance, mainly in terms of collation delays.
The measurement defined by Vairaktarakis and Cai (2003)
to indicate the overall process flexibility of the system [21].
The value of this measure is between 0 and 100 %. A sys-
tem with Fp = 100 % indicates a fully flexible system,
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Fig. 4 Relationship between machine flexibility and the total collation
delays
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while a system with Fp = 0 % indicates a fully dedicated
system. This measure can be mathematically expressed as

Fp =
∑

j,k Ajk − n

n(m − 1)
· 100 % (18)

where n is the number of jobs, and m is the number of
machines. Three different scenarios were tested: (1) fully
dedicated machines scenario (Fp = 0 %), (2) multi-purpose
machines scenario (Fp = 50 %), and (3) fully flexible
machines scenario (Fp = 100 %).

To evaluate the effect of multi-medication orders propor-
tion, three scenarios were tested, which depend on the ratio
of jobs that belong to multi-medication orders (25, 50, and
75 %). Processing times were generated from a uniform ran-
dom distribution (U � [14, 17]), and the eligibility matrix
A was defined arbitrarily. All scenarios were solved using
CPLEX, LPT, LTW, and the GA. The optimal makespan
was also calculated using the mathematical model without
considering the total collation delays to provide a bench-
mark for the heuristics. Algorithms were developed using
Matlab R2012a, and the experiments were conducted on a

Table 5 Experimental results for different proportions of multi-medication orders

CPLEX LPT LTW GA

(2 hours limit)

Multi- Job size C∗
max Cmax � Cmax � Cmax � Cmax � CT

medication (%)

25 12 62 62 1 89 72 78 41 62.0 1.0 6.6

24 123 123 0 136 161 125 178 123.0 0.4 37.2

48 245 246 33 246 575 252 568 245.0 5.8 280.4

96 493 505 76 493 1920 496 1690 493.0 74.8 2542.3

120 620 633 346 620 3120 624 3184 620.0 137.0 3298.5

50 12 62 62 3 89 115 78 103 62.0 3.0 6.3

24 123 123 2 136 234 125 268 123.0 4.4 35.2

48 245 245 49 246 988 252 1203 245.0 26.8 283.5

96 493 502 198 493 4264 496 4088 494.8 200.8 2351.1

120 620 635 347 620 6293 624 6375 631.4 281.2 4571.3

75 12 62 62 5 89 145 78 119 62.0 7.4 5.8

24 123 125 27 136 385 125 406 123.0 22.4 32.8

48 245 247 137 246 1503 252 1648 245.0 64.6 232.7

96 493 503 401 493 8226 496 8461 493.0 390.2 2521.2

120 620 635 694 620 10257 624 10306 620.0 575.2 5182.8
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PC with an Intel core i7-2600 CPU @ 3.4 GHz and 16 GB
RAM.

4.1 Analysis of machine flexibility effect

Fully flexible machine environment is always desirable
in manufacturing systems; however, there are many con-
straints in the real world that reduce the flexibility of the
machines. In MOPA systems, the RDS unit is only capable
of processing a specific subset of medications depending
on the auto-dispensers assigned to it. To increase the sys-
tem flexibility, the process of assigning medications to
dispensers should be optimized to handle uncertainties in
demand. Results illustrating the effect of machine flexibil-
ity on the makespan and the total collation delays are shown
in Table 4.

Figure 3 shows the relationship between machine flex-
ibility and the makespan. When the machine flexibil-
ity is 0 % (fully dedicated machine environment), the
makespan increases by 25–50 % as compared to the case
where the machine flexibility is 100 % (fully flexible
machine environment). However, when the machine flex-
ibility increases to 50 % in the multi-purpose machine
environment, the model was able to achieve the same perfor-
mance as in the fully flexible machine environment in terms
of the makespan. In general, it was proven that small
amounts of flexibility are required to achieve the perfor-
mance of fully flexible environments with respect to the
makespan [21].

Because LPT and LTW do not consider collation delays,
only GA results were used to analyze the effect of machine
flexibility on the total collation delays. As shown in
Fig. 4, the total collation delays for the fully dedicated
machine environment were 80 % higher than the fully flex-
ible machines case, and 25 % higher than multi-purpose
machine environment for large job size problems. The effect
of machine flexibility can also be observed when compar-
ing the multi-purpose machine environment to the fully
flexible machine environment. When machine flexibility
is 50 %, the total collation delays increase by 40 % on
average for large job size problems. Generally, when the
machine flexibility in the system decreases, the chances for
jobs within the same order to be processed on the same
machine increase, which subsequently leads to a larger order
collation delay.

Figure 5 shows the GA performance compared to
CPLEX, LPT, and LTW in terms of the makespan and the
total collation delays. For the makespan, the GA achieved
the optimal makespan in most of the cases. However in some
cases, the GA favored solutions with fewer collation delays
over solutions with optimal makespan and large collation
delays. Compared to the CPLEX solution after the 2 hours
limit, the GA generated 35 % less total collation delays in
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large size problems. LTW outperformed LPT for small job
size problems by 10 % on average; however, for large size
problems, both algorithms behaved similarly in achieving
the optimal makespan. It can also be seen that the GA mini-
mizes the total collation delays by 90–95 % in large job size
problems as compared to LPT and LTW.

4.2 Analysis of multi-medication orders proportion
effect

In MOPA systems, prescription orders received can be
single or multi-medication orders. The percentage of multi-
medication orders varies from one MOPA system to another
depending on the nature of the prescriptions demand
received. To study the effect of multi-medication orders on
the total collation delays, three scenarios were tested. In
each scenario, the percentage of jobs belonging to multi-
medication orders was varied (25, 50, and 75 %) and the
machines flexibility was fixed at 50 %. Experimental results
for these scenarios are shown in Table 5.

From the results, it can be seen that a higher percentage of
multi-medication jobs leads to a larger total collation delays.
Systems with 25 % of multi-medication jobs have 50–60 %
fewer total collation delays than systems with 50% of multi-
medication jobs, and 75–80 % fewer collation delays than
systems with 75 % of multi-medication jobs, as shown in
Fig. 6.

5 Conclusions and future work

In this paper, we have studied the MOP of minimizing col-
lation delays and the makespan in MOPA systems. This
scheduling problem is formally defined in the literature as
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the order scheduling problem. This model can be found
in many applications in the industry, especially in MTO
manufacturing systems. A special characteristic of this sys-
tem is that orders have to be collated before packaging and
shipping. The order collation delay is defined as the com-
pletion time difference between the first and the last items
within the same order. This parameter significantly affects
the throughput of the system and may cause deadlocks in
the material handling system used. There are many fac-
tors in the system influencing orders collation delay. This
research has studied the effect of machines flexibility and
the proportion of multi-medication jobs.

To solve this NP-hard problem, a GA was used and com-
pared with LPT and LTW. Experimental results indicate that
both factors have a significant effect on the total collation
delays in the system. A fully dedicated machine environ-
ment (Fp = 0 %) has 80 % more total collation delays
compared to a fully flexible machine environment (Fp =
100 %), and 25 % more total collation delays compared to
a multi-purpose machine environment (Fp = 50 %). When
studying the effect of multi-medication jobs proportion, it
was shown that a systemwith 25% jobs of multi-medication
jobs has 75–80 % fewer collation delays than a system with
75 % jobs of multi-medication jobs.

In manufacturing environments, it is often the case
that the decision maker is interested in obtaining a set
of alternative solutions rather than a single solution. This
enhances the systems flexibility in adapting to differ-
ent operational situations, especially when the number of
objectives increases. Classical optimization methods have
limitations in investigating the Pareto frontier set, and
requires several simulation runs to find multiple solutions
[4]. In this case, the Pareto-ranking approach is favor-
able since it provides a set of non-dominated solutions.
The Pareto-ranking approach is based on the evolutionary
algorithms (EA), which have been widely applied in multi-
objective optimization problems in recent years, due to their
population-based optimization characteristics. The future
research could employ and compare several MOEAs such
as the non-dominated sorting genetic algorithm II (NSGA-
II) [4] and the strength Pareto evolutionary algorithm II
(SPEA-II) [28].

Although the GA achieved optimal makespan in most of
the scenarios while minimizing the total collation delays by
90–95 % as compared to LPT and LTW, the computational
time for large job size scenarios was high. In the industry,
computational efficient heuristics that generate near opti-
mal solutions are preferred.. Future work would include
designing computational efficient heuristics that take into
consideration the unique characteristics of this problem.
These heuristics will be designed based on several rules
and factors, including machines flexibility (least flexible
machine (LFM)), orders priority (assigning priorities based

on number of items per order), and overall system perfor-
mance measures (makespan, total completion time, tardi-
ness).

In this research, the eligibility matrix A, which defines
the processing set of each job, was arbitrarily defined.
In the actual MOPA system, this matrix is defined
through a two-stage assignment process. In the first
stage, medications are assigned to an auto-dispenser which
depends mainly on the prescriptions demand. In the sec-
ond stage, the auto-dispensers are assigned to parallel
RDS units. RDS units are only capable of processing
a specific subset of medications depending on the auto-
dispensers assigned. This assignment process can be
optimized through efficient planogram techniques. The
future research could include the planogram design opti-
mization to increase the flexibility of the RDS, which
is expected to significantly enhance the MOPA system
performance.
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